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Abstract

Background: Infant anaesthesia causes acute brain cell apoptosis, and later in life cognitive deficits and behavioural

alterations, in non-human primates (NHPs). Various brain injuries and neurodegenerative conditions are characterised

by chronic astrocyte activation (astrogliosis). Glial fibrillary acidic protein (GFAP), an astrocyte-specific protein, increases

during astrogliosis and remains elevated after an injury. Whether infant anaesthesia is associated with a sustained

increase in GFAP is unknown. We hypothesised that GFAP is increased in specific brain areas of NHPs 2 yr after infant

anaesthesia, consistent with prior injury.

Methods: Eight 6-day-old NHPs per group were exposed to 5 h isoflurane once (1�) or three times (3�), or to room air as a

control (Ctr). Two years after exposure, their brains were assessed for GFAP density changes in the primary visual cortex

(V1), perirhinal cortex (PRC), hippocampal subiculum, amygdala, and orbitofrontal cortex (OFC). We also assessed

concomitant microglia activation and hippocampal neurogenesis.

Results: Compared with controls, GFAP densities in V1 were increased in exposed groups (Ctr: 0.208 [0.085e0.427], 1�:

0.313 [0.108e0.533], 3�: 0.389 [0.262e0.652]), whereas the density of activated microglia was unchanged. In addition, GFAP

densities were increased in the 3� group in the PRC and the subiculum, and in both exposure groups in the amygdala, but

there was no increase in the OFC. There were no differences in hippocampal neurogenesis among groups.

Conclusions: Two years after infant anaesthesia, NHPs show increased GFAP without concomitant microglia activation

in specific brain areas. These long-lasting structural changes in the brain caused by infant anaesthesia exposure may be

associated with functional alterations at this age.
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Editor’s key points
� Infant anaesthesia causes acute brain cell apoptosis,

cognitive deficits, and behavioural alterations later in

life in non-human primates.
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� Wehypothesisedthat infantanaesthesiacauseschronic

astrocyte activation (astrogliosis), consistent with prior

injury, in specific brain areas 2 yr after exposure.

� Two years after infant anaesthesia, non-human pri-

mates show increased astrogliosis without concom-

itant microglia activation in specific brain areas.
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� These novel long-term structural changes occur in

brain regions that showed acute increased apoptosis

after exposure and that are associated with func-

tional alterations later in life
Anaesthesia exposure of young children has been associated

with impaired neurobehavioral development.1,2 Most clinical

studies have limitations that contribute to their ambiguous

outcomes. According to a recent meta-analysis,3 three well-

controlled studies in the field (Pediatric Anesthesia Neuro-

development Assessment [PANDA], Mayo Anesthesia Safety in

Kids [MASK], and General Anesthesia or Awake-regional

Anesthesia in Infancy [GAS])4e6 share the finding that there

is no measurable effect on primary outcome of intelligence

quotient (IQ) after relatively short exposures to anaesthesia

(1e2 h) during infancy. However, secondary outcomes of these

studies suggest an association between anaesthesia exposure

and alterations in executive function or behaviour in school-

age children as reported in questionnaires by parents and

caregivers. In contrast, a large body of animal studies provides

robust evidence that anaesthesia exposure during infancy

causes functional alterations in the developing brain. Initial

findings in neonatal rats found that anaesthesia exposure

induced long-term impairments in spatial learning and

memory.7 Importantly, studies in infant non-human primates

(NHPs) exposed to anaesthesia using similar physiological

monitoring as for children, reported cognitive deficits8e10 and

behavioural alterations11e14 later in life.

Although the causes of the functional alterations are un-

known, there is strong evidence that anaesthesia exposure of

infant animals including NHPs causes an acute injury in the

immature brain, initially evidenced by a widespread increase

of neuronal apoptosis.7,15e20 More recently, in vitro and in vivo

studies have reported reduced neurogenesis and impaired

dendritic arborisation after anaesthesia exposure.21e27

Although these neuronal changes may account for long-term

functional impairments, glial cells play an essential role in

neuronal function, and they are also affected by infant

anaesthesia exposure. For example, in neonatal NHPs, oligo-

dendrocytes were found to undergo acute apoptosis after

anaesthesia exposure, similar to neurones.17,28e30 In addition,

infant anaesthesia exposure resulted inmyelination deficits in

prefrontal brain areas ofmice andNHPs,31 and in alterations in

oligodendrocyte development and myelin formation in parts

of the hippocampus that were associated with cognitive defi-

cits in exposed mice.32

Growing evidence suggests that infant anaesthesia expo-

sure also affects astrocyte structure and function,33e37

Anaesthesia-induced astrocytic dysfunction in neonatal mice

is associated with behavioural alterations later in life.38

Chronic activation of astrocytes, called astrogliosis, is a com-

mon response to brain insults. Astrogliosis is found in various

types of brain injuries, including hypoxic or traumatic injuries,

and has also been associated with neurodegenerative dis-

eases, such as Alzheimer’s disease and Parkinson’s disease,

and with neurodevelopmental disorders, including

autism.39e46 Astrogliosis can be identified by increased levels

of glial fibrillary acidic protein (GFAP),47 a cytoskeletal protein

uniquely expressed in astrocytes that plays a critical role in

their activation.24 In acute brain injury, GFAP expression in-

creases and can remain elevated, representing a long-term

structural change indicating a prior injury, called ‘glial scar’.48
Although acute structural changes in the developing brain

caused by anaesthesia exposure such as apoptosis have been

studied extensively, long-term alterations in brain structure at

times when functional impairments become evident are not

fully understood.49e52 Furthermore, it is unknown whether

such structural changes are present in brain areas involved in

the functional alterations found after anaesthesia exposure of

infants. We therefore investigated potential long-term struc-

tural changes in juvenile NHP brains 2 yr after exposure to

isoflurane during infancy by assessing astrogliosis in selected

brain areas. Initially, we examined the primary visual cortex

(V1) because this region has shown robust increases in brain

cell apoptosis in NHPs immediately after anaesthesia expo-

sure in previous studies,15 and functional impairments con-

nected to this brain area have been reported.8 Subsequently,

we studied the perirhinal cortex (PRC), the subiculum in the

hippocampus, the amygdala, and the orbitofrontal cortex

(OFC) as these brain areas have also shown acute

apoptosis.15,29 These areas represent major processing centres

for visual recognition memory,53 social,54 and anxiety-

related55,56 behaviours, which are impaired or altered in ju-

venile NHPs after infant anaesthesia exposure.8,11e13 We

report that anaesthesia exposure during infancy is associated

with increased astrogliosis in specific brain areas of juvenile

NHPs indicated by increased GFAP expression. Our results

provide novel evidence for long-term structural consequences

2 yr after infant anaesthesia exposure.
Methods

Ethical approval

This study was approved by the Institutional Animal Care and

Use Committee (IACUC) of the Oregon National Primate

Research Center (ONPRC) and was in compliance with all

federal regulations, and the guidelines set forth in the Guide for

the Care and Use of Laboratory Animals.57 The ONPRC is

accredited by AAALAC International.
Conditions of animal housing and euthanasia

The housing conditions of the NHPs have been described.13,14

Briefly, 24 rhesus macaques (Macaca mulatta) with an equal

number of females and males were born and housed at the

ONPRC (Beaverton, OR, USA). After the first year of life, the

NHPs were weaned from their dams, moved from outdoors

into indoor home cages, and were housed with five to six ju-

venile peers. Twice a day, the animals were fed with com-

mercial monkey chow (Lab Diet Monkey Diet, St. Louis, MO,

USA) supplemented with grain or produce daily and had ac-

cess to water ad libitum. There was a 12:12 h light/dark cycle,

starting with lights on at 07:00. At the age of 2 yr, the NHPs

were sedated with ketamine 20 mg kg�1 i.m. and transported

to pathology, where basic morphometric measurements were

taken. Pentobarbital 0.25 mg kg�1 i.v. was administered fol-

lowed by exsanguination and in vivo transcardial

perfusionefixation with saline followed by 4% (w/v) para-

formaldehyde to prepare the brain for histopathologic

analysis.
Infant anaesthesia exposure

The conditions of infant anaesthesia exposure have been

described.13,14 Briefly, 1 day before anaesthesia exposure, the

postnatal day 5 (P5) NHP neonates were separated from the
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breeding group together with their dams. Each dam received a

mild sedative (ketamine, i.m., 5 mg kg-1), and its neonate was

transferred to the operating room. After taking baseline vital

parameter measurements including heart rate, respiration,

temperature, blood pressure, weight, blood gas analysis, and

metabolic parameters, the neonate was carefully hand

restrained and exposed to isoflurane via face mask and under

spontaneous ventilation. This induction technique closely

resembles the method used routinely to induce anaesthesia in

young children. Subsequently, the trachea was intubated and

the lungs mechanically ventilated, and a surgical plane of

anaesthesia was maintained for 5 h at an end-tidal isoflurane

of 0.7e1.5 vol% in 30 vol% oxygen. In our previous studies,

doseeresponse experiments revealed that 5 h exposure to

these isoflurane concentrations provided anaesthesia levels

that allowed the NHPs to tolerate mild to moderate mechani-

cal stimuli, and induced neurotoxicity in the developing NHP

brain.15,28 Maintenance of this anaesthesia level was

controlled by verifying the absence of movement and <10%
increase in heart rate or blood pressure in response to a me-

chanical stimulus.

This management using full physiologic monitoring

mimicked conditions in paediatric anaesthesia. Physiological

parameters were maintained within narrow ranges

throughout the exposure (Supplementary Table S1) using a

similar approach as reported.58 After isoflurane exposure was

stopped and the animal was awake, extubation was per-

formed. Subsequently, animals were kept in an NHP incubator

until fully recovered before they were transferred back to their

dams. Animals were randomised to receive this procedure

either one time (1�) on P6, three times on P6, P9, and P12 (3�),

or to receive the same procedure on the same postnatal days

but exposed to room air only. The NHPs in the 1� exposure

group received room air on P9 and P12, after they had been

exposed to isoflurane on P6. All three groups initially consisted

of eight animals with equal sex distribution. One female NHP

in the 3� group had to be removed from the study at about 1 yr

of age because of therapy-resistant chronic diarrhoea.
Histopathology

Immediately after NHPs were euthanised, their brains were

perfused with cold artificial cerebrospinal fluid by cannulation

of the aorta. The left hemibrain was rapidly removed for

electrophysiological studies and evaluation of dendritic

morphology which required unfixed tissue. The right hemi-

brain was then perfused in situwith paraformaldehyde 4% and

removed from the skull. Before further processing, the fixed

hemibrains were coded to avoid bias by the investigators. The

hemibrains were sliced at ~5mm intervals, and paraffin blocks

were prepared from frontal, occipital, and temporal regions,

the latter including deep structures of the amygdala and the

hippocampus. Several 6-mm-thick consecutive histological

slices were cut from each paraffin block at three levels ~0.2

mm apart, aiming to include the brain regions of interest. Each

slice was deparaffinised and stained with specific antibodies

using standard immunohistochemical protocols that included

antigen retrieval in citrate buffer pH 6.0. For each block, one

slice was immunostained with the neuronal marker NeuN

(Millipore #ABN78; Millipore, Burlington, VT, USA) to identify

the brain regions of interest (i.e. V1, amygdala, hippocampus,

and OFC) using the corresponding figures in a monkey brain

atlas59 that illustrate the location of the brain regions. These

regions were selected because previous studies found them to
show robust apoptosis acutely15,29 or to be critically involved

in long-term functional alterations associated with infant

anaesthesia exposure.8,11e13 In addition, the subiculum was

chosen as this hippocampal area is known to be highly

vulnerable to brain injuries (e.g. hypoxia) early in life.60e62

The GFAP immunoreactivity was determined by incubating

slices with a rabbit monoclonal anti-GFAP antibody (Abcam

#ab68428; Abcam, Cambridge, UK) diluted 1:1000 in blocking

solution (phosphate-buffered saline [PBS] with 1% bovine

serum albumin [BSA] and 0.3% Triton, v/v) overnight at 4�C.
Slices were washed in PBS and exposed to secondary antibody

by incubation in Vector ImmPRESS™ (Vector Laboratories,

Inc., Burlingame, CA, USA) reagent containing anti-rabbit IgG

peroxidase conjugate for 30 min, and developed with dia-

minobenzidine (DAB). Iba-1 immunohistochemistry was per-

formed using a protocol the primary antibody rabbit anti-Iba-1

(Wako #019e19741; Wako Chemicals, Richmond, VA, USA)

diluted 1:3000 in blocking solution. For analysis of hippocam-

pal neurogenesis 15-mm-thick sections were cut from tempo-

ral blocks and incubated with the ki67 primary antibody

(Abcam #ab15580) diluted 1:2000 in blocking solution over-

night at 4�C, followed by incubation in biotinylated goat anti-

rabbit secondary antibody (Vector, #BA-1000; Vector Labora-

tories) diluted 1:200 in blocking solution, then incubated with

avidinebiotineperoxidase complex (Vectastain Elite kit; Vec-

tor Laboratories) and developed with DAB. All immunostained

slices were lightly counterstained with Mayer’s haematoxylin,

dehydrated, cleared, and coverslipped with Permount (Fisher

Scientific, Fair Lawn, NJ, USA). All histological slides were

stored at room temperature for subsequent imaging analysis

and quantification.
Quantification of GFAP area density and Iba-1 positive
cells

Coded histological slides containing the brain regions of in-

terest were scanned at high magnification using a 40� objec-

tive in an automatised slide scanner (Zeiss Axio Scan Z1 and

ZEN software; Carl Zeiss, Oberkochen, Germany), and high-

resolution images were stored in a hard drive for subsequent

analysis. The ‘ZEN 2.3 lite’ software (free version) was used to

create individual TIFF images containing the brain areas of

interest. We measured astrogliosis and microglial activation

using different units to be consistent with those used in pre-

vious studies that also reported these histopathological en-

tities. Astrogliosis was measured as the ratio of GFAP-positive

area to total area analysed, and expressed as GFAP density in

percentage.63e65 This approach takes into consideration

astrocyte hypertrophy and the accompanying increase in

GFAP expression that characterises astrogliosis.40 Microglial

activation was measured as number of positive cells divided

by total area analysed and expressed as Iba-1 cell density in

cells per mm.2,66,67 Quantification of GFAP positive area and

Iba-1 positive cells in each brain region was performed using

the ImageJ software.

To prevent bias introduced by selecting regions of interest

within specific brain areas, quantification of GFAP and Iba-1

was performed on the entire grey matter of the brain region

(i.e. V1, amygdala, or OFC) present on the histological slide.

GFAP-positive area and Iba-1-positive cells were automatically

recognised and counted using customised macros in the

ImageJ that used the plugin IHC profiler (https://sourceforge.

net/projects/ihcprofiler/). This plugin allows unbiased quan-

tification of area positive for immunohistochemistry (brown

https://sourceforge.net/projects/ihcprofiler/
https://sourceforge.net/projects/ihcprofiler/
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areas) followed by an adjustable threshold to identify positive

areas and exclude noise.68 The analysis outcome allows

quantification of the number of positive counts (‘cells’) along

with their area. These computer-assisted quantifications of

GFAP and Iba-1 in specific brain regions were performed by an

investigator blinded to animal group assignment and without

access to the key to identify the coded histological slides. For

quantification of hippocampal ki67-positive cells, coded slides

were analysed by an experienced neuropathologist. Darkly

stained (brown) nuclei were counted when located either in

the dentate gyrus (DG) or within a band twice the thickness of

the DG into the hilum, to ensure including all relevant cells.
Statistical analysis

All statistical analysis was performed in GraphPad Prism 8

(GraphPad Software, Inc., San Diego, CA, USA). We tested for

normality using the WilkeShapiro test. As GFAP area, Iba-1

cell density, and ki67 cell count data did not have normal

distribution, descriptive statistical data for these variables are

presented as median (25the75th percentiles). Grubbs test was

used to identify outliers, but no animals were excluded with

this analysis. Comparison between medians was determined

using KruskaleWallis test followed by Dunn’s post hoc test. We

used a¼0.05 for all statistical tests.

Results

GFAP densities increased in V1 after isoflurane
exposure

To evaluate whether isoflurane exposure during infancy re-

sults in long-term structural alterations, we assessed the

density of GFAP expression in V1 in the brains of the 2-yr-old

NHPs. This brain area was selected because it shows robust

apoptosis acutely after infant anaesthesia exposure.15,28

Guided by the rhesus monkey brain atlas59 and strict cortical

cytoarchitectural features, we identified the V1 region in our

stained and scanned occipital brain slices (Fig. 1a) quantified

GFAP-positive area (Fig. 1b). As shown in Fig. 1c, GFAP den-

sities in V1 increased with exposure to isoflurane (Ctr: 0.21%
a b

Fig 1. Glial fibrillary acidic protein (GFAP) expression in the visual corte

a brain slice cut from the occipital region indicated in the inset, immu

(blue). The demarcated regions indicate the primary visual cortex (V1) c

positive areas (GFAPþ) within V1. (c) GFAP area density (% of total area) i

after single (1�), three times (3�) or no exposure (Ctr) to isoflurane durin

1�: 8, 3�: 7.
[0.085e0.43], 1�: 0.31% [0.11e0.53], 3�: 0.39% [0.26e0.65],

H(2)¼10.24, P¼0.006; KruskaleWallis test). Post hoc analysis

with Dunn’s multiple comparisons test showed that the dif-

ferences among the control and exposed groups reached sta-

tistical significance for the 3� (P¼0.003) but not for the 1�
group (P¼0.132).
Iba-1 cell densities were unaffected after isoflurane
exposure

We analysed Iba-1 cell densities in V1 to test whether the in-

crease in GFAP associated with isoflurane exposure during

infancy was accompanied by activation of microglia in this

region 2 yr after isoflurane exposure. Iba-1 positive cells

(Fig. 2a) were divided by the V1 area to obtain Iba-1 cell density.

In contrast to GFAP density, we did not find significant dif-

ferences for Iba-1 cell densities in V1 among the groups

(Fig. 2b; n.s., KruskaleWallis test).
GFAP densities increased in the PRC, subiculum, and
amygdala, but not in the OFC, after isoflurane
exposure

We extended our assessment of GFAP to other brain areas that

participate in cognitive functions and behaviours that are

altered after infant anaesthesia exposure. We assessed this

marker in the PRC and subiculum because they are critically

involved in memory function, and in the amygdala and the

OFC, because they play major roles in anxiety and social

behaviour. In the PRC of 2-yr-old NHPs, GFAP densities differed

significantly between groups (Fig. 3a: Ctr: 0.10% [0.03e0.16], 1�:

0.082% [0.049e0.154], 3�: 0.18% [0.070e0.28], H(2)¼6.96,

P¼0.031; KruskaleWallis test). Post hoc analysis with Dunn’s

multiple comparisons test showed that GFAP density was

increased in the 3� group (P¼0.032), but not in the 1� group

(P>0.999) as compared with the control group. Similarly, the

GFAP analysis in the subiculum revealed increased densities

only for the 3� groupwhen comparedwith control (Fig. 3b: Ctr:

3.07% [2.18e4.12], 1�: 1.93% [1.10e4.89], 3�: 5.16% [3.40e11.09],

H(2)¼13.52, P¼0.001, KruskaleWallis test, post hoc Dunn test
c
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P¼0.008). Analysis of the amygdala revealed increased GFAP

densities in both exposed groups as compared with control

(Fig. 3c: Ctr: 0.33% [0.19e0.48], 1�: 0.68% [0.46e0.82], 3�: 0.66%

[0.434e0.81], H(2)¼13.35, P¼0.001; KruskaleWallis test). Dunn’s

multiple comparisons test revealed statistically significant

differences for both exposure groups (1�: P¼0.003, 3�:

P¼0.007). In contrast, in the OFC there were no significant

differences in GFAP area densities between groups (Fig. 3d;

n.s., KruskaleWallis test).
Hippocampal neurogenesis is not affected after
isoflurane exposure

To explore whether exposure of infants to isoflurane affects

neurogenesis in the DG of the hippocampus of juvenile NHPs,

we evaluated the proliferative cell marker ki67. We found that

there were no significant differences for ki67 cell counts in the

indicated hippocampal area between the three groups (Fig. 4;

n.s., KruskaleWallis test).
Discussion

We report increases in GFAP-positive area in specific brain

regions of juvenile NHPs 2 yr after single or multiple 5 h iso-

flurane exposures during infancy. These results reveal novel

long-term structural changes associated with anaesthesia

exposure in the developing brain. Increased GFAP densities

were found in V1, the PRC, and the subiculum, regions that

participate in visual recognition memory, and in the amyg-

dala, which plays a role in anxiety-related and social behav-

iours. These brain functions have been shown to be altered

after infant anaesthesia exposure in NHPs.8,11e13 Such in-

creases in GFAP area indicate chronic astrogliosis and

resemble similar changes detectable after other types of brain

injury including ischaemia/hypoxia,41,69,70 or those associated

with neurodegenerative conditions such as Alzheimer’s dis-

ease71 and developmental disorders such as autism.46 It is

important to note that the long-term structural changes
a

Fig 2. Iba-1 cell density in thevisual cortex (V1) of juvenile non-humanpr

Iba-1-positive cells (Iba-1) within V1. (b) Iba-1 cell density (cells mm�2) i

times (3�) or no exposure (Ctr) to isoflurane during infancy. Data are m
reported here are accompanied by alterations in behaviours

detected at the same age.13

The increase in GFAP indicates activation of astrocytes,

which is a common and non-specific response to CNS injury. It

is likely that the increase in GFAP we found 2 yr after anaes-

thesia exposure was in response to the acute injury caused by

isoflurane exposure during infancy that is characterised by a

widespread increase in apoptosis of neurones and oligoden-

drocytes.28 Whereas mild to moderate astrogliosis is generally

an acute and transient response, more severe and diffuse

astrogliosis is chronic and can result in long-term tissue reor-

ganisation. A localised increase in reactive astrocytes and GFAP

density has been suggested to play a beneficial role as it rep-

resents a barrier separating the injured area from intact

neuronal tissue thereby supporting restoration of tissue integ-

rity and preventing further spread of cellular damage.72 How-

ever, such localised GFAP density increases also have been

suggested to contribute to neuronal hyperexcitability and sei-

zures.73 In contrast, a diffuse, chronic astrogliosis has been

associated with detrimental effects and inhibition of tissue

recovery including attenuation of axonal regrowth after tissue

lesions.69,74,75 The astrogliosis we found in 2-yr-old NHPs after

infant isoflurane exposure appears to be of the diffuse and

chronic type, and likely occurred as a response to the acute

widespread apoptotic injury.28 This type of gliosis can be

comparedwith that associatedwith neonatal hypoxic injury, as

both are chronic and diffuse in nature. However, we do not

suspect that anaesthesia resulted in brain hypoxia as we were

able to carefully monitor and control physiologic parameters

during anaesthesia exposure, including oxygen saturation.

Astrocytes play important functions in maintaining

extracellular homeostasis in the brain, modulating synaptic

activity and shaping synaptogenesis (formation and pruning

of synapses).40 Astrocyte dysfunction and astrogliosis have

been associated with altered synaptic structure and func-

tion.69 Imbalances between excitatory and inhibitory synap-

ses have been linked to behavioural alterations characteristic

of autistic disorders, such as deficits in social interaction.76,77
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Fig 3. GFAP expression in the perirhinal cortex, subiculum, amygdala, and orbitofrontal cortex of juvenile NHPs. GFAP area density (% of

total area) in (a) the PRC, (b) subiculum, (c) amygdala, and (d) OFC of juvenile NHPs 2 yr after single (1�), three times (3�) or no exposure

(Ctr) to isoflurane during infancy. Data are median (25the75th percentiles); n (NHP)¼PRC: Ctr: 8, 1�: 7, 3�: 7; subiculum: Ctr: 8, 1�: 8, 3� 7;

amygdala: Ctr: 8, 1�: 7, 3�: 5; OFC: Ctr: 8, 1�: 8, 3�: 7. GFAP, glial fibrillary acidic protein; NHPs, non-human primates.
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Thus, it is possible that the astrogliosis we found may be

associated with the reduced social behaviours that we found

in the same NHPs at 2 yr of age after infant anaesthesia.13 In

support of this hypothesis, chronic astrogliosis has been

associated with altered behaviour in a murine traumatic

brain injury model.78 However, further experiments in NHPs

are needed to test this hypothesis.

Chronic activation of astrocytes might affect the develop-

ment of critical brain areas and their connections, thereby

impairing normal function.79,80 The astrogliosis we found in

V1, the PRC, and the subiculum of NHPs 2 yr after exposure

could be linked to the impaired visual recognition memory

reported in similar aged NHPs.8 There is significant evidence

that V1 could participate in visual recognition memory in ro-

dents and NHPs. Early lesion experiments in rats indicated

that the entire neocortex including V1 participates in memory

storage,81 andmore recent work suggests that V1 is involved in

visual recognition and working memory.82e84 However, the

critical areas for recognition memory processing are the PRC
and the hippocampus, and damage to these structures was

found to impair object recognition.53 Importantly, perfor-

mance on the visual paired comparison task, the paradigm

used in the study by Alvarado and colleagues,8 is dependent on

PRC activity as reported in NHPs after neonatal perirhinal le-

sions.85 Therefore, the increase in astrogliosis in the PCR

together with V1 found in the juvenile NHPs in our study may

present the structural correlate for the impairments in visual

recognition memory reported after infant anaesthesia expo-

sure.8 In contrast, the hippocampus including the subicular

cortex plays an essential role in recognition memory that in-

volves spatial information,86,87 whereas neonatal perirhinal

lesions in NHPs revealed that the PRC is dispensable for spatial

location.88 We also found significant astrogliosis in the sub-

iculum of juvenile NHPs in the 3� group, which may correlate

with the lowest performance of the animals in this exposure

group during the delayed response test that measures spatial

working memory.13 Our findings of increased GFAP in tem-

poral lobe structures (PRC and subiculum) in the brains of
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Fig 4. ki67-positive cells in the dentate gyrus of juvenile non-human primates (NHPs). (a) Representative high magnification image (4�)

showing ki67-positive cells (ki67) within the dentate gyrus (DG) of juvenile NHPs. (b) ki67-positive cells in DG in juvenile NHPs 2 yr after

single (1�), three times (3�) or no exposure (Ctr) to isoflurane during infancy. Data are median (25the75th percentiles); n (NHP)¼Ctr: 8, 1�:

8, 3�: 7.
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NHPs in the 3� group support clinical studies showing that

multiple, but not single, infant anaesthesia exposures were

associated with learning disabilities and attention deficit/hy-

peractivity disorder later in life.89,90

The astrogliosis we found in the amygdala may be associ-

ated with decreased close social behaviour and increased

anxiety-related behaviours as reported in these NHPs,13 and in

juvenile NHPs in other studies, after infant anaesthesia

exposure.11,12,14 This component of the limbic system is sub-

stantially implicated in processing of social and anxiety-

related behaviours.54,56,91,92 In addition, animals with ibo-

tenic acid amygdala lesions during infancy exhibit decreased

or altered social behaviour with familiar partners, and greater

anxiety-related behaviours such as scratching and yawning

later in life.93e95 Selective neurotoxic amygdala lesions in

neonatal NHPs result in alterations in social behaviour,

including loss of social status, decreased affiliative behaviours,

and decreased social interactions.96e100 Hence, these alter-

ations in social behaviours and increased anxiety-related be-

haviours after anaesthesia exposure during infancy could be

associated with the astrogliosis that we found in the amyg-

dala. Interestingly, we found astrogliosis in the 1� group only

in the amygdala, suggesting that this area is more sensitive

than the other areas analysed. Recent clinical studies report

associations of early in life anaesthesia and alterations in

behaviour that show some parallels with behavioural changes

in animal studies as discussed extensively.3,13,101,102

Acute brain injury activates microglia, the primary im-

mune cells of the CNS that respond by migrating to the site of

injury where they release inflammatory factors, destroy

pathogens, and remove damaged cells. Microglia-mediated

inflammatory responses are also considered to be key in

some neurodevelopmental diseases including autistic spec-

trum disorders.103,104 We detected astrogliosis, but we did not

find evidence of ongoing microglia activation by Iba-1 stain 2

yr after infant anaesthesia exposure. Although we cannot

disregard microglia activation early after infant anaesthesia

exposure in these NHPs, previous studies in different species

support our finding as they report acute, but not long-lasting,

activation of microglia after infant anaesthesia expo-

sure.67,105,106 For example in neonatal micemultiple exposures
to sevoflurane induced an acute microglia activation in the

hippocampus that was not evident 1 month after anaesthesia

or later, suggesting that anaesthesia-induced microglia acti-

vation is acute and transient.67 Similarly, a subsequent study

using in vivo micro-positron emission tomography (PET)/CT

imaging in NHPs found that infant sevoflurane exposure

resulted in acute activation of microglia that lasted a few days

but was not present after 3 weeks.105 Although the molecular

mechanisms of anaesthetic neurotoxicity are not completely

understood, acute activation of microglia promoting inflam-

mation and generation of reactive oxygen species (ROS) are

among the proposed constituents of the underlying acute

damage of the developing brain.107 The lack of microglia

activation 2 yr after infant exposure suggests that there is no

ongoing active injury, but instead that the astrogliosis found in

the juvenile brains is a result of a prior injury. Thus, we pro-

pose that the increased levels of GFAP in specific brain regions

represent a long-term structural marker of anaesthesia-

induced brain injury in the developing brain.

Anaesthesia exposure during infancy impairs hippocampal

neurogenesis.108 Several studies in neonatal rodents (P7) re-

ported concurring findings that exposure to isoflurane, sevo-

flurane, propofol, or ketamine caused an acute decrease in

progenitor proliferation in the DG that lasted for up to 10 days

and was associated with long-term neurocognitive defi-

cits.21,23e25 Another study in slightly older rodents (P14) re-

ported persisting reductions of hippocampal neurogenesis for

up to 4 weeks after exposure and deficits in memory func-

tion.22 We did not find differences in hippocampal neuro-

genesis 2 yr after infant anaesthesia exposure. However, we

cannot discard the possibility of impaired neurogenesis at an

earlier time, as this study or any other report did not investi-

gate acute effects of anaesthesia exposure on hippocampal

neurogenesis in the infant NHP.

Our study has several limitations. In the present study only

a single method (GFAP staining) was used to detect astro-

gliosis. We chose GFAP labelling because detection of elevated

GFAP levels in post mortem tissue is a traditional, well-

established method to determine astrogliosis in various dis-

eases.40,109,110 Because of its post mortem nature, our study can

only provide information about astrogliosis at the time point
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of 2 yr after infant anaesthesia exposure, and further experi-

ments are necessary to investigate the course of astrogliosis

over time. The absence of astrogliosis in the OFC does not

exclude its presence in other areas that have been implicated

in social and anxiety-related behaviours such as the cingulate

cortex, insula, other areas of the frontal cortex, or in white

matter. We do not know whether our findings of astrogliosis 2

yr after infant exposure to isoflurane for 5 h (one or three

times) can be generalised to other anaesthetics or to shorter

exposure durations. Further studies will be needed to examine

these issues.

Our study has several strengths. The NHP brain shares the

highest structural similarities to the human brain, making this

a preferred model for studies of chronic structural changes

after infant anaesthesia exposure. In addition, this model

allowed exposure of infants under physiologically controlled

conditions to closely mimic paediatric clinical settings. The

physiological parameters of neonatal NHPs were maintained

within narrow ranges throughout the 5 h exposures and were

comparable with those published earlier using a similar

approach to monitor and control physiological parameters of

neonatal NHPs during exposure to several anaesthetics

including isoflurane.58 Our histopathological studies in the

brains of juvenile NHPs revealed astrogliosis in several brain

areas associated with anaesthesia exposure during infancy.

This is the first report of this new type of structural alteration

in the brain 2 yr after early-in-life anaesthesia exposure. This

age in NHPs corresponds approximately to that of children

aged 6e8 yr. The astrogliosis in the 2-yr-old NHPs was found

concurrently with alterations in social and anxiety-related

behaviours that we assessed at this age in the same animal

cohort.13
Conclusions

We report chronic astrogliosis in juvenile non-human pri-

mates 2 yr after infant anaesthesia, providing the first neuro-

anatomical evidence for long-term structural consequences

after exposure. The absence of microglia activation concur-

rently with the long-term astrogliosis suggests that it repre-

sents an indicator of past injury caused by infant anaesthesia

exposure. The astrogliosis associated with infant anaesthesia

exposure could be helpful as a long-term marker of

anaesthesia-induced brain injury in future research. Prevent-

ing the sustained astrogliosis may represent a novel approach

to prevent functional impairments associated with infant

anaesthesia exposure.
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