TABLE 3.
ML technique | Performance | Dataset | Reference |
---|---|---|---|
SVM | ACC = 0.94, Sn = 0.98, Sp = 0.9, AUC = 0.94 | 17 images | 69 |
Random forest Naïve Bayes SVM |
AUC = 0.74 for RF, AUC = 0.73 for NB, AUC = 0.68 for SVM |
162 nonmass lesions | 51 |
SVM | AUC = 0.77 | 84 images | 52 |
Random forest | Sn = 0.88, Sp = 0.98 | 18 lesions | 53 |
SVM | AUC = 0.65, Sn = 0.65, Sp = 0.75 | 84 lesions | 70 |
SVM | AUC = 0.58, Acc = 0.58, Sn = 0.62, Sp = 0.54, | 46 lesions | 54 |
ANN | AUC = 0.55, Sn = 0.79, Sp = 0.33, Acc = 0.72 | 54 lesions | 45 |