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Abstract

Transcranial Magnetic Stimulation (TMS) can be used to map cortical motor topography by

spatially sampling the sensorimotor cortex while recording Motor Evoked Potentials (MEP) with

surface electromyography (EMG). Traditional sampling strategies are time-consuming and

inefficient, as they ignore the fact that responsive sites are typically sparse and highly spatially
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correlated. An alternative approach, commonly employed when TMS mapping is used for

presurgical planning, is to leverage the expertise of the coil operator to use MEPs elicited by

previous stimuli as feedback to decide which loci to stimulate next. In this paper, we propose to

automatically infer optimal future stimulus loci using active learning Gaussian Process-based

sampling in place of user expertise. We first compare the user-guided (USRG) method to the

traditional grid selection method and randomized sampling to verify that the USRG approach has

superior performance. We then compare several novel active Gaussian Process (GP) strategies with

the USRG approach. Experimental results using real data show that, as expected, the USRG

method is superior to the grid and random approach in both time efficiency and MEP map

accuracy. We also found that an active warped GP entropy and a GP random-based strategy

performed equally as well as, or even better than, the USRG method. These methods were

completely automatic, and succeeded in efficiently sampling the regions in which the MEP

response variations are largely confined. This work provides the foundation for highly efficient,

fully automatized TMS mapping, especially when considered in the context of advances in robotic

coil operation.

Keywords

Active learning; entropy; Gaussian process; machine learning; motor cortex; motor evoked
potentials; transcranial magnetic stimulation

I. Introduction

TMS has become a valuable noninvasive method to map the motor cortical representation of

a specific muscle [1]. The basic procedure is to apply TMS pulses to a variety of locations

on the scalp overlying the sensorimotor cortex while recording EMGs from target muscle(s),

and quantifying the amplitude of resultant MEPs. The resulting “map” of MEP amplitudes

as a function of TMS pulse positions describes an estimate of the topographic organization

of the muscle(s) under study. The cortical muscle topographies identified by TMS mapping

have shown high correlation to the areas identified by other more expensive and burdensome

imaging modalities such as fMRI and PET [2]-[4]. Consequently, TMS mapping has become

a popular tool for research studies and clinical applications such as tracking cortical

reorganization and neurosurgical planning. The current standard technique for mapping

involves stimulating with the TMS coil 3-10 times at each site on a regular grid, most

commonly consisting of 25-100 points at a 0.5-1 cm spacing. These points are typically

identified on the scalp by physically drawing on a swimmer’s cap or using computer-guided

navigation systems [5], [6]. Given the large number of points, and a recommended

interstimulus time on the order of several seconds, mapping procedures may take as long as

one hour to complete. In practice, much of this time is spent recording null responses, since

the majority of the stimulation points typically lie outside of the excitable area for the

muscle of interest [7]. This time scale prohibits measurement of transient cortical

stimulation or learning-induced changes and is not well tolerated by clinical populations.

Previous approaches to improving the efficiency of mapping have included stimulating in a

spiral pattern by moving radially out from a pre-determined locus or “hotspot” to reduce null

stimulation points [8], or by replacing the grid with a cross-like pattern [7] aligned to the
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precentral gyrus. Recently, a pseudo-random walk sampling pattern combined with

interpolation of excitability among the stimulation sites was reported to produce statistically

similar outcomes to grid-based approaches with comparatively fewer stimuli [9]-[11].

When TMS mapping is used for surgical planning, the need for greater efficiency has led to

an operator dependent (USRG) approach, in which stimulus locations are chosen by the

TMS coil operator based on real time feedback of observed MEP responses [12]. The

operator is free to increase or decrease stimulation point density at their discretion. This

typically reduces the number of null stimulations while simultaneously increasing

stimulation density in responsive areas. A number of studies on the use of TMS for

preoperative planning using this approach have reported favorable outcomes [12]-[14],

including high correlation to “gold standard” maps produced using intracranial electrical

stimulation [3], [15].

The USRG approach could be categorized as a form of implicit active learning (a field of

machine learning) [16], [17], since the coil operator utilizes an implicit objective function

built on experience and expertise to select stimulation loci. The goal of this work is to

replace the TMS operator’s expertise with an automated algorithm based on statistical active

learning. This kind of automated approach will not only result in more objective, time

efficient, and repeatable sampling; it will also be particularly useful for TMS mapping that

utilizes new advances in robotic coil positioning [18], as it allows the development of fully

autonomous, efficient mapping. Figure 1 illustrates such a framework, in which TMS

operator expertise in the USRG mapping approach can be replaced with robotic coil control

guided by active learning.

The topic of active sample selection has been investigated in many fields including

applications to optimal sensor placement [19]-[21], active GP sampling [22], and weather

forecasting [23]. Ideally, given an optimality criterion, the goal is to select a limited number

of samples that “best” represents the phenomenon of interest (e.g., here the field of MEP

responses). One approach to this problem statement is to employ greedy on-line strategies

where at each step the algorithm searches for the next sample location that leads to the

highest one-step gain in the chosen optimality criterion. One statistical approach that can be

used to model a spatial phenomena is Gaussian Processes (GPs), an approach for

probabilistic regression in reproducing kernel Hilbert spaces that allows us to explicitly

model uncertainty about estimated function values. GPs provide a well-defined yet flexible

stochastic framework which can be exploited to compute and optimize the desired criteria

[24]. Crucially, GPs provide both a spatial interpolation and an estimate of model

uncertainty as a function of space [20]. These two quantities are associated with the

Gaussian representation of the spatial field and allow the derivation of analytical expressions

for conditional entropy that are typically needed for information theoretic criteria. In recent

studies, several optimal point selection strategies have been presented in conjunction with

GPs [19], [20], [24]. In these works, the authors considered both entropy-based and mutual

information (MI)-based criteria, providing greedy, near-optimal strategies. These strategies

succeeded in reducing the GP’s spatial uncertainty, because the variances provided by the

GP depend exclusively on the location of points, while completely neglecting available

information regarding the field’s amplitude variations. This implies that even when the
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changes in the field’s amplitude is confined to a specific subregion, these methodologies will

lead to a relatively even sampling of the entire space (as determined in detail by the selection

of the GP kernel, which governs its spatial covariance structure) [16]. In problems such as

TMS mapping, where the Region of Interest (ROI) is completely or largely confined to a

subregion of the space, this tendency towards evenly-spaced sampling reduces resolution in

the region where the activity is concentrated. A good criterion for automated TMS mapping

should balance exploration and exploitation to discover the ROI and concentrate most of the

samples in that region.

We previously reported an initial formulation of an alternative GP-based information-

theoretic strategy relying on amplitude uncertainty instead of spatial uncertainty [16]. This

was accomplished by modeling the mean of the GP as a GP itself, and considering

information-based criteria which led to selecting samples that reduced uncertainty across

MEP amplitude values. One drawback of this formulation was that it neglects spatial

uncertainty, causing it to get stuck in areas with high MEP amplitudes while ignoring

unexplored regions of the space—in effect favoring exploitation over exploration. Inspiration

for alternative approaches can be found in the use of active sampling in other domains.

Specifically, Gunter et al. proposed an active sampling strategy as a tool for Bayesian

Quadrature integration which leveraged the fact that the GP regression is being used to

approximate likelihood functions, and, thus, must be non-negative [25]. To match this

observation, the authors considered GPs with a square-root warping function (see (5)) which

has several desirable properties, including guaranteed non-negativity for the observation

model, and a covariance function which naturally balances exploration and exploitation.

Another alternative sampling algorithm might be considered where the balance between

exploration and exploitation depends exclusively on the shape of the GP mean modeled as a

probability density function (pdf). For instance, Imbiriba et al. proposed a GP-based

sampling algorithm developed in the context of particle filtering, where samples were drawn

from a GP mean function that was normalized in order to make it a viable pdf [26]. This

strategy presents some features that fit well with TMS mapping. First, it naturally

concentrates most samples in the ROI. Second, it also leads to random exploration of the

space in which the compromise with exploitation will be automatically controlled by the

concentration of the field’s amplitude.

In this paper we investigate the GP-based active learning strategies discussed above for the

automated TMS mapping problem. We report on two studies. First, we compared the

performance of experimental (traditional) sampling approaches (regular grid sampling

(GRID), random sampling (RAND), and USRG) acquired from 5 individuals, and second,

we compared the performance of computational GP-based strategies for the reconstruction

of the experimentally acquired maps with respect to the time efficiency and accuracy of the

maps. We hypothesized that a computational GP-based strategy can be used to achieve at

least similar accuracy to an expert user-guided sampling approach with equal or greater

efficiency.
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II. Gaussian Process for TMS Mapping

GPs can be viewed as interpolators capable of providing Gaussian distributions for every

point in the space. This stochastic formulation provides important features that are relevant

here, in particular that GPs provide model uncertainty measures as a function of location.

This quantified model uncertainty can be used to aid in trading off between exploration and

exploitation. In addition, having a probabilistic model enables the use of methods based on

information theoretic criteria. The GP formulation defines stochastic models directly in the

functional space by assuming Gaussian priors for functions ψ ∈ ℋ, ψ ∣ x ∼ 𝒩(0, κ(x, x)),
where ℋ is a functional Hilbert space, κ is a covariance function or kernel, and x ∈ 𝒳 ⊂ ℝd

are the inputs of the system of interest. We assume that we observe an “output” y
corresponding to every x. Then, given a set of N input-output pairs {xk, yk}k ∈ 𝒜, where

y ∈ ℝ and 𝒜 is an index set such that ∣ 𝒜 ∣ = N, GP regression aims at providing a predictive

distribution for a new sample xℓ conditioned on the training set. This can be accomplished by

assuming a Gaussian model relating inputs and outputs:

yk = ψ(xk) + ηk (1)

where η ∼ 𝒩(0, ση
2). The predictive distribution [27] for a new input xℓ can be obtained as:

ψ ∣ y𝒜, X𝒜, xℓ ∼ 𝒩(ψℓ ∣ 𝒜, sℓ ∣ 𝒜
2 ) (2)

with ψℓ ∣ 𝒜 = κ𝒜ℓ
𝖳 K𝒜𝒜 + ση

2I
−1

y𝒜, and sℓ ∣ 𝒜
2 = κℓℓ − κ𝒜ℓ

𝖳 K𝒜𝒜 + ση
2I

−1
κ𝒜ℓ, where

κ𝒜ℓ = κ(X𝒜, xℓ), κℓℓ = κ(xℓ, xℓ), and X𝒜 = [x𝒜1
, …, x𝒜N

]𝖳. For a detailed derivation see

[27]. The Bayesian framework also provides strategies to estimate free parameters, such as

the kernel parameters θ and the noise power ση
2. We consider the exponentiated-quadratic

kernel with θ ∈ ℝ2 containing the scaling and kernel bandwidth parameters, with maximal

likelihood kernel parameter selection [27] that minimizes (3):

−2 ln f Y(y𝒜 ∣ X𝒜, ση
2, θ) = y𝒜

𝖳 K𝒜𝒜
−1 y𝒜 + ln ∣ (2π)K𝒜𝒜 ∣ (3)

with respect to (ση
2, θ).

GP regression has been successfully used in a wide variety of fields including regression and

classification [27], detection [28], [29], unmixing [30], and Bayesian optimization [31]. One

limitation of GP is related to the Gaussian assumption on the posterior distribution, which

makes standard GP models unfit or inaccurate when the observation distribution is non-

Gaussian. This is the case for TMS mapping where measured MEP amplitudes are

inherently non-negative quantities. To circumvent this issue for our setting, a mapping

function can be applied to Gaussian random variables to enforce non-negativity, resulting in

non-Gaussian random variables. These procedures with non-linear mappings are known as

Warped GPs (WGPs) [25], [32], which we describe in detail next.
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A. Warped Gaussian Process

To guarantee non-negativity of the functions being modeled and at the same time exploit the

GP framework, a common strategy is to consider a warping function g :𝒴 ⊂ ℝ+ 𝒵 ⊂ ℝ, Y

↦ Z, where Y is a non-negative random variable. Let Z and Y be two multivariate random

variables, whose realizations are z and y, related through a mapping function g as Z = g(Y).

The densities of Z and Y are related [33] according to (4).

f Y(y) = f Z(g(y)) JY
−1

(4)

where JY =
∂(z1, …, zN)
∂(y1, …, yN)  is the Jacobian matrix. This allows exchanging learning in the

original space for learning in the latent warped space 𝒵. Thus, using (4), fitting a GP in the

latent space reduces to maximizing the GP’s log marginal likelihood function [32]. Different

warping functions have been considered in the literature to cope with the requirements of

different applications [25], [32].

In the context of TMS mapping, warping functions must guarantee non-negativity of the

estimated field without imposing hard upward limits. Thus, in this work, we selected the

square-root warping function given by:

z = g(y) = 2(y), y = g−1(z) = 1
2 z2

(5)

III. Active GP Sample Selection

A general problem formulation for active sample selection consists of selecting a set of

input-output pairs 𝒜 ≔ {xℓ, yℓ}ℓ = 1
n𝒜 , with cardinality ∣ 𝒜 ∣ = n𝒜, such that the loci xℓ ∈ ℛ

where the measurements yℓ take place are selected following some optimality criterion. In

many scenarios where the ROI ℛ is discretized, i.e., ℓ ∈ 𝒱 with 𝒱 an index set of all

discretized locations in ℛ, the problem can be stated as optimally selecting the subset 𝒜
such that ℓ ∈ 𝒱 and n𝒜 ≪ ∣ 𝒱 ∣ = n𝒱. As mentioned, ideally, given an optimal criterion,

the goal is to select n𝒜 samples that “best” represent the ROI. Next, we discuss the main

types of information theoretic-based active sample selection methods that will be analyzed

in this paper.

A. Standard Information Theoretic-Based Sampling

Information based criteria generally focus on selecting samples that lead to the highest

decrease in the uncertainty (entropy) or that are the most informative about unsensed

locations (MI) [20]. Since global approaches based on such criteria lead to NP-complete

problems [20], [34], greedy iterative strategies are often employed such that, at each

iteration, the algorithm will select the locus that leads to the maximum decrease in entropy

or maximum increase in MI. Thus, considering 𝒱 as defined, and letting 𝒜 denote the index

set of the loci already selected at some arbitrary iteration, then active selection selects the
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index ℓ that leads to the maximum gain according to the selected criteria at each iteration,

that is:

ℓ∗ = arg max
ℓ ∈ 𝒱 ∖ 𝒜

δℓ
Criterion

(6)

where δℓ
Criterion is the adopted criterion quantity and 𝒱 ∖ 𝒜 is the set of all indexes in 𝒱 that

are not in 𝒜.

When considering entropy, the goal of GP-based greedy algorithms is to, iteratively, select a

locus that results in the largest conditional entropy given by (7) among all of available

measurement locations ℓ ∈ 𝒱 ∖ 𝒜, conditioned on measured loci y𝒜:

H(ψℓ ∣ y𝒜) = − ∫ p(ψℓ, y𝒜) log p(ψℓ ∣ y𝒜)dψℓd y𝒜 (7)

The conditional entropy for Gaussian random variables [35] is well known and given by (8).

H(ψℓ ∣ y𝒜) = 1
2 log 2πsℓ ∣ 𝒜

2 + 1
2 (8)

where sℓ ∣ 𝒜
2  is the GP variance, leading to a simple and effective selection strategy. Since

log(ζ) is monotonically increasing for ζ ∈ ℝ+, problem (6) can be solved for GP entropy by

finding the sample index ℓ ∈ 𝒱 ∖ 𝒜, that maximizes the quantity:

δℓ
Entropy = sℓ ∣ 𝒜

2 = κℓℓ − κ𝒜ℓ
𝖳 K𝒜𝒜

−1 κ𝒜ℓ . (9)

A known issue with the entropy criterion is that it has the tendency to select loci along the

edges of the sample space. This can be explained by the fact that the entropy grid approach

aims at selecting the ψℓ with the largest variance sℓ ∣ 𝒜
2 , and these uncertainties are known to

be larger on the edges of the sampling space [36].

An alternative approach is based on the MI of random variables within the set 𝒜 and in

𝒱 ∖ 𝒜. This strategy leads to an optimization criterion that searches for the subset of

locations that most significantly reduces the uncertainty about the estimates in the rest of the

space [20]. Problem (6) can be solved for GP MI by finding the sample index ℓ ∈ 𝒱 ∖ 𝒜 that

maximizes the quantity (for more detail see [20]):

δℓ
MI =

κℓℓ − κ𝒜ℓ
𝖳 K𝒜𝒜

−1 κ𝒜ℓ
κℓℓ − κ𝒜̄ℓ

𝖳 K𝒜̄𝒜̄
−1 κ𝒜̄ℓ

(10)

where 𝒜̄ = 𝒱 ∖ (𝒜 ∪ ℓ), and K𝒬𝒬 is the kernel matrix for all loci xℓ with ℓ ∈ 𝒬.
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MI-based strategies, different from entropy, tend to find loci that are most informative about

the unstimulated locations, thus avoiding sampling the edges [20]. One drawback of MI

active sampling strategies is the large computational complexity of the resulting greedy

algorithms, since at each iteration the computation of (10) requires matrix inverses whose

sizes are proportional to all points available (∣ 𝒜̄ ∣).

Previously, we showed that although MI can lead to faster initial convergence because it

does not initially focus on sampling the edges, for the TMS mapping problem, the two

methods perform very similarly in practice as the number of samples increases, providing

loci that are almost uniformly placed on the scalp over the motor cortex [16]. For this

reason, we only consider entropy-based strategies in this paper.

B. Amplitude-Based Entropy Sampling

To overcome the limitation that naive entropy-based active sampling strategies tend to lead

to uniformly distributing sampling loci, in our previous study we proposed an alternative

approach that takes into account the variations of the function ψ, leading to a sampling

strategy that seemed intuitively to more closely match the USRG strategy [16]. We used the

GP estimate itself (i.e., the GP mean) ψ to construct an iterative strategy where GP

estimation and sample selection were performed sequentially. Thus, given an index set 𝒜
with respective sample pairs {X𝒜, y𝒜} the GP estimate ψ p for all p ∈ 𝒱 can be obtained by

taking the mean of (2). Assuming a zero-mean Gaussian prior for ψ p with covariance κ(·, ·),

we have

ψ p ∼ 𝒩(0, κ pp) (11)

with κ pp ≜ κ(ψ p, ψ p).

The MEPs at selected indices ψ𝒜 are distributed

ψ𝒜 ∼ 𝒩(0, K𝒜𝒜) (12)

with K𝒜𝒜 ≜ κ(ψ𝒜, ψ𝒜). Now, if we consider a sample ψℓ, ℓ ∈ 𝒱 ∖ 𝒜, the joint distribution of

ψℓ and ψ𝒜 is given by

ψ𝒜
ψℓ

∼ 𝒩 0,
K𝒜𝒜 κ 𝒜ℓ

κ 𝒜ℓ
𝖳 κ ℓℓ

, (13)

with κ 𝒜ℓ ≜ [κ(ψ𝒜1
, ψℓ), …, κ(ψ𝒜n𝒜

, ψℓ)]𝖳. Using the identity in [27] we have

ψℓ ∣ ψ𝒜 ∼ 𝒩 μψℓ ∣ 𝒜
, σψℓ ∣ 𝒜

2  with
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μψℓ ∣ 𝒜
= κ 𝒜ℓ

𝖳 K𝒜𝒜
−1 ψ𝒜, σψℓ ∣ 𝒜

2 = κ ℓℓ − κ 𝒜ℓ
𝖳 K𝒜𝒜

−1 κ 𝒜ℓ . (14)

Adopting the entropy-based criterion for sample selection with this amplitude-based

approach leads to a sample choice criterion: δℓ
Criterion ≜ δψ , ℓ

Entropy as:

δψ , ℓ
Entropy = σψℓ ∣ 𝒜

2 = κ ℓℓ − κ 𝒜ℓ
𝖳 K𝒜𝒜

−1 κ 𝒜ℓ . (15)

C. Entropy With Warped GPs Sampling

To ensure non-negativity, Warped GPs can be leveraged as discussed in Section II-A where

the invertible mapping g :𝒴 𝒵 between the MEP space 𝒴 and a latent space 𝒵 was

presented. Thus, equation (5) leads to Z = g(Y) = 2Y. Now, assuming a Gaussian prior on

Z :Z ∣ x ∼ 𝒩(0, κ(x, x)) the predictive distribution for a new location xℓ can be written as:

Z ∣ z𝒜, X𝒜, xℓ ∼ 𝒩 μzℓ ∣ 𝒜
, σzℓ ∣ 𝒜

2  with

μzℓ ∣ 𝒜
= κ𝒜ℓ

𝖳 K𝒜𝒜
−1 z𝒜, σzℓ ∣ 𝒜

2 = κℓℓ − κ𝒜ℓ
𝖳 K𝒜𝒜

−1 κ𝒜ℓ . (16)

Since linear transformations of GPs are also GPs, considering a local linearization of the

inverse mapping Y = 1
2Z2 leads to a GP over Y given a GP defined over Z [25]. Specifically,

considering the first order Taylor expansion of g−1, we have

y ≃ g−1(z0) + ∂g−1(z)
∂z ∣z = z0

(z − z0).
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Algorithm 1 Active GP Entropy-Based Sampling Algorithm

Input : X𝒜0
, y𝒜0

, 𝒱, X𝒱, N, method

Output:𝒜
1 Obtain estimated field ψ𝒱 by taking the mean of (2) (for

GPE and GPEμ) or (18) (for WGPE);

2 Set n = n0 and 𝒜 = 𝒜0;

3 while n ≤ N do

4

for ℓ ∈ 𝒱 ∖ 𝒜 do
Compute δψ , ℓ using (9) or (15) or (20) based on

method;
end
ℓ∗ = arg maxℓ δψ , ℓ ;

Get MEP sample y
ℓ∗ at location x

ℓ∗;

𝒜 = 𝒜 ∪ {ℓ∗};

𝒱 = 𝒱 − {ℓ∗};
Obtain estimated field ψ𝒱 by taking the mean of (2)

or (18);
Increment n;

13 end
14 return 𝒜;

One interesting characteristic of the mapping g is that the derivative ∂g−1(z)
∂z = z. Thus,

choosing z0 = μzℓ ∣ 𝒜
 leads to:

y ≃ 1
2 μzℓ ∣ 𝒜

2 + μzℓ ∣ 𝒜
(z − μzℓ ∣ 𝒜

) (17)

and using the approximation z ≃ μzℓ ∣ 𝒜
, we have:

Y ∣ y𝒜, X𝒜, xℓ ∼ 𝒩 μyℓ ∣ 𝒜
, σyℓ ∣ 𝒜

2
(18)

with

μyℓ ∣ 𝒜
= 1

2 μzℓ ∣ 𝒜
2 , σyℓ ∣ 𝒜

2 = μzℓ ∣ 𝒜
2 σzℓ ∣ 𝒜

2 . (19)

Consequently, the entropy criterion leads to solving problem (6) using (19):
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δZ, ℓ
WGP = σyℓ ∣ 𝒜

2 = μzℓ ∣ 𝒜
2 σzℓ ∣ 𝒜

2 . (20)

One important consequence of the selected mapping g and the linearization of its inverse is

the fact that the variance in (19) and, consequently, the quantity (20), are functions of the

GP’s variance and mean. This implies that this approach balances exploration and

exploitation naturally by selecting loci where the model has high uncertainty (large σzℓ ∣ 𝒜
2 )

and high amplitude (large μzℓ ∣ 𝒜
).

D. Entropy Based Sampling Algorithm

Algorithm 1 presents the proposed active GP entropy-based sampling strategies. It is

designed to work with a set of initial loci X𝒜0
 and their respective MEPs y𝒜0

, a set of

selectable indices 𝒱 with associated loci X𝒱, the final cardinality N, and finally the chosen

entropy-based method. In line 7, a new index ℓ* is selected based on a chosen method given

by (9), or (15), or (20). We refer to these methods as: standard GP entropy (GPE),

Amplitude-based GP entropy (GPEμ), and Warped GP entropy (WGPE) respectively. The

algorithm follows an iterative sequence interchanging between computing δψ,ℓ for all

ℓ ∈ 𝒱 ∖ 𝒜 (lines 4–6), finding the optimal index (line 7), updating the sets and MEP field

estimation (lines 9–11). When the desired cardinality (N) is achieved the algorithm returns

the set of selected (suggested) stimuli loci and the corresponding estimated MEPs.

To have a baseline for the purpose of comparison we also implement a naive uniform grid

sampling (UGRID) strategy by considering a uniform grid of N points over the space at

each iteration.

IV. Adaptive GP Random Sampling

An entirely different possible sampling strategy for TMS mapping would consist of

obtaining sample locations by randomly selecting locations according to an appropriate

distribution p(x) defined over 𝒳. A naive approach would be to uniformly sample over the

entire motor cortex. A more principled approach, however, would exploit the knowledge

provided by iteratively observing the MEP values acquired by previous samples to update an

estimate of this distribution and, thus, gradually concentrate future samples in the area where

previous MEPs had larger amplitudes (namely, ROI).

Imbiriba et al. proposed a GP-based sampling methodology in the context of particle

filtering where, at each iteration, the GP’s mean function was used to approximate the

posterior distributions of particle filters and in the resampling process [26]. To adopt this

strategy to the problem at hand we need to choose an appropriate model for the probability

density function (PDF) to update. We note that a function p(x) is a valid PDF if it obeys two

basic properties: 1) non-negativity and 2) it integrates to one. Non-negativity can be

achieved here by leveraging Warped GPs as discussed in Section II-A while the integration-
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to-one requirement can be achieved by properly normalizing the WGP mean function. That

is, if we let μ(x) be the mean function of a non-negative WGP, then

p(x) = μ(x) ∕ ∫ μ(x′)dx′ (21)

is a valid PDF.

Algorithm 2 presents the Gaussian Process Random Sampling (GPRS) algorithm. It receives

as inputs an initial set of loci and measurements {X0, y0} with cardinality n0, the final

number of points N and the initial distribution pn0
(x). Then, an iterative procedure is

performed by randomly sampling a new location xℓ ∼ pℓ(x), measuring a new MEP yℓ at xℓ

and updating the distribution by using all available pairs X, y. The update performed in line

6 involves updating the WGP and normalizing it according to (21). The sampling procedure

at line 3 can be performed using any strategy aimed at sampling arbitrary distributions such

as Accept-Reject, Importance Sampling, etc [37]. In this work, we opted for the Accept-

Reject method due to its simplicity. In order to have a baseline for purpose of comparison we

also implement a naive random sampling strategy by considering p(x) as a fixed uniform

distribution in the area of interest (e.g. over the motor cortex). We refer to this approach as

Uniform Random Sampling (URAND).

Algorithm 2 Adaptive GP Random Sampling Algorithm

Input : X0, y0, n0, n𝒜, pn0
(x)

Output:X, y
1 X = X0;

2 for ℓ = n0…, N do

3

Sample xℓ from pℓ(x);

Get MEP yℓ at loci xℓ;

Make X = [X𝖳, xℓ
𝖳]𝖳 and y = [y𝖳, yℓ]𝖳 ;

Update pℓ(x) using the pair {X, y} ;

7 end
8 return X, y ;

An interesting difference between the main two sampling strategies proposed in this paper

(Active GP Entropy-based and Adaptive GP Random Sampling) is that the latter does not

require a grid and incurs a much lower computational cost, since it does not need to evaluate

the quantity δℓ
Criterion for all points in a grid. On the other hand, its results are, obviously,

variable from one run to the next due to the random draws from the density.
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V. Experimental Setup

In this section we present our experimental setup. First, we discuss the non-automatic TMS

mapping strategies used to collect real data. Then, we discuss how we used this collected

data to build a realistic data set with accessible “ground truth”. Finally, we present the

metrics used for assessing the performance of the different methodologies.

A. TMS Mapping Procedure

All protocols were conducted in conformance with the Declaration of Helsinki and were

approved by the Institutional Review Board of Rutgers Biomedical Health Sciences,

Newark, NJ. Five healthy, right handed subjects (3 males & 2 females) aged 22 to 40

participated following written informed consent. Participants were free from neurological

and musculoskeletal deficits, and systemic disease. Exclusion criteria included

contraindications for TMS, including metallic or electronic implants in the head, pregnancy,

and history of epilepsy. Subjects were seated with their arm, hand, and fingers comfortably

secured in a brace to limit motion. Surface electromyographic activity (EMG, Delsys Trigno,

1kHz) was recorded from the first dorsal interosseous (FDI) of the right hand. To record the

location of TMS (Magstim, Rapid2) stimuli, each subject’s head was coregistered to a

canonical high-resolution anatomical MRI for frameless neuronavigation (Advanced Neuro

Technology). The TMS coil (Magstim, 70 mm double coil) was held tangential to the scalp,

with the handle posterior 45° off the sagittal plane [7], [38], [39]. MEPs were quantified as

the peak-to-peak (pp) amplitude of the FDI EMG signal in a window from 10 to 40 ms

following the TMS pulse. The cortical hotspot was found by sampling the hemisphere until

the locus with the largest MEP was located [8], [40]. Resting motor threshold (RMT) was

determined at this location as the minimum intensity required to elicit MEPs > 50 μv in the

FDI muscle on 3 of 6 consecutive trials [38], [41]. All TMS measures were taken at rest and

background EMG was monitored to ensure that muscles remained relaxed. All mapping was

performed with the stimulation intensity set to 110% of RMT [42]. Each mapping included

294 stimulations, delivered at an interstimulus interval of 4.2 ±.25 seconds, necessitating

~20 minutes to complete. Mapping of the right FDI representation on the left sensorimotor

cortex using a GRID, RAND, or USRG-based spatial sampling approach were performed in

a single session with 5-10 minute breaks between mappings. Order of the mapping was

randomized between subjects. Details of each method are as follows: 1)GRID: A 7 × 7 grid

(49 points, 36 cm2) with 1 cm spacing between grid sites was centered at the FDI hotspot in

the tangential plane to the scalp. To place the grid on the scalp, head model data was

exported from the neuronavigation software into Matlab (Mathworks). Grid points were

translated inward towards the scalp along a vector intersecting the center point of the

standard head model in order to project the grid directly onto the scalp. The grid was then

imported into the neuronavigation software and superimposed virtually on the head model.

Each of these grid sites was stimulated 6 times. 2) RAND: The random sampling included

the 4 corners of the grid, the FDI hotspot, and 289 uniform randomly distributed sites (294

total) over the same 6 × 6 cm area. These sites were again projected onto the scalp using the

same procedure described for GRID. One stimulus was delivered to each site in the random

set. 3) USRG: Only the 4 corners of the grid and the site signifying the FDI hotspot were

projected onto the scalp. At the beginning of the experiment, stimulation was applied to each
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of these sites once (5 stimulations). The remaining 289 stimulations were chosen at the

discretion of the TMS operator based on real-time feedback of MEP amplitude. The

intention of the operator was to maximize the information obtained per stimulus by

increasing the density of points in what they judged at the time to be excitable and border

regions while placing few points in what they judged to be null-response areas [12], [13].

B. TMS Dataset for Computational Experiments

To test the computational methods, we created an accessible “ground truth” (GT) function

from the combination of three experimental maps (GRID, RAND, USRG). We then used

this function as a surrogate to determine the MEP amplitude obtained from any arbitrary

sampling location chosen by an algorithm. This is crucial for our computational methods

that use the real-time feedback of MEP amplitude to select future loci. To do so, two

interpolation steps were used. In the first step cubic interpolation was used to interpolate all

available points to a 3.75 mm resolution grid as has been previously described by our group

and others [4], [38], [43]. We then used this interpolated data as a training data for WGP

model (over GP, to ensures non-negativity), calculated the posterior, and computed the

predictive posterior distribution (see section II) on any point of interest x. Thus, for any of

the methods tested, once a sampling location is determined, its associated MEP amplitude

can be obtained from this predictive distribution.

For the Active GP Entropy-based Sampling methods that need a set of selectable loci (for

greedy approach), we used a grid with 2 mm resolution in 2D space. This resolution seemed

good based on real world TMS mapping resolution and map liability. We discuss more about

this resolution in the section VII. For Adaptive Random Sampling methods, as stated before,

we do not require a grid and methods should choose any arbitrary location in the space.

C. Assessment of Accuracy of the Sampling Methods

To assess the accuracy of the methods, we created a testing data including a dense grid of

0.5 mm resolution loci in 2D space and their associated MEP amplitudes (GT values).

Reconstruction error was defined as the normalized mean squared error (NMSE) between

GT MEP values and predicted MEP values from selected loci by each method for testing

data. Specifically, we defined NMSE as: NMSE(ψ, ψ) = (‖ψ − ψ‖2
2) ∕ (‖ψ‖2

2) where ψ is a

vector containing the GT MEPs and ψ is a corresponding vector of MEPs obtained using the

sample points chosen by a particular method. In addition to NMSE, we computed several

common map features as outcome measures: map volume, map area, and center of gravity in

both the rostral-caudal plane (denoted COGx1) and in the medial-lateral plane (COGx2).

Map volume and map area were calculated using double trapezoidal integration of the

interpolated maps [44]. COGx1 and COGx2 were computed using standard equations [42].

VI. Results

Mapping procedures were well tolerated by all 5 subjects and no adverse effects of the

stimulation were reported. Stimulation loci selected by each experimental method (GRID,

RAND, USRG) are shown for subject 3 in Figure 2. Map features (area, volume, COGx1,

and COGx2) determined for the maximum number of sampled loci are shown for the GT
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and each collected map in the left-most columns (Experimental Methods) in Table I. Group

Mean (GM), defined as the average across subjects, MapArea and MapVol were observed to

be smaller for GRID sampling, than for RAND or USRG sampling (see last row of Table I).

To illustrate how the error in the acquired experimental maps depends on the method as

more samples are acquired, the evolution of NMSE between GT and each experimental map

across the duration of mapping is shown for all subjects in the first row of Figure 4. Lower

GM NMSE was observed for USRG and RAND when compared with the GRID approach

(GM NMSE: 0.36±0.11, 0.68±0.17, 0.99±0.00 respectively) after 49 simulations. The GRID

approach resulted in less reduction of NMSE with added stimuli compared to RAND or

USRG. USRG outperformed RAND (GM NMSE: 0.33±0.10, 0.60±0.18 respectively)

following 100 stimuli for all 5 subjects, and for some subjects increased performance was

seen with fewer stimuli. RAND and USRG became more similar in terms of NMSE with

added stimuli in all subjects; however USRG provided a better fit to the GT in every case.

For all computational methods, an initial uniform grid set 𝒜0 with cardinality ∣ 𝒜0 ∣ = 36

was selected. We selected a total of 256 stimuli with each of the computational methods.

Figure 3 presents details of the loci of the stimuli selected by each method for subject 3. To

evaluate the extent to which each algorithm samples the excitable region of the cortex the

percentage of sampled stimuli with a MEPs greater than 50μV (the threshold used to

determine RMT, see Sec. V-A) were determined. Averaged across participants, the methods

that placed a high percentage of new stimuli in the ROI (excitable region) were GPEμ

(67±16%), GPRS (79±12%), and WGPE (78±13%), while UGRID (12±4%), URAND

(14±3%), and GPE (12±3%) spread stimuli more uniformly over the motor cortex. This

resulted in the GPEμ, GPRS, and WGPE approaches being qualitatively more similar to the

USRG approach (40±5% stimuli in ROI) both in terms of behavior as a function of number

of stimuli as well as the final sample map appearance and progression. Figure 4 (second

row) shows the evolution of NMSE between the GT and the maps from each of the

computational methods as a function of increasing number of stimuli. Monte Carlo

simulations were performed for methods with randomness (URAND and GPRS) and for

those methods we show the mean (solid color) and standard deviation (STD) (transparent

shade) in the figure. Lower GM NMSE after 100 simulations was observed for USRG,

GPRS, and WGPE (0.33±0.10, 0.24±0.10, 0.14±0.07 respectively) when compared with

GPEμ, GPE, URAND, and UGRID (0.82±0.07, 0.48±0.20, 0.58±0.19, 0.52±0.27

respectively). The best performing methods, WGPE and GPRS, achieved lower NMSE than

the operator-dependent USRG method at GM number of stimuli: 65.25±13.93 and

90.25±10.33 respectively. In 4 of 5 participants lower NMSE was consistently maintained

with increased sampling (Figure. 4).

As an additional comparison, we defined the number of stimuli needed to produce an NMSE

below 0.1 as a reasonable standard at which to compare. Among all methods WGPE, GPRS,

and USRG methods required the fewest number of stimuli (GM: 122.4±27.5, 140.4±24.5,

and 184.0±36.96 respectively) to reach this threshold.

Evaluating results in terms of map features rather than NMSE, in Figure 5 we report results

for those features for all subjects and all methods as a function of increasing number of
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stimuli, where the straight red lines in the plots show the GT value for each feature. Visual

inspection of these figures suggests that some methods (e.g. UGRID and GPEμ) experienced

high variability as the number of stimuli increased. USRG, WGPE, and GPRS typically

were within 10% of the true value at full cardinality for all metrics across the subjects.

UGRID, URAND, GPE, and GPEμ all performed less accurately. For example, GPEμ only

reaches to within 15% and 28% of the true value across the features in subjects 3 and 5

respectively.

In addition to the results for the experimental methods, Table I also reports on results for the

map features determined at full cardinality for the computational methods. In terms of the

coefficient of variation (CV,1 relative standard deviation) for each feature, COGx1 and

CoGx2 (CV = 0.038, and 0.0168 respectively) had the least variability across the different

computational approaches in comparison to MapVol and MapArea (CV = 0.114, 0.0824

respectively). Across individuals MapArea results was consistent with USRG for the WGPE

and GPRS methods, slightly larger for UGRID and GPE, and smaller for URAND and

GPEμ. MapVol was observed to be consistent with USRG for WGPE, GPRS, UGRID, and

GPE approaches while URAND and GPEμ approaches were characterized by smaller

MapVol (see last row of Table I.

VII. Discussion

As a first step towards highly efficient fully automated TMS mapping, in this study we

described and compared several computational methods, motivated by the USRG approach

(in which future stimulation loci are selected utilizing online feedback of resultant

amplitude), for the selection of future stimuli. In terms of performance, among the

experimental applied methods, the USRG sampling pattern was found to more rapidly

reduce NMSE (relative to the GT) with added stimuli compared to RAND or GRID

approaches, and resulted in the lowest NMSE at full cardinality for all subjects. The large

reduction in NMSE in the first 50 stimuli is indicative of the active selection process made

by the operator to maximize information using as few stimuli as possible. Using a pseudo-

random walk pattern, van de Ruit and colleagues reported the production of maps with high

correlation to the 100 stimuli full map in as few as 50 stimuli [9] (GM 63 stimuli). However,

the use of at least 80 stimuli was recommended in order to generate a random sampling

distribution that adequately covered the response area and maps that were less susceptible to

test-retest variability. Our results showing greater efficiency (reduction of NMSE with fewer

stimuli) of the USRG approach compared to a random approach confirms the suggestion in

[9]. However, our random procedure was different than the one used by van de Ruit et al.
[9]. In this study, 184 stimuli, representing 20% of the number of stimuli used to define the

GT, were needed to meet our accuracy requirements, possibly indicating better performance

than shown in van de Ruit et al. [9]. However, comparisons between our study and van de

Ruit et al. [9] of the total number of stimuli needed to generate an accurate map are difficult,

given differences in the total number of stimuli used to construct the GT and differences in

the metric used to evaluate accuracy. Interestingly, results showed relatively small

improvements in NMSE with increased stimuli in the GRID condition. While this may seem

1CV = σ/μ, where σ is the standard deviation and μ is the mean of population.
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surprising, a recent investigation reported that only two stimuli per grid site were needed to

create maps of equal validity to those obtained when five stimuli per site were used [10],

consistent with our results.

The USRG approach can be characterized as a balance between exploitation of current

knowledge about the excitable area and exploration of areas where excitability is uncertain.

The relative success or failure of our computational approaches appears to be based on how

each approach handled this exploration vs exploitation tradeoff. Among all computational

methods tested, the GPRS and WGPE approaches had similar performance to the USRG

method although they handle exploration-exploitation trade-off efficiently in two very

distinct ways. For GPRS, exploration is introduced by the random nature of the algorithm

while exploitation is introduced as the evolution of the GP mean modifies the probability of

sampling regions of the space as new samples are obtained. For WGPE, exploration-

exploitation is a consequence of the quantity (20) that scales the latent GP variance with the

square of its mean, thereby increasing exploitation as the mean function evolves over time.

These features underlie our confidence that WGPE and GPRS are the best strategies among

the algorithms discussed in this study. On the other hand, the UGRID, URAND, and GPE

methods all tend to place samples evenly in the space, neglecting exploitation.

As stated before, all the computational methods except URAND and GPRS are grid-based,

meaning the algorithm selects the next stimulus from a finite grid (selectable set) without

replacement. In our experiments, we used a finite 2D grid with 2mm resolution as our

selectable set, based on the limitations of the coil tracking software. However, we noticed

that these approaches were influenced by the preallocated grid. This mostly affected

methods based on both GP spatial uncertainty and MEP amplitude like WGPE and GPEμ.

Indeed GPEμ was heavily affected by this factor, because it focuses only on the variations of

MEP values (exploitation) and completely neglects spatial exploration. This is illustrated by

comparing the GPEμ results of this paper, in which a 2 mm selectable grid was used, to those

of our previous paper [16] in which a 3 mm selectable grid was used. With a sparser grid, the

algorithm is forced to select loci that are farther apart from each other (at the expense of

losing definition of sharp peaks), whereas with the denser grid used here it got stuck

exploiting small regions. This behaviour can be seen in Figure 3 where the loci selected by

GPEμ are overly concentrated in part of the ROI while ignoring unexplored regions.

A. Limitations

A number of limitations may have impacted the findings of this investigation. A canonical

brain was used for neuronavigated TMS instead of a reconstruction from the participants

MRI. This may have impacted the TMS operator in the USRG condition, who may have

used the subject-specific anatomy to guide coil position early during mapping. All

experiments were conducted by an experienced TMS operator. It is unknown if the same

result would be found if the individual selecting the stimulation sites was naïve to TMS

mapping. This should be the subject of future investigation, as well as the inter-operator

reliability. Only a single muscle was mapped. It is unknown whether multi-muscle mapping

would be improved by a user-guided approach. To maximize such an approach, the TMS

operator would need to be given feedback from each muscle collected. In this case, an
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automated or even random approach may better capture multiple representations at once.

The coil orientation was fixed at 45° to midline (approximately perpendicular to the central

sulcus) and was not adjusted for sulcus alignment on each individual stimulation. The

method used to determine resting motor threshold was a less common alternative to the more

common Rossini-Rothwell method [45] (which uses 5 of 10 stimulation greater than 50 μV)

as a threshold. Given maps for each participant were conducted with the same coil

orientation and intensity in the same session, we do not believe that the coil orientation or

method to determine RMT had an impact on the active sampling results presented here.

Incorporation of the coil orientation and intensity is an achievable goal for improvement to

our algorithm. In the future we intend update our algorithms to operate directly on the

induced electric field for individual head models thereby incorporating coil orientation and

stimulus intensity as well as three dimensional individual anatomy.

VIII. Conclusion

In this paper, we leveraged different GP-based active learning strategies to study possibilities

for automated TMS mapping, and compared these methods with traditional strategies.

Warped GP entropy-based sampling and GP random sampling methods were found to be the

best candidates for a fully automated replacement for operator-dependent mapping. We note

that our study of different active sampling methods has potential applications to a wide set of

spatial prediction problems outside the scope of TMS mapping.
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Fig. 1.
Illustration of a framework where operator expertise (right) for selection of stimuli in the

user-guided mapping approach is replaced with machine learning and robotics(left). Here, a

machine-learning-driven robot is shown to illustrate autonomous mapping.
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Fig. 2.
Stimulation loci (Left: red, right: black circles) for GRID (top), RAND (middle) and USRG

(bottom) mappings shown on the Left: 3D curvilinear canonical brain used for

neuronavigation and Right: Heat maps indicating interpolated 2D map representation of

MEP amplitude in μV for subject 3. The color bar represents the MEPpp and axes display the

spatial coordinate system used by the neuronavigation software which places the origin at

the intersection of the fiducial markers used for co-registration (roughly at the center of the

brain).
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Fig. 3.
Using Warped GP model, a surface is fitted on the real TMS data to create a representation

of MEP map for subject 3. This map can be viewed in either a 3D (top left) or 2D (others)

map. The color bar represents the MEPpp and Black circles indicate the selected stimulation

loci by each method (specified in top right of each subplot).
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Fig. 4.
NMSE between GT and predicted MEP values for testing data as the number of stimuli are

added by each experimental method (First row) and computational method (Second row)

for all subjects. NMSE mean (line) and Standard deviations (transparent shade) are

presented for URAND and GPRS methods for which Monte Carlo procedures were used to

understand randomness in stimuli selection.
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Fig. 5.
Map features evolution for all subjects and all methods. The ground truth’s values are

represented by the red constant lines.
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