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Abstract

Sea turtles are exposed to trace elements through water, sediment, and food. Exposure to these 

elements has been shown to decrease immune function, impair growth, and decrease reproductive 

output in wildlife. This study compares trace element concentrations in green turtles in captivity at 

Sea Life Park Hawaii (n = 6) to wild green turtles in Kapoho Bay, HI (n = 5 to 7). Blood and scute 

samples were collected and analyzed for eleven elements via inductively coupled plasma-mass 

spectrometry (ICP-MS). Selenium was significantly greater (p < 0.05) in the blood of captive 

turtles compared to wild turtles, while V, Ni, and Pb were significantly greater in the blood of 

wild turtles. In scute, V, Cu, Se, and Cr were significantly greater in captive turtles, while As 

was significantly greater in wild turtles. Pelleted food fed to the captive turtles and representative 

samples of the wild turtle diet were analyzed via ICP-MS to calculate trophic transfer factors 

and daily intake values. Wild turtles had greater estimated daily intake than captive turtles for all 

elements except Cu and Se. Because captive turtles are fed a diet very different from their wild 
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counterparts, captive turtles do not represent control or reference samples for chemical exposure 

studies in wild turtles. No toxic thresholds are known for sea turtles, but rehabilitation and 

managed care facilities should monitor sea turtle elemental concentrations to ensure the animals’ 

health.

Graphical Abstract

The differences in elemental concentrations between captive and wild turtles are primarily due to 

their food source. Captive turtles are given a pelleted food that is a mixture of animal and plant 

protein products with additives, while wild turtles have a primarily herbivorous diet.
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INTRODUCTION

Trace elements have been found in marine vertebrates around the world including cetaceans, 

seabirds, fishes, and sea turtles (Gochfeld et al. 1999; Gardner et al. 2006; Araújo and 

Cedeño-Macias 2016; Hansen et al. 2016). Some elements, including K, Na, Mg, Ca, 

Mn, Fe, Co, Ni, Cu, Zn, Mo, and Se, are essential for enzymatic activity, cell structure, 

immune response, and other bodily functions. Essential elements can become toxic at high 

concentrations, while nonessential elements, e.g., As, Hg, and Pb, can be toxic at very low 

concentrations (Gadd 1992; Liu et al. 2008; Cortes-Gomez et al. 2017). These nonessential 

elements can gain access to cells by mimicking essential elements, potentially disrupting 

cellular processes (Liu et al. 2008; Perrault et al. 2017). This can adversely affect the health 

of organs, the central nervous system, and the immune system through acute or chronic 

exposure (Liang et al. 2004).
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Hawaiian green turtles (Chelonia mydas) face anthropogenic threats such as pollution, 

fisheries bycatch, and habitat loss. C. mydas are classified as threatened under the United 

States Endangered Species Act and listed in Appendix I of the Convention of International 

Trade in Endangered Species (IUCN 2019; Sinaei and Bolouki 2017). Age classes are 

defined based on straight carapace length (SCL) measured from nuchal notch to the tip 

of the posterior-most marginal scute. Juvenile sea turtles have a SCL < 75 cm, subadult 

turtles range between 75 cm to 80 cm SCL and adult turtles have a SCL > 80 cm. Hawaiian 

green turtles recruit to nearshore habitats at around 35 cm SCL. Once in nearshore habitats, 

subadult and adult turtles exhibit high site fidelity to a particular location. Green turtles are 

bioindicators of the environment due to their long lives, high site fidelity, and accumulation 

of contaminants from food, water, and sediment inadvertently ingested while eating (Aguirre 

and Lutz 2004; Lam et al. 2007; Andreani et al. 2008; Duncan et al. 2019).

Natural and anthropogenic contaminants, including metals, are one of the hazards potentially 

contributing to the decline of green turtles worldwide (Villa et al. 2015). Wild green sea 

turtles have a lifespan of 75 years, potentially bioaccumulating metals; though trace element 

concentrations in tissues are generally one to two orders of magnitude lower in sea turtles 

than seabirds or marine mammals (Lutcavage et al. 1997; Milton and Lutz 2003; Mayne et 

al. 2020).

Contaminant monitoring in sea turtles can help elucidate the risk of trace elements to the 

species as well as to the ecosystems in which they inhabit (Cortes-Gomez et al. 2017). 

Blood samples can be used to estimate elemental contamination in liver, muscle, and kidney 

tissue of green turtles (Van de Merwe et al. 2010). Whole blood allows measurement of 

elements in both intracellular and extracellular compartments and represents recent (weeks 

to months) exposure to contaminants (Takeuchi et al. 2016; Villa et al. 2017). Conversely, 

scutes are hard, keratinized plates that make up the shell of a sea turtle. Many trace elements 

bind to the keratin of the scutes, incorporating and storing contaminants over time, giving 

a history of exposure (Sakai et al. 2000; Day et al. 2005; Innis et al. 2008; Van de Merwe 

2008; Komoroske et al. 2011; Bezerra et al. 2013; Bryan 2013; Perrault et al. 2017). Once 

incorporated into scute, elements become metabolically inactive and are unavailable for 

remobilization (Day et al. 2010). All species of sea turtle are threatened or endangered and 

protected by the Endangered Species Act, making non-lethal samples a requirement. Blood 

and scute, along with food samples, can be used to monitor elemental contaminant exposure 

in live turtles. Trophic transfer factor (TTF) is defined as the ratio between the concentration 

of an element in the animals’ tissue to the concentration of the element in its food (DeForest 

et al. 2007). A TTF value > 1 indicates elements may biomagnify, while a TTF <1 means 

biomagnification is unlikely to occur (Mathews and Fisher 2008).

Contaminant monitoring in captive turtles may help answer questions about wild turtles. Sea 

turtles have been raised and rehabilitated in captivity for decades (Owens and Blainvillain 

2013). In addition to rehabilitation, sea turtles in captivity can provide valuable insight into 

disease pathways and physiology (Falk et al. 2007). Captive turtles are fed a prescribed 

diet and offer a unique opportunity to study the trophic transfer of trace elements, and may 

potentially serve as a baseline of elemental concentrations in sea turtles.
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The present study quantified the mass fractions (hereinafter called concentrations) of the 

inorganic elements: As, Cd, Co, Cr, Cu, Ni, Pb, Sb, Se, Sr, and V in the blood and scutes 

of adult captive and wild Hawaiian green turtles. Studies have previously been conducted 

on sea turtles in captivity, quantifying trace elements in headstarted (captive reared) Kemp’s 

Ridley turtles (Lepidochelys kempii); a green turtle in rehabilitation, and captive hawksbill 

(Eretmochelys imbricata), green, and loggerhead (Caretta caretta) turtles (Bezerra et al. 

2014; Orvik 1997; Suzuki et al. 2012a,2012b). To our knowledge this is the first study to 

measure elemental concentrations in captive turtle food and to calculate TTF and dietary 

intake values. Past studies have incorrectly suggested that captive turtles may serve as 

control or reference samples for health assessments, contaminant exposure, or toxicology 

studies because they might be exposed to lesser contaminants than wild turtles (Arthur et 

al. 2008; Casal et al. 2009; Basile et al. 2012; Suzuki et al. 2012a, Suzuki et al. 2012b). 

Since sea turtles receive most of their contaminant load from diet, captive turtles are still 

exposed to chemicals through provided food, whether wild caught or formulated, but likely 

at different concentrations than wild turtles (Keller 2013).

MATERIALS AND METHODS

Sampling

Samples were collected according to the Biological and Environmental Monitoring and 

Archival of Sea Turtle Tissues protocols (Keller et al. 2014). Blood, scute, algae, pelleted 

food, and water samples were stored in liquid nitrogen vapor freezers (LN2, −150 °C) until 

shipped frozen to Texas Tech University for analysis. Health status and morphometrics of 

all turtles can be found in Table S1. Wild green turtles were captured in November 2011 

and April 2015 by hand or scoop net in Kapoho Bay on the eastern side of Hawaii Island 

(19.496291 N −154.820698 W, Figure 1), which is now covered by new lava from the 2018 

eruption of Kilauea. After capture, turtles were brought ashore and blood samples taken. 

Briefly, double-ended stainless-steel needles were used to draw blood into glass sodium 

heparin Vacutainer blood collection tubes within 15 min of capture. An average of 16.4 mL 

of blood was taken from each turtle (range: 13 mL – 19 mL). Blood was kept on ice until 

aliquoted and frozen.

Scute shavings were collected from the fifth central scute. The scute was cleaned of 

epiphytic/epibiotic organisms and sloughing keratin removed with a wet plastic scrubbing 

pad. The scute and knife were cleaned with 70% isopropanol and Millipore high purity 18 

M Ω cm−1 water (hereinafter referred to as high purity deionized water), and dried with a 

cleanroom wiper. The top layer of scute that is penetrated with algae was shaved off and 

discarded. The knife and scute were cleaned again with 70% isopropanol and high purity 

deionized water and dried. The knife was used to shave keratin layers off the entire surface 

of the 5th central scute, being careful to avoid scute seams or shaving too deep. Scute 

shavings were collected in a Teflon bag and sealed with a cable tie. An average of 0.86 g of 

scute was collected from each individual (range: 0.69 g – 1.04 g). Scutes were homogenized 

by mortar and pestle (pre-cleaned by soapy water sonication, high purity deionized water 

and acid rinsing) prior to analysis. Samples of known algae prey items (Gracilaria salicornia 
and Amancia spp.) were collected from Kapoho Bay in December 2013 while snorkeling to 
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represent the wild green turtle diet (Arthur and Balazs 2008). Dive gloves were worn while 

collecting algae samples, which were placed in centrifuge tubes, and stored in LN2 until 

analysis.

Green turtles were brought into Sea Life Park Hawaii (SLPH) from the wild in the mid-to

late 1960s and are one of the few captive breeding colonies in the world. They are fed 

a commercially available pelleted floating compound (35% protein turtle finisher, Melick 

Aquafeed, Catawissa, PA 17820 USA) designed to meet the nutritional requirements of 

green turtles. The 14 adult green turtles (9 females, 5 males) living in the pond are fed 2.3 

kg of pelleted food per day directly into the exhibit without turtle separation. Their diet 

is supplemented with fresh lettuce. Blood and scute were sampled from six adult captive 

turtles (three male and three female, without additional selection criteria) in August 2012 

following the same protocol as the wild turtles. Seawater samples were collected in October 

2017 in 50 mL centrifuge tubes (Corning Inc., Corning, NY 14831 USA) from three points 

in the pond (the water inlet, the center of the pond and near the nesting beach). The Kapoho 

Bay turtles (three males, two females, and two of unknown sex) without externally visible 

fibropapillomatosis tumors were selected based on a similar SCL (nuchal notch to tip) as the 

captive turtles. All sea turtles in this study were adult or sub-adult sea turtles, with a SCL 

of at least 76 cm. A Welch’s two sample t-test (p = 0.43, t = 0.83) showed no difference in 

mean SCL between the two groups, reducing the variability in elemental concentrations due 

to life stage.

Sample digestion and ICP-MS analysis

A small mass digestion method was used (French et al. 2017). Trace metal grade nitric 

acid (HNO3; 0.2 mL, 5.53 mol/L, Fisher Scientific, Fair Lawn, New Jersey 07410, USA), 

trace metals grade hydrochloric acid (HCl; 0.1 mL, 0.99 mol/L, Fisher Scientific), and 

high purity deionized water (0.1 mL) were added to approximately 0.1 g scute in 15 mL 

centrifuge tubes. Tubes were heated in a reciprocal shaking hot water bath (Model 66800, 

Precision Scientific, Chennai, Tamil Nadu, India 600086) at 90 °C (± 5 (SD) °C) for 1 h. 

After cooling, 0.1 mL high purity 30% hydrogen peroxide (H2O2, Fisher Scientific) was 

added and samples were heated again for 30 min. Samples were subsequently diluted to 10 

mL with high purity deionized water and filtered through 0.45 µm polytetrafluoroethylene 

(PTFE) filters (Whatman 0.45 µm GMF-150, Maidstone, ME England). Captive turtle food 

(0.1 g) was digested in the same manner as the scute samples. For blood samples, 0.4 mL 

HNO3, 0.1 mL HCl, and 0.1 mL high purity deionized water were added to 0.2 mL blood 

in 15 mL centrifuge tubes; vortexed; sonicated for 10 min; and heated in a hot water bath 

at 95 °C ± 5 (SD) °C for 1 h. After cooling, 0.2 mL H2O2 was added to the blood samples, 

vortexed, sonicated, and heated for 30 min. This process was repeated two more times until 

the blood samples were completely digested. Blood samples were diluted to 10 mL with 

high purity deionized water and filtered through 0.45 µm PTFE filters.

Algae samples were dried to complete dry mass overnight at 55 °C. Moisture content was 

determined by subtracting the dry weight from the wet weight and dividing that value by 

the wet weight. Moisture content of both samples was 46%. A subsample of the algae 

(0.2 g) was combined with 0.2 mL HNO3, 0.1 mL HCl, and 3 mL high purity deionized 
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water in a 15 mL centrifuge tube. The samples were placed in a hot water bath at 95 

°C (± 5 (SD) °C) for 1 h. After cooling, 0.2 mL H2O2 was added and the samples were 

heated for 30 min. Samples were filtered through 0.45 µm PTFE filters and diluted to 

10 mL for analysis. Seawater samples collected from SLPH (0.5 mL) were acidified with 

1.4 mL HNO3 and subsequently diluted with high purity deionized water in a 1:100 ratio. 

An in-house matrix control material was created using a seawater and algae sample. The 

seawater and algae samples were spiked with a custom multi-element standard containing 

Ag, Al, As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, Se, Sn, Sr, V, and Z (TTUNIV-1, Inorganic 

Ventures, Christianburg, VA USA) at 100 ng/g. The trace element concentrations in the 

natural samples were subtracted from the spiked samples to account for the natural trace 

element mass fractions in the sample. The in house matrix spike control material matched 

the spiked concentration by ± 20% (Eastern-Research-Group 2012, Table S2).

Elemental analyses were performed in helium collision mode using an Agilent Technologies 

7900 inductively coupled plasma-mass spectrometer (ICP-MS) equipped with an Agilent 

Technologies ASX-500 Series autosampler (Agilent, Santa Clara, CA 95051 USA). A 

custom multi-element calibration standard (TTUNIV-1, Inorganic Ventures) was used to 

build a seven-point external calibration curve with concentrations ranging from 0.1 ng/g 

to 1000 ng/g. The calibration solutions were analyzed at the beginning and end of every 

run; and a check standard solution of 10 ng/g or 50 ng/g run every ten samples. Internal 

standards Bismuth (Bi), Germanium (Ge), Indium (In), Lutetium (Lu), Rhodium (Rh), 

Scandium (Sc), and Terbium (Tb; Agilent Technologies) were added online and samples 

were reanalyzed if the recovery was outside the acceptable recovery range of 80% to 120%. 

Quality assurance was conducted using method blanks, field blanks produced from the same 

lot numbers of blood collection supplies, and certified reference materials (CRMs; DOLT-5: 

Dogfish Liver from National Research Council Canada, Ottawa, Ontario, and Seronorm™ 

Trace Elements Whole Blood L-3 [REF 210313, LOT 1509408] from Sero AS, Billingstad, 

Norway). Measured values of As, Cd, Co, Cr, Cu, Pb, Se, and V are in agreement with 

the certified values in the Seronorm CRM and Ni and Sb overlap with the certified value 

(Table S2). Measured values of Co, Cr, Cu, Ni, and Pb are in agreement with the certified 

values in the Dolt 5 CRM (Table S2). The remaining elements (As, Cd, Se, Sr, and V) were 

within 20% of the certified values. The instrument detection limit (IDL) was determined 

by analyzing seven replicates of the 0.1 ng/g multi-element standard (Inorganic Ventures) 

and multiplying the standard deviation of these replicates by the Student’s t-test value 

(3.143), giving an IDL ranging from 0.02 ng/g to 0.39 ng/g (Table S2; Creed et al. 1994). 

Limit of quantification (LOQ) was calculated by multiplying the lowest concentration of 

the calibration curve by the dilution factor. The LOQ (ng/g) were 10, 0.29, 2, and 0.83 for 

seawater, algae, scute/food pellets, and blood, respectively. Both field and method blanks 

were subtracted from the samples. All blood values are in ng/g wet mass (wm); scute and 

captive turtle food in ng/g dry mass as received (not dried in an oven; dm) and algae in ng/g 

dry mass (oven dried).

Statistical analysis and data handling

All statistical analyses were performed using the program R (version 3.2.3, The R 

foundation for Statistical Computing, Vienna, Austria) and the Nondetects and Data 
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Analysis for Environmental Data (NADA) package, recommended for left censored data 

(Helsel 2005), with a p ≤ 0.05 considered significant. Mean, median, and standard deviations 

were calculated using Kaplan-Meier (K-M) or regression on order statistical (ROS) models. 

Shapiro-Wilk and Bartlett tests were used to test normality and homoscedasticity of data. 

Differences in elemental concentrations between captive and wild turtles were determined 

by parametric (using the NADA function cenmle) or nonparametric (using cendiff) tests. 

A Kendall’s tau correlation was run (using cenken) to determine the relationships between 

SCL and elements in the blood or scute as well as to determine the relationship between 

blood and scute elemental concentrations.

Trophic transfer factor was calculated as the ratio between the concentration of an element 

in the tissue (blood or scute) to the concentration in the diet (pelleted food or algae; 

DeForest et al. 2007). For blood or scute concentrations below the LOQ, half the LOQ was 

used. Estimated daily intake (EDI) was calculated to estimate the daily exposure of captive 

and wild turtles to elemental contaminants (Perrault 2014). Concentrations of elements in 

algae was measured using the dry mass of the algae. Algae concentrations were converted 

from ng/g dm to ng/g wm using the moisture content of the algae (46%). The fourteen 

captive turtles are fed approximately 2.3 kg of pelleted food each day, giving a consumption 

rate of 164 g pelleted food per turtle per day. The consumption rate was multiplied by 

the measured elemental concentration of the pelleted food, giving a daily intake rate in µg 

per turtle per day. Captive turtles are fed additional, undocumented amounts of vegetables 

(lettuce) per day, but because of the amount uncertainties these were not included in the 

EDI. Wild turtle EDI was calculated using a daily food intake of 127 g (dm) per turtle per 

day as determined earlier (Williams 1988). G. salicornia made up approximately 40.9% of 

the green turtles’ diet at Kapoho and Amansia spp. approximately 30% (Russell and Balazs 

2009). The remaining 29.1% was estimated using a 50:50 combination of the Amansia and 

G. salicornia concentrations.

RESULTS

Individual measurements of element concentrations in scute and blood samples are provided 

in Tables S3 and S4. Eleven elements were above LOQ in at least one blood or scute 

sample of captive and wild turtles (Table 1). Essential element Sr was found at the greatest 

concentration in the blood and scute of all sea turtles in this study. Lead, a toxic heavy metal, 

was found in the blood of all wild and captive turtles. Turtle E, the largest of the captive 

turtles, had the greatest scute concentrations of all elements amongst the captive turtles.

Ten elements were measured in the pelleted food at SLPH as well as representative samples 

of algae (Amansia spp. and G. salicornia) from Kapoho Bay (Table 2). Seawater samples 

from SLPH contained four elements > LOQ; Cr, Cu, Se, and Sr (Table 3). Seawater samples 

from Kapoho Bay were not analyzed in this study, however Cr, Cu, and Se concentrations 

published previously for Kapoho Tidepool water (Bienfang et al. 2009) were less than those 

in SLPH (Table 3).

Significant differences (p < 0.05) were observed in blood and scute elemental concentrations 

between captive and wild turtles (Table 1). Captive turtles had significantly greater blood Se, 
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an essential element, than wild turtles (Table 1). Three toxic elements, Cd, Ni, and Pb, were 

significantly greater in the blood of wild turtles (Table 1). Captive turtles had significantly 

greater scute Cr, Cu, Se, and V, while As was greater in the scute of wild turtles (Table 1).

A Kendall’s rank correlation showed three metals in the captive turtles scute that were 

significantly, positively correlated with SCL; V (τ = 0.87, p = 0.02), Cd (τ = 0.80, p = 

0.02) and Pb (τ = 0.80, p = 0.04, Figure S1). Selenium was the only element in the blood 

of wild turtles to be significantly correlated with SCL (τ = 0.70, p = 0.03, Figure S1). No 

correlations were found between SCL and scute in wild turtles or between SCL and blood in 

captive turtles.

Three metals in captive turtle scutes, Cr, Sr, and V, had a TTF > 1 (Table 4). No TTF was 

> 1 in the blood of captive turtles. No elements in Amansia spp. had a TTF > 1 in scute or 

blood of wild turtles. Selenium in G. salicornia showed the potential for bioaccumulation in 

scutes and blood of wild turtles (Table 4). Only one element, Cu, was negatively correlated 

between blood and scute tissue in wild turtles (τ = −1.0, p = 0.027; Figure S2). No elements 

were correlated between blood and scute in captive turtles.

Sex influenced differences in some element concentrations in captive turtles. Scute Pb was 

significantly greater in females than males. Blood Se was greater in males, and blood Sr was 

greater in females (Figure S3).

DISCUSSION

Elemental concentrations in sea turtles are affected by diet, species, sex, age, health 

status, type of tissue, and location, including captive vs wild. The differences in 

elemental concentrations between captive and wild turtles are primarily due to their food 

source. Captive turtles are given a pelleted food that is a mixture of animal and plant 

protein products, with sodium selenite added as a dietary supplement. Consequently, the 

concentration of Se in the pelleted food was about 3 to 9 times greater than the samples of 

algae from Kapoho Bay. Captive turtles in this study had significantly greater concentrations 

of Se in their blood and scute than wild turtles. This difference in Se concentrations was also 

seen in loggerhead turtles in rehabilitation whereby blood selenium concentration increased 

through rehabilitation (Camacho et al. 2014b). Selenium concentrations in the present study 

are likely not of concern when compared to established avian toxicity reference values. 

Adequate Se concentrations in the whole blood of avian species ranges from 130 ng/g to 

200 ng/g, sublethal effects such as weight loss are seen at 900 ng/g, and concentrations of 

12,000 ng/g to 16,000 ng/g cause death (O’Toole and Raisbeck 1997; Stout et al. 2010). 

Furthermore, yellow-bellied sliders (Trachemys scripta scripta) were exposed to Se at doses 

of 15,000 ng/g and 30,000 ng/g for 5 weeks. Sliders in the 30,000 ng/g treatment group 

had a blood Se concentration of 14,000 ± 900 ng/g and exhibited anemia. Mortality was 

only seen in the 30,000 ng/g treatment group and not in the control or 15,000 ng/g groups 

(Haskins et al. 2017). However, leatherback sea turtles have been documented with blood 

Se concentrations up to 10,300 ng/g, indicating leatherback turtles may tolerate high Se 

concentrations (Innis et al. 2010; Perrault et al. 2013). Selenium may represent a greater 

hazard to eggs and hatchlings than adult sea turtles. A study of metals in green sea turtle 
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eggs determined that the Se concentrations (464 ± 26 ng/g wm) were likely to affect 

hatching success (van de Merwe et al. 2009). Most sea turtle populations have adequate 

blood Se concentrations, with few populations including green turtles in San Diego Bay and 

Boyne River Estuary at or above sublethal concentrations in birds (Figure 2; Komoroske et 

al. 2011; Gaus et al. 2012). Chelonian species are likely more resilient than avian species 

from Se toxicity, as seen from high blood Se concentrations in green sea turtles from Boyne 

River Estuary, Australia, leatherbacks from the US Virgin Islands, and effects observed in 

laboratory-exposed yellow-bellied sliders (Gaus et al. 2012; Perrault et al. 2013; Haskins et 

al. 2017).

Another essential element, Cu, was 11 times and 3 times greater in pelleted food then 

G. salicornia and Amansia spp., respectively. Due to the high concentrations of Cu in the 

pelleted food, scute Cu concentration was significantly greater in the captive turtles than 

the wild turtles. However, blood Cu concentrations were similar between the two groups, 

because Cu is known to be tightly regulated in the blood through excretion (Liu et al. 

2008). The similar blood Cu concentrations between the two groups, despite their major 

differences in exposure, indicate that sea turtles can regulate blood Cu concentrations. High 

concentrations of Cu in pelleted food led to increased sequestration of Cu in the scute 

as measured in the captive turtles. A negative relationship was seen in Cu between scute 

and blood tissues of wild turtles (Figure S2). This relationship is difficult to explain, but 

may have to do with (1) blood representing recent exposure to Cu that has not yet been 

incorporated in the scute tissue, (2) Cu is tightly regulated in the blood through rapid 

elimination pathways that do not involve scute growth, and/or (3) turtles with higher Cu 

exposure have induced metallothioneins or other elimination pathways that eliminate the 

Cu before it is sequestered into scute (Storelli et al. 2008). A decrease in the efficiency of 

copper excretion leading to copper toxicosis has not been shown in reptiles.

Vanadium, As, Cd, and Pb were all at greater concentrations in both of the algae samples 

than the pelleted food and Ni was greatest in the Amansia spp. followed by the pelleted 

food. Some elements are naturally high in marine algae species including V, As, and Cd. 

Marine algae may be high in V because V is an essential element for some species while As 

is high because some marine algae can accumulate As. Cadmium is highly mobile between 

the environment and algae and will bioaccumulate in seaweed (Wever and Kustin 1990; 

Dawczynski et al. 2007; Ardiyansyah et al. 2019). Similarly, these elements were all at 

greater concentrations in the blood of wild turtles than captive turtles.

The TTF > 1 seen in V, Cr, and Sr in captive turtle scutes indicates these elements may 

biomagnify in captive turtles. Turtle E had much greater concentrations of all elements in its 

scute tissue, and may have influenced the TTF calculations. When Turtle E was removed, 

only V had a TTF > 1. A larger sample size of captive turtles is needed to conclusively 

determine which elements may biomagnify in green turtles.

Turtle blood concentrations (ng/g wm) of V, Cd, Pb, As, Se, and Ni in this study were 

compared to green turtles around the world, with associated toxicity reference values 

for related species, as toxicity reference values do not exist for green turtles (Figure 2). 

All sea turtle populations shown in Figure 2 have blood V concentrations greater than 

Shaw et al. Page 9

Environ Toxicol Chem. Author manuscript; available in PMC 2021 September 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



background levels in humans (0.05 ng/g), but show concentrations less than the maximum 

concentration measured in osprey blood from the Chesapeake Bay area (54 ng/g wm) with 

known pollution from metal-working and petroleum refinery activities (Rattner et al. 2008; 

Gaus et al. 2012). A population of sea turtles at an uncontaminated site in the Howick 

Islands, Australia had blood V concentrations ranging from 1.23 ng/g – 94.3 ng/g (Villa et 

al. 2017). All green sea turtle populations considered in Figure 2 are within this range.

Cadmium concentrations in almost all green sea turtle populations are very similar, well 

below the value associated with toxic effects in birds (260 ng/g wm) and similar to 

concentrations seen in Howick Island sea turtles (Wayland and Scheuhammer 2011; Villa et 

al. 2017). Leatherback turtles have been shown to have higher Cd concentrations than green 

turtles, from 14 ng/g – 182 ng/g (Harris et al. 2011; Innis et al. 2010).

Blood Pb concentrations of ≤ 200 ng/g are considered background levels in three orders of 

birds (Anseriformes, Falconifomes, and Columbiformes), and 500 ng/g is considered clinical 

poisoning in Anseriformes and Falconiformes (Stout et al. 2010; Franson and Pain 2011). 

However, crocodiles (Crocodylus porosus) with sustained blood Pb concentrations of 3,420 

ng/g for several months showed no adverse effects (Hammerton et al. 2003). All green sea 

turtle populations are well below these levels.

Arsenic blood concentrations were greatest in turtles from Boyne River Estuary in Australia, 

above ≈ 500 ng/g, which is potentially toxic in humans (Saha et al. 1999; Gaus et al. 2012). 

Sea turtles in the Howick Islands had blood As concentrations of 160 ± 66 ng/g. Kapoho 

Bay and SLPH turtles are below these values, indicating As is not a concern for these two 

populations.

Nickel blood concentrations of turtles in this study were above background levels in humans 

(3 ng/g to 7 ng/g; Gaus et al. 2012). The worst case hazard quotient for Ni in green sea turtle 

eggs from Hong Kong was established to be 26.4 ng/g (Lam et al. 2007). Kapoho Bay turtles 

in this study had mean blood Ni concentrations greater than 26.4 ng/g (40.4 ± 19.3 ng/g), but 

toxicity reference values are unknown for adult sea turtle blood. However, adult sea turtles 

are likely less sensitive to Ni than embryos and hatchlings.

Reference values for one species may not accurately extrapolate to another. In the case 

of Pb, As, and Se, sea turtles may be more tolerant to these elements than birds or 

humans because the populations with greater concentrations of these elements (Figure 2) 

are considered healthy.

Diet played the largest role in differences between captive and wild turtles, but sex is 

often a confounding factor. Female captive turtles had greater concentrations of scute lead 

than males. When females lay eggs, calcium (Ca) is mobilized from the bone for eggshell 

formation. Lead mimics Ca and is stored in and mobilized from bone following the same 

kinetics as Ca (Assi et al. 2016). For example, blood Pb concentrations in leatherbacks 

have been shown to increase as the nesting season progresses (Guirlet et al. 2008). In 

the wild, female turtles are capital breeders and in general do not feed during the nesting 

season, though opportunistic feeding can occur. Instead their energy is supplied from fat 

stores (Bjorndal 1985; Hays et al. 2002; Tucker and Read 2017; Page-Karjian et al. 2020). 
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One hypothesis to explain the greater scute lead concentrations in these captive female 

turtles is that as Ca, and hence Pb as a Ca mimic, was mobilized from bones during egg 

vitellogenesis/egg production, blood Pb concentrations increased. Unlike wild turtles, the 

captive turtles would continue to eat during the nesting season, and continue to be exposed 

to Pb and Ca. While some of those nutrients would be offloaded into developing eggs, 

excess Pb could be sequestered in scute.

Three elements in captive turtle scutes, V, Cd, and Pb, and one element in the wild turtle 

blood, Se, were positively correlated with SCL (Figure S1). Larger, potentially older, turtles 

have greater concentrations of these elements, as seen with largest captive Turtle E. This 

suggests accumulation through age of V, Cd or Pb in their scutes. Accumulation through age 

is also suspected for Se in blood, based on these correlations. The biomagnifying potential, 

as seen by a TTF>1 for Se in blood of wild turtles, supports this suggestion. In addition, the 

bioaccumulation of Se has been documented in leatherbacks from the northwestern Atlantic 

Ocean (Perrault 2012).

This study only found one element, Cu in wild turtles, to be significantly correlated 

between blood and scute tissues. In previous studies, total mercury concentrations were 

correlated between scutes and blood in loggerhead sea turtles, scute manganese, zinc, and 

Hg concentrations were correlated with whole body burdens of these elements in loggerhead 

and green turtles, and Se concentrations in the blood of green turtles were correlated with 

concentrations in the liver, kidney, and muscle (Day et al. 2005; Sakai et al. 2000; van de 

Merwe 2008). The sample size in this study was small and may be the reason why more 

elements were not correlated between blood and scute. Additional studies should be done for 

green turtles to determine relationships between blood and scute element concentrations to 

prevent unnecessary sampling and stress to these threatened and endangered species.

One limitation of the current study was the lack of analysis of elements in the lettuce 

that captive turtles are fed at SLPH. This contribution could not be included in the daily 

intake or TTF calculations for the captive turtles, so the EDI and TTFs are conservatively 

underestimated. However, this study remains the first to analyze the food source of captive 

turtles and increases the knowledge of the impacts of pelleted food on captive turtles.

CONCLUSION

All metals found in the captive and wild Hawaiian green turtles in this study are similar to 

or less than concentrations found in green sea turtles elsewhere (Figure 2). It is important to 

establish baseline concentrations of elements in sea turtles to understand the toxicity threat 

of elements if and when they are found to be elevated and to follow contaminant exposure 

over time. Captive sea turtles do not represent wild turtles’ exposure to trace elements. Sea 

Life Park Hawaii and other aquaria or rehabilitation centers feed captive sea turtles a diet 

very different than their natural prey. In the case of SLPH, the pelleted food they consume 

has greater concentrations of some elements than the wild turtles’ food source, and thus 

their tissues have greater concentrations. Reference concentrations for some elements may 

be better established in healthy, wild populations living in relatively unpolluted areas.
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Figure 1: 
Location of Sea Life Park Hawaii on the island of Oahu and Kapoho Bay on the island of 

Hawaii.
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Figure 2: 
Elemental concentrations (mean ± SD, ng/g wm) in the whole blood of green turtles 

worldwide. Data taken from Komoroske et al. (2011), Gaus et al. (2012); Camacho et 

al. (2014a), and Villa et al. 2017). Horizontal lines indicate thresholds as defined as: As 

toxicity in humans (500 ng/g, Saha et al. 1999); Cd toxicity in avian species (260 ng/g, 

Wayland and Scheuhammer 2011); Pb 200 ng/g is background levels in avian species and 

500 ng/g is clinical poisoning in avian species (Stout et al. 2010; Franson and Pain 2011); 

Ni 3 ng/g to 7 ng/g is background concentration in humans (Gaus et al. 2012); Se weight 

loss in avian species (900 ng/g, O’Toole and Raisbeck 1997; Stout et al. 2010); and V 

0.05 ng/g is the background concentration in humans (Gaus et al. 2012). Grey shaded areas 

are concentrations documented in green sea turtles from the Howick Islands, a relatively 

undisturbed region in Australia used as a reference population (Villa et al. 2017).
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Table 1.

Elemental concentrations in the scute (ng/g dm) and blood (ng/g wm) of captive turtles at Sea Life Park 

Hawaii and wild turtles at Kapoho Bay, HI.

SCUTE

Captive Wild

Element Median Mean (SD) % detected Median Mean (SD) % detected

As
*a 9.2 30.3 (55.8) 50 138.0 144 (22.8) 100

Cd
b 9.72 15.5 (11.6) 66.7 14.7 14.4 (3.70) 80

Co
b - - 16.7 - - 0

Cr
*b 119 855 (1825) 100 55.5 53.8 (37.2) 100

Cu
*a 1030 1090 (372) 100 221.0 212 (29.0) 100

Ni
b 180 270 (241) 100 111.0 134 (74.1) 100

Pb
a 14.6 20.8 (16.8) 33.3 26.8 32.9 (12.0) 60

Sb - - 0 - - 0

Se
*a 350 306 (90.7) 100 126 110 (33.9) 100

Sr
a 7370 9150 (4660) 100 5420 5920 (2160) 100

V
*b 450 549 (310) 100 140 158 (80.9) 100

BLOOD

Captive Wild

Element Median Mean (SD) % detected Median Mean (SD) % detected

As
a 22.8 28.8 (17.3) 100 28.0 35.6 (24.2) 100

Cd - - 0 - - 14.3

Co - - 0 4.23 4.61 (1.47) 42.9

Cr
b - - 0 - - 14.3

Cu
a 611 609 (87.5) 100 645 628 (75.3) 100

Ni
*b - - 16.7 38.0 40.4 (19.3) 100

Pb
*a 25.1 24.6 (12.7) 100 55.3 69.3 (30.5) 100

Sb - - 0 - - 0

Se
*a 440 439 (103) 100 74.2 102 (61.4) 100

Sr
a 717 789 (427) 100 631 694 (137) 100

V
*b - - 0 11.6 12.7 (4.07) 71.4

a
difference between captive and wild was determined by a parametric function (R NADA cenmle)

b
difference between captive and wild was determined by a nonparametric function (R NADA cendiff)

*
significant difference (p < 0.05) between captive and wild turtles
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Table 2.

Mean elemental concentrations in pelleted food (n = 3) and algae (n = 1) in ng/g dm.

Element Pelleted Food Amansia spp. 
* 

Gracilaria salicornia 
* 

As 259 ± 5.8 1,520 4,270

Cd 53.5 ± 1.9 518 196

Co 95.5 ± 6.1 281 39.3

Cr 523 ± 105 1,630 663

Cu 10,400 ± 2,460 3,610 985

Ni 2,490 ± 118 8,970 532

Pb 97.5 ± 16.8 1,030 388

Sb 11.3 ± 0.5 14.9 14.1

Se 767 ± 54.3 237 77.6

Sr 8,730 ± 593 79,000 31,100

V 208 ± 24.7 2,020 3,370

*
Moisture content of Amansia spp. was 46.2% and G. salicornia was 45.1%.
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Table 3.

Elemental concentrations (ng/mL) at the water inlet, middle of the pond, and near the nesting beach in the 

sea turtle habitat at SLPH compared to seawater from Kapoho Tidepools published previously (Bienfang et al. 

2009).

Element Water Inlet Middle Nesting Beach Kapoho Tide Pool

As < LOQ < LOQ < LOQ 1.48

Cd < LOQ < LOQ < LOQ -

Co < LOQ < LOQ < LOQ 0.01

Cr 15.8 14.1 15 0.14

Cu 280 < LOQ < LOQ 0.19

Ni < LOQ < LOQ < LOQ 0.24

Pb < LOQ < LOQ < LOQ 0.01

Sb < LOQ < LOQ < LOQ -

Se 32.8 < LOQ 23.9 0.02

Sr 4,450 4,490 4,200 -

V < LOQ < LOQ < LOQ 1.52

<LOQ = less than the limit of quantitation
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Table 4.

Trophic transfer values for blood and scute in captive and wild turtles. Estimated daily intake (µg/day) is 

calculated for captive turtles at SLPH using only pelleted food and wild turtles using a combination of 

Amansia spp. and G. salicornia. Bold values highlight a TTF > 1, indicating potential toxicological risk for 

that element.

Captive Wild

Pelleted Food Amansia spp. G. salicornia

Trophic 
Transfer 

Scute

Trophic 
Transfer Blood

Daily 
Intake

Trophic 
Transfer 

Scute

Trophic 
Transfer 

Blood

Trophic 
Transfer 

Scute

Trophic 
Transfer 

Blood

Daily 
Intake

As 0.12 0.11 42 0.09 0.04 0.03 0.02 387

Cd 0.29 < 0.01 9 0.03 < 0.01 0.07 < 0.01 43

Co 0.01 < 0.01 16 < 0.01 0.03 0.03 0.21 19

Cr 1.63 < 0.01 86 0.03 0.03 0.08 0.07 139

Cu 0.10 0.06 1700 0.06 0.02 0.22 0.07 273

Ni 0.11 < 0.01 408 0.01 0.01 0.25 0.14 544

Pb 0.21 0.25 16 0.03 0.13 0.11 0.33 85

Sb 0.01 < 0.01 2 0.07 0.05 0.07 0.05 2

Se 0.40 0.57 126 0.47 0.80 1.42 2.39 19

Sr 1.05 0.09 1430 0.07 0.02 0.19 0.04 6660

V 2.64 < 0.01 34 0.08 0.01 0.05 0.01 352
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