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a b s t r a c t 

Segmentation of infections from CT scans is important for accurate diagnosis and follow-up in tackling 

the COVID-19. Although the convolutional neural network has great potential to automate the segmen- 

tation task, most existing deep learning-based infection segmentation methods require fully annotated 

ground-truth labels for training, which is time-consuming and labor-intensive. This paper proposed a 

novel weakly supervised segmentation method for COVID-19 infections in CT slices, which only requires 

scribble supervision and is enhanced with the uncertainty-aware self-ensembling and transformation- 

consistent techniques. Specifically, to deal with the difficulty caused by the shortage of supervision, an 

uncertainty-aware mean teacher is incorporated into the scribble-based segmentation method, encourag- 

ing the segmentation predictions to be consistent under different perturbations for an input image. This 

mean teacher model can guide the student model to be trained using information in images without re- 

quiring manual annotations. On the other hand, considering the output of the mean teacher contains both 

correct and unreliable predictions, equally treating each prediction in the teacher model may degrade the 

performance of the student network. To alleviate this problem, the pixel level uncertainty measure on the 

predictions of the teacher model is calculated, and then the student model is only guided by reliable pre- 

dictions from the teacher model. To further regularize the network, a transformation-consistent strategy 

is also incorporated, which requires the prediction to follow the same transformation if a transform is 

performed on an input image of the network. The proposed method has been evaluated on two public 

datasets and one local dataset. The experimental results demonstrate that the proposed method is more 

effective than other weakly supervised methods and achieves similar performance as those fully super- 

vised. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The coronavirus disease 2019 (COVID-19) caused by the severe 

cute respiratory syndrome coronavirus 2 (SARS-CoV-2) has be- 

ome a global pandemic since the beginning of 2020. It has re- 

ulted in over 4,400,284 deaths as of 20 August 2021, and over 
∗ Corresponding authors: 

E-mail addresses: lxmspace@gmail.com (X. Liu), Dinggang.Shen@gmail.com (D. 

hen). 
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09,876,613 cases infected, according to the report from World 

ealth Organization (WHO). 

For COVID-19 screening, the reverse-transcription polymerase 

hain reaction (RT-PCR) is regarded as the gold standard [1] . As an 

mportant complement to RT-PCR tests, imaging techniques, such 

s X-rays, computed tomography (CT), and ultrasound, have also 

emonstrated their effectiveness in infection detection, follow-up 

ssessment, and evaluation of disease evolution [2] . Among the 

maging techniques, CT screening has a three-dimensional view 

f the lung and high contrast in discriminating lesions from nor- 

al tissues [3,4] . Therefore, CT is an effective disease surveillance 

https://doi.org/10.1016/j.patcog.2021.108341
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108341&domain=pdf
mailto:lxmspace@gmail.com
mailto:Dinggang.Shen@gmail.com
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maging tool that can help diagnose COVID-19 in clinical practice 

uickly. 

In the application of CT dealing with COVID-19, segmentation 

f the infection lesions from CT volumes is essential for quanti- 

ative measurement of disease progression [2,5] . Manual segmen- 

ation of the lesions from CT volumes is time-consuming, labor- 

ntensive, and subject to inter- and intra-observer variabilities. It 

an take up to 7 hours to delineate one CT volume with 250 slices

6] . Automatic segmentation of lesions is highly desirable. How- 

ver, automatic segmentation of COVID-19 lesions from CT scans 

s challenging. First, infection lesions are often with different ap- 

earances, such as ground-glass opacity (GGO), consolidation (CO), 

razy pavement, and others [7] . Second, the positions and sizes of 

he lesions often vary significantly with the progress of infection 

nd across different patients. Besides, lesions often have irregu- 

ar shapes, blurry boundaries, and low tissue contrast (especially 

or GGO). These challenges make it hard to obtain accurate man- 

al annotations for training and introduce obstacles for automatic 

egmentation of the lesions. 

In recent years, deep learning has achieved state-of-the-art per- 

ormance for many medical image processing tasks [8–15] . Deep 

earning has also been proposed to detect patients infected with 

OVID-19 [16,17] . A weakly supervised deep learning approach has 

een proposed for COVID-19 classification and lesion localization 

y using CT volumes [16] . Specifically, the lung region was first 

egmented with a pre-trained U-Net, then the segmented lung re- 

ion was fed into a deep neural network for classification, and fi- 

ally, the COVID-19 lesions were located by combining activation 

egions from the classification model and the unsupervised con- 

ected component analysis. 

Despite numerous existing approaches to assist the diagnosis 

f COVID-19, only a few works have investigated the segmen- 

ation of lesions in CT slices [5,17,18] . Fan et al. [17] proposed 

 network, namely Inf-Net, that used a parallel partial decoder 

o aggregate the high-level features and generate a global map. 

hen, implicit reverse attention and explicit edge-attention were 

sed to model the boundaries. The method was further extended 

o the semi-supervised segmentation scenario to alleviate the la- 

el scarcity problem. A noise-robust framework for the segmenta- 

ion of COVID-19 lesions was proposed in [5] to deal with noise 
ig. 1. Example of COVID-19 infected CT images and the corresponding annotations. (a) a

re our scribble-level annotations. Red and green lines denote the infection regions and b

2 
n manual annotations. By combining the mean absolute error 

oss robust against noisy labels, and Dice loss which is insensi- 

ive to foreground-background imbalance, they designed a noise- 

obust Dice loss function. An adaptive self-ensembling framework 

as proposed to suppress the effect of noisy labels on training. 

aradji et al. [18] proposed a weakly supervised COVID-19 le- 

ion segmentation method, which requires only point annotations, 

.e. , one pixel for each infected region on a CT slice is used as

he ground-truth. This can significantly reduce the labor cost of 

nnotation. 

However, we observed several shortcomings in the existing 

OVID-19 segmentation approaches: 1) For COVID-19 infection 

egmentation, most existing methods require dense annotations, 

hich are labor-intensive and time-consuming. It is worth noting 

hat the work in [17] was investigated on a small labeled dataset 

ith only 110 slices. While the training annotations in [5] can be 

oisy, time-consuming dense annotation is still required. Point an- 

otations are used in [18] to reduce the labeling cost. However, 

t did not perform well on the irregular shape of infections (see 

ig. 1 ), and the segmentation performance is limited since the su- 

ervision information is scarce. 2) Due to the blurred boundary 

nd low contrast of GGO in CT slices, some pixels are more dif- 

cult to segment than other pixels. During the utilization of un- 

abeled pixels (images), their reliability needs to be considered to 

void meaningless guidance, which is often overlooked by the ex- 

sting methods. 3) Cross-entropy, Dice loss, or their variants are 

ypically used as the loss functions to train Convolutional Neural 

etworks (CNNs) [19,20] , while they are not sufficient when deal- 

ng with weakly-supervised segmentation, and other guidance is 

equired. It is known that CNNs with pooling layers are less sen- 

itive to some spatial transformations, i.e. , the positional variation. 

his spatial-invariant characteristic is an advantage for classifica- 

ion problems, however, a disadvantage for segmentation problems 

21,22] . If an input image is transformed ( e.g. rotated), the ex- 

ected prediction should be transformed in the same way. How- 

ver, this favorable characteristic for segmentation is not preserved 

n CNN generally [21,23] . To solve the problem, transformation con- 

istent loss [23] is often adopted in semi-supervised tasks [23] or 

eakly-supervised segmentation tasks [18,21] to improve the 

erformance. 
nd (d) are original images, (b) and (e) are fully-annotations of infections, (c) and (f) 

ackgrounds, respectively. 
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Fig. 2. Example of different types of weak annotations on COVID-19 infected CT images. 
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In this work, we propose a novel weakly-supervised method for 

he segmentation of COVID-19 infections in CT slices with scrib- 

le supervision. Specifically, the method is Uncertainty-aware Self- 

nsembling and Transformation-consistent Mean Teacher Model, 

amely USTM-Net, with scribble-level annotation of lung infections 

see the comparison with the fully-annotation in Fig. 1 ). Accord- 

ng to our statistics, manual scribbles only take about 16 seconds 

er slice on average in our dataset. This is an order of magnitude 

aster than dense annotations of the dataset (around 200 seconds 

er slice on average). The box-level annotations on each image 

ook about 20 seconds (similar to the scribble annotation), while 

he point-level annotations took only a few seconds. Besides, the 

ost of scribble labeling is comparable to point labeling [18] . In 

ontrast, the scribbles can better deal with the irregular shape of 

nfections (see Fig. 2 for comparison) and incorporate more su- 

ervision information. Inspired by semi-supervised segmentation 

orks [23,24] , we incorporated uncertainty-aware self-ensembling 

echniques into the weakly supervised segmentation method to 

ake the prediction robust to perturbations. In a typical semi- 

upervised segmentation scenario, only part of the images have 

ense annotations, and the perturbation consistency is required on 

oth labeled and unlabeled images [24] . In our method, perturba- 

ion consistency is required on the same weakly annotated images. 

e build a teacher model and a student model. The parameters 

f the teacher model are the exponential moving average (EMA) 

f the student’s parameters, inspired by the method in [25] . The 

tudent model gradually learns from the reliable targets by ex- 

loiting the uncertainty information of the teacher model. With 

 Monte Carlo Dropout [24] based uncertainty measurement, the 

roposed method can better deal with the low contrast in GGO in- 

ections. Image augmentation has been widely used in supervised 

eep learning to improve the generalization capability and alleviate 

verfitting [26,27] , usually performed on labeled images. To allevi- 

te the affection of limited supervision, we further incorporated 

ransformation consistency loss into the proposed method, which 

s also desired by CNNs for segmentation. 

The main contributions of this work are summarized as 

ollows: 

1) We propose a weakly supervised COVID-19 infection segmen- 

tation method with scribble supervision. To the best of our 

knowledge, it is the first work adopting scribble-level supervi- 

sion in COVID-19 segmentation. 

2) An uncertainty-aware mean teacher framework is incorporated 

into the proposed method to guide the model training, encour- 

aging the segmentation predictions to be consistent under dif- 

ferent perturbations for an input image. With the pixel level 

uncertainty measure on the predictions of the teacher model, 

the student model is guided with reliable supervision. We 

further regularize the model with a transformation-consistent 

strategy, which is beneficial for the segmentation task and 

makes our approach easier to deal with the segmentation of 

irregular lesion areas. 
3 
3) We evaluated the proposed method on three datasets and com- 

pared it with other advanced approaches. The results demon- 

strated the superiority of the proposed method. 

The remaining of the paper is organized as follows. Section II 

eviews the related work. Section III introduces the proposed ap- 

roach in detail. Section IV presents experimental results. And Sec- 

ion V concludes the paper. 

. Related Work 

This section reviews some related works, including 1) 

nnotation-efficient medical image segmentation, 2) COVID-19 

nfection segmentation in CT images, and 3) the transformation 

onsistency techniques. 

.1. Annotation-efficient Deep Learning in Medical Image 

egmentation 

Various methods have been proposed to lessen the cost of 

nnotation in medical image segmentation. Some unsupervised 

nomaly detection methods can identify anomaly regions, but they 

annot identify whether the anomaly is related to a specific dis- 

ase [28] . For the COVID-19, Yao et al. [29] proposed a label-free 

OVID-19 lesion segmentation method for CT images. Based on the 

atterns of tracheae and vessels in CT scans, lesions were synthe- 

ized with several operations and superimposed on the lung re- 

ions of healthy images. The segmentation model is trained on the 

ynthesized dataset. However, many specially designed operations 

re handcrafted, including threshold selection, morphological pro- 

essing, elastic deformation, etc. The performance gap between un- 

upervised methods and supervised methods is large due to the 

imited supervision information. 

Recently, semi-supervised learning (SSL) has been widely in- 

estigated in image classification and segmentation [24,30,31] . The 

ain goal of SSL is to improve the model performance by using a 

arge amount of unlabeled data, besides the small number of la- 

eled data [30] . These methods usually optimize a supervised loss 

n the labeled data along with an unsupervised loss imposed on 

he unlabeled data [31] or both the labeled and unlabeled data 

24] . For medical image segmentation, the lack of pixel-level la- 

eled data is common due to the requirement of expertise and 

ime. In contrast, a large number of unlabeled images may be 

vailable [32] . Cui et al. [33] adopted a mean teacher framework 

25] for the stroke lesion segmentation in MR images. The mean 

eacher framework was originally proposed for image classification 

ased on the assumption that CNN models should favor functions 

hat produce consistent outputs for similar inputs. The ensemble 

f predictions of a network in different training steps can be more 

ccurate than the single latest model [33] . In this method, two 

odels with the same structure are constructed: one is the stu- 

ent model, and the other is the teacher model. The parameters 

n the teacher model are updated by the student model with an 
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xponential moving average strategy. For unlabeled data, the pre- 

ictions from the student model and the teacher model are re- 

uired to be consistent. Uncertainty is incorporated into the mean 

eacher framework in [23] for semi-supervised left atrium segmen- 

ation. Besides the mean teacher framework, generative adversarial 

etwork (GAN) is also popular in semi-supervised segmentation of 

edical images [34–36] . An adversarial learning framework for un- 

upervised domain adaptation was proposed in [36] , which aimed 

o accurately segment chest organs for unlabeled data by learn- 

ng domain invariant feature representations from public datasets. 

he model can also be trained in a semi-supervised manner and 

ad performed well. Similarly, in order to reduce the workload of 

ense annotations, it is common for training data to be partially 

abeled. For example, in the partially-labeled multi-organ segmen- 

ation dataset, only a few organs are fully labeled. Hence, some 

ork has been done in partially-supervised learning [37,38] . Zhou 

t al. [37] proposed the Prior-aware Neural Network, which used 

omain-specific knowledge to guide the training process by com- 

ining prior anatomical knowledge about abdominal organ size. 

Recently self-supervised learning methods have also been pro- 

osed to avoid the cost of manual annotations [39,40] . Grill et al. 

39] introduced a new self-supervised image representation learn- 

ng method called Bootstrap Your Own Latent, which consisted 

f two networks named the online network and the target net- 

ork. They trained the online network to predict the target net- 

ork’s representation from an augmented view, while the param- 

ters of the target network are updated from the slow-moving av- 

rage of the online network. Chen et al. [40] demonstrated that 

imple Siamese networks could learn meaningful representations 

ven without negative sample pairs, large batches, or momentum 

ncoders. In the overall framework, both our method and these 

ethods use two branches for training, and only one branch is 

ackpropagated, however, the strategy used in our method is dif- 

erent. Other methods took two different image augmentations 

n the original data before feeding them separately into the en- 

oder (aiming to better learn the representations of the images by 

aximizing the similarity under different conditions), whereas our 

ethod enforces the transformation consistency strategy, in which 

ne model transforms the image before it is input, and the other 

odel transforms the output result. Our method aims to allevi- 

te the affection of limited supervision and alleviate the influence 

f the undesired characteristic of a typical CNN in segmentation; 

hat is, a CNN is not transformation equivariant generally. Besides, 

ther methods were proposed for unsupervised image classifica- 

ion problems, while our method is proposed for weakly super- 

ised image segmentation. 

To combat the high cost associated with dense annotations, ap- 

roaches that require only weak annotations have also been ex- 

lored recently. Typical weak annotations include image-level la- 

els [41] , bounding-boxes [42] , points [18,43] , and scribbles [44] . 

u et al. [41] proposed a weakly supervised 3D brain lesion seg- 

entation with image-level labels. A dimensional independent at- 

ention mechanism was applied on the top of the class activation 

aps [45] to improve lesion localization. The estimated lesion re- 

ions and normal tissues were then used to train the segmenta- 

ion network. Rajchl et al. [42] combined a CNN with fully con- 

ected conditional random field (CRF) for brain and lung segmen- 

ation with bounding box supervision. Matuszewski et al. [43] per- 

ormed virus segmentation in microscopy images given point an- 

otations. Based on the statistical size of virus, foreground and 

ackground masks were obtained by dilating the manual anno- 

ations. A scribble-level annotation-based weakly supervised cell 

egmentation framework was proposed in [44] . They combined 

seudo-labeling and label filtering to generate reliable labels under 

eak supervision. The pseudo labels were improved by leveraging 

he consistency of the predictions during iterations. Fig. 2 shows 
4 
hat the scribble is the most suitable description for COVID-19 seg- 

entation among different types of weak annotations, which bal- 

nces the cost of labeling and plenty of supervision, and also can 

eal with the irregular shapes of infections. Our proposed USTM 

Net is thus based on scribble-level annotations. 

.2. COVID-19 Infection Segmentation in CT Images 

Although infection lesion segmentation is important for quan- 

itative assessment of the disease, due to the short time of the 

mergence and the shortage of annotated image datasets, auto- 

atic segmentation of COVID-19 infections has not been widely 

nvestigated [6,7] . Shan et al. [46] proposed to automatically seg- 

ent and quantify the infection regions and the entire lungs from 

T scans. VB-Net was employed to accelerate manual delineation 

f CT scans, and a human-involved-model-iterations strategy was 

dopted to assist radiologists in refining the automatic annota- 

ions. Fan et al. [17] proposed Inf-Net for lung infection segmen- 

ation from CT slices. Features from high-level layers were ag- 

regated with a parallel partial decoder, and a global map was 

enerated as the initial guidance areas from the combined fea- 

ures. A noise-robust framework for the segmentation of COVID- 

9 lesions was proposed in [5] to deal with noises in manual an- 

otations. By combining the mean absolute error loss and Dice 

oss, they designed a noise-robust Dice loss function. An adaptive 

elf-ensembling framework was proposed to suppress the effect of 

oisy labels on training. Laradji et al. [18] proposed a weakly su- 

ervised COVID-19 infection segmentation method, which requires 

nly point annotations. The method can greatly reduce the labor 

ost of annotations. Tilborghs et al. [47] compared twelve deep 

earning algorithms for lung and lung lesion segmentation in CT 

cans, including Inf-Net. They demonstrated that deep learning- 

ased lesion segmentation methods achieved an average volume 

rror better than human raters, suggesting those methods may be 

ature for clinical practice. 

.3. Transformation Consistency 

Image augmentation is widely used in deep learning-based 

lassification and segmentation. For the fully supervised seman- 

ic segmentation, if a transformation is performed on an input 

mage, its pixel-level prediction should follow the same transfor- 

ation. This is named transformation consistency property. Trans- 

ormation consistency has been investigated recently in image la- 

el based weak segmentation [21] , semi-supervised segmentation 

23] , and self-supervision technique [18] . Wang et al. [21] pro- 

osed a self-supervised equivariant attention mechanism (SEAM) 

o discover additional supervision when dealing with image la- 

el based weakly supervised segmentation. Class activation map 

CAM) [45] was widely used in weakly supervised segmenta- 

ion.The CAM usually only cover the most discriminative part of 

he objects and highlight unrelated background regions. To deal 

ith the lack of dense annotations, they required the CAM to be 

ransformation consistent. Li et al. [23] proposed a semi-supervised 

edical image segmentation method. The network was optimized 

y a weighted combination of supervised loss on labeled inputs 

nd a regularization loss on both the labeled and unlabeled data. 

he regularization loss is based on transformation consistency 

roperty, encouraging consistent predictions of the network for 

he same inputs under different perturbations. The self-ensembling 

odel was integrated with the transformation-consistent strategy. 

aradji et al [18] integrated a transformation-consistent strategy 

nto a point based weakly supervised segmentation for COVID-19 

esions. This paper integrates a transformation consistency strategy 

ith scribble-based supervision for COVID-19 infection segmenta- 

ion in CT images. 
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. The Proposed Method 

In this section, the proposed USTM-Net for COVID-19 infection 

egmentation in CT images is described in detail. In the first part, 

e present the scribble-supervised segmentation framework. In 

he second part, we present several core network components. In 

he third part, we introduce an extended framework for multi-class 

egmentation to segment different types of lung infections. 

.1. Framework of the Proposed Method 

Fig. 3 presents the overall framework of the proposed method 

or weakly supervised COVID-19 infection segmentation in CT im- 

ges. We treat the segmentation task as a binary classification 

roblem, which classifies each pixel to the infection or the back- 

round regions. In this problem, the training set consists of N input 

mages in total. We leverage a data set D = { ( X n , S n ) } N n =1 
for train-

ng, where X n ∈ R 

H×W is an input image and S n ∈ { 0 , 1 , 2 } H×W is the 

nnotation corresponding to X n . S n includes three categories of la- 

els: 0 for the scribbled background pixels, 1 for the scribbled pix- 

ls in infections, and 2 for unannotated pixels. Teacher and stu- 

ent models with the same network structure are employed as two 

ranches to obtain two segmentation outputs in the framework. 

he proposed method consists of a training phase and a testing 

hase, which are described as follows. 

The parameters of the teacher and student models are ran- 

omly initialized in training. And the input sources are the im- 

ges and the corresponding scribbles. We randomly sample data 

 n from the training dataset under different noises into the teacher 

odel and the student model, respectively. The images are trans- 

ormed before the images are fed into the teacher model. The 

ransformation includes rotation, flip, and scale. The same trans- 

ormation is also performed on the given scribbles S n to obtain 

˜ S n 
nd on the outputs of the student model to obtain Y n . To train the

tudent model, Y n is compared with the scribble-level label ˜ S n us- 

ng the scribbled pixel loss L s and with the output of the teacher 

odel ˜ Y n using the uncertainty-aware consistency loss L c . The loss 

 c is used to guide the training of the student model with esti- 

ated uncertainty in the teacher model, in which only reliable 

egmentation regions will be used. The loss L s and L c are only 

pplied to backpropagate the parameters of the student model. 

he teacher model is updated by the exponential moving average 

EMA) algorithm, with a step of learning iterations of the student 
ig. 3. The overall framework of our uncertainty-aware transformation-consistent model f

ls share the same architecture. The student model is trained by the supervised loss and 

5 
odel. The goal is to train an effective segmentation model ( i.e. , 

he student model) to segment the infection regions in the CT im- 

ge. 

In the testing phase, only the trained student network is em- 

loyed to predict the infections of the images. Note that perturba- 

ions and transformation operations are not used during the test- 

ng phase. 

.2. Network Architecture 

.2.1. Scribble-supervised Segmentation 

We tackle the task of scribble-supervised segmentation using 

 small set of manual scribbles on both infection and background 

egions to lessen the burden of manual labeling. Here, a standard 

ross-entropy loss function is applied on scribbled pixels to train 

he network. 

A recent study [33] shows that self-ensembling exploits the in- 

ermediate information during the training process. The ensem- 

led prediction can be closer to the correct result than the sin- 

le latest model. The teacher and student framework is a typical 

elf-ensembling model. Considering that the learning information 

rovided by the scribble-level labels is limited, our method is ex- 

ected to produce consistent outputs in the teacher and student 

odels. Therefore, we employ the mean teacher based framework 

25] to improve the quality of the predictions. To train the frame- 

ork, we update the teacher model’s parameters θ ′ as the EMA of 

he student’s weights at training step t through: 

′ 
t = εθ prime 

t−1 
+ ( 1 − ε ) θt , (1) 

here θt and θ ′ 
t are the parameters of the student model and 

eacher model, respectively. ε ∈ ( 0 , 1 ) is the smoothing coefficient 

yperparameter that controls the updating rate. ε and 1 − ε spec- 

fy the contributions of θ ′ 
t−1 

and θt , respectively. According to the 

revious work in [25] , the performance is the best with ε = 0 . 99 ,

hus, we set ε to 0.99 in our experiments. 

For both student and teacher models, we use a modified 2D 

enseUNet architecture [48] , with the detailed network structure 

hown in Fig. 4 . Compared with the standard U-Net [49] , the con-

olution layers in the encoder path are replaced with the dense 

lock layers. Moreover, different from DenseUNet [48] , to better 

eal with infections at different scales, we add an Atrous Spatial 

yramid Pool (ASPP) module [50] at the intersection between the 

ncoder and the decoder (see Fig. 4 ). The ASPP module consists of 
or scribble-supervised medical image segmentation. The teacher and student mod- 

consistency loss with the guide of uncertainty. 
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Fig. 4. The proposed segmentation network was improved by DenseUNet, where Conv[3 × 3, 96] represents a 3 × 3 convolution, and the output is 96 channels. 
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our layers of parallel convolutions with different expansion rates. 

he outputs of ASPP by four parallel convolutions are concate- 

ated, and then used as the input of the decoder path. We also 

dd a dropout layer after the last layer of the encoder, which will 

e explained in the later section. 

.2.2. Uncertainty-Aware Mean Teacher Framework 

The parameters of the teacher model are updated by EMA, mak- 

ng them more stable than the student model. Therefore, the stu- 

ent model is trained by the teacher model by a consistency loss 

24,25] . However, for the pixels without scribble annotations, the 

eacher model’s predicted results may also be unreliable. There- 

ore, we design an uncertainty-aware scheme to enable the student 

odel to gradually learn from only reliable predictions. For each 

raining batch, besides the segmentation predictions, the teacher 

odel also estimates the uncertainty of the predictions at pixel- 

evel to guide the calculation of consistency loss, letting the cal- 

ulation of the consistency loss only focus on reliable regions. In 

his way, the unlabeled infection regions are robustly learned by 

he teacher model, thus improving its segmentation performance. 

We employ Monte Carlo Dropout [24] to estimate the uncer- 

ainty of segmentation predictions from the teacher model. In this 

ase, we encourage consistent predictions of the network under 

ifferent perturbations, e.g. , Gaussian noise, network dropout, and 
6 
andomized data transformation. Specifically, under different in- 

ut Gaussian noises and random dropouts, each input image is 

tochastically passed forward M times through the teacher model. 

or each pixel ( i, j ) in an input image, we obtain a set of softmax

robability vector: { p m 

( i, j ) } M 

m =1 
. These probability vectors are av- 

raged to get the final prediction probability score of the teacher 

odel, which can be written as: 

c ( i, j ) = 

1 

M 

M ∑ 

m =1 

p c m 

( i, j ) , (2) 

here C is the number of classes (in our case C = 2 ). p c m 

( i, j ) is

he probability of the c-th class in the m -th time prediction, and 

c ( i, j ) is the average of the M probabilities of the c-th class. In 

ur experiment, we set M = 8 to balance the quality and training 

fficiency. We also choose predictive entropy as the measure of un- 

ertainty, and the uncertainty can be computed by [24] : 

 ( i, j ) = −
C ∑ 

c=1 

μc ( i, j ) log μc ( i, j ) , (3) 

here u ( i, j ) represent the uncertainty score in pixel level, and the 

ncertainty map of the whole image U is { u ( i, j ) } ∈ R 

H×W . The un- 

ertainty score reflects different levels of difficulties for the teacher 

odel in segmenting different regions on a CT slice. If the predic- 
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Fig. 5. Segmentation is desired to be rotation equivariant. If the rotation is per- 

formed on an input image, the ground truth mask should be rotated in the same 

manner. After the CNNs, the generated output from the rotated image should be 

the same as the rotation of the original output, which is generally different in fact. 
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ions for a pixel in different forward passes are scattered, then the 

ncertainty value is high and indicates the pixel’s prediction is un- 

ertain. Under the guidance of the estimated uncertainty, the un- 

eliable predictions are filtered, and only reliable predictions are 

sed to guide the student model (see Eq. (6) below). 

.2.3. Transformation-Consistent Scheme 

In weakly supervised learning, one prominent difference be- 

ween classification and segmentation problems is that the former 

end to be transformation ( i.e. , translation, rotation, and flipping) 

nvariant while the latter is transformation equivariant. The main 

eason is that, when using convolutional neural networks (CNNs) 

o tackle the segmentation tasks, the CNNs with pooling layers are 

ot transformation equivariant generally [21] . It is easy to find that 

ransformation has profound effects on the result of the segmenta- 

ion problems in Fig. 5 . For example, the feature maps do not nec-

ssarily rotate in a meaningful manner if the inputs rotate before 

hey are fed to the convolutions [51] . Formally, we denote the se- 

antic segmentation function as F (·) , and suppose there is a trans- 

ormation function T (·) for each image sample X . The segmenta- 

ion function is expected to be equivariant, i.e., F ( T (X ) ) = T ( F (X ) ) .

owever, the two results are not equal in most cases. In addition, 

n the segmentation of COVID19 on CT images, the shapes of le- 

ion regions vary, which makes the segmentation difficult. To en- 

ance the accuracy of the segmentation, it is worth incorporating 

he transformation consistency strategy. 

To keep the consistency of the teacher and student model, 

e randomly employed several types of transformations, includ- 

ng random flipping, scaling as well as rotation operations. Flip- 

ing operation flips an image horizontally or vertically. Our scaling 

perations use scaling ratios between 0.8 and 1.2, and four rota- 

ion operations use angles of γ ∗ 90 ◦, where γ ∈ { 0 , 1 , 2 , 3 } . Dur- 

ng each training pass, one type of these transformations is ran- 

omly chosen and applied to the network. It is noted that our ap- 

roach is different from traditional data augmentation. Specifically, 

ur method utilized the data without requiring its annotation by 

inimizing the output difference in teacher and student models 

nder different transformations. 

.3. Loss Functions 

.3.1. Total Loss 

The weakly-supervised segmentation network is trained by 

inimizing a weighted combination of the scribble-level super- 

ised loss and consistency ( i.e. , uncertainty-aware transformation 

onsistency regularized unsupervised) loss. The combined objective 

unction can be written as follows: 

 = 

N ∑ 

n =1 

L s + λ( t ) 

N ∑ 

n =1 

L c , (4) 
7 
here N is the number of the scribble annotated images in the 

raining set. L s and L c are the supervised loss and consistency loss, 

espectively. A time-dependent Gaussian warming up function λ(t) 

s used to control the trade-off between the two losses. Follow- 

ng [25] , we use λ(t) = 0 . 1 ∗ e ( −5 ( 1 −t/ t max ) 
2 ) to control the balance

f the two losses, where t denotes the current training step and 

 max is the maximum training step. At the beginning of the train- 

ng phase, λ(t) is small and the supervised loss is dominant. This 

esign can ensure the network learns accurate information from 

cribble annotations, which avoids getting stuck in a degenerate 

olution [52] . The first term of the loss function is represented by 

 standard cross-entropy loss on scribbled pixels. The second term 

f the combined function is represented by the weighted differ- 

nce between the predictions of the student model and the teacher 

odel. 

.3.2. Supervised Loss 

Ignoring unscribbled pixels (pixels with label 2), we use the 

tandard cross-entropy to define the supervised loss, which is de- 

ned as follows: 

 s = − 1 

| �s | 
C ∑ 

c=1 

∑ 

( i, j ) ∈ �s 

˜ S c ( i, j ) log Y c ( i, j ) , (5) 

here �s is the set of the scribbled pixels for the image X n , and 

 i, j ) denote the coordinates of a pixel on the image X n . ˜ S ( i, j ) is

he transformation of the scribbled label at pixel ( i, j ) , and Y ( i, j )

enote the prediction of the student model at pixel ( i, j ) after 

ransformation. 

.3.3. Consistency Loss 

The mean teacher framework originally proposed for semi- 

upervised learning [25] typically divides data into labeled and un- 

abeled data in the training process. The labeled data with full an- 

otations is used to calculate the loss between the segmentation 

esult of the student model and the ground truth, and the con- 

istency between the segmentation results generated by the two 

odels. And the unlabeled data is only used to compute the con- 

istency. All images are used to calculate the consistency in our 

ethod since pixel-wise ground truth of COVID19 CT images is not 

rovided. When calculating the consistency loss L c , instead of us- 

ng all the pixels equally, the uncertainty estimated by the teacher 

odel is used to exclude the unreliable pixels. Based on the above 

nalysis, loss L c is defined as the mean square error (MSE) of the 

rediction discrepancy between the teacher model and the student 

odel as follows: 

 c = 

∑ 

i, j I (u ( i, j ) < τ ) ‖ 

˜ Y ( i, j ) − Y ( i, j ) ‖ 

2 

∑ 

i, j I (u ( i, j ) < τ ) 
, (6) 

here I (·) is the indicator function and u ( i, j ) is the estimated 

ncertainty at the ( i, j ) -th pixel (see Eq. (3) ). The function I (·) is

qual to 1 if u ( i, j ) is less than τ , and 0 otherwise. τ is a thresh-

ld to select the most certain targets. ˜ Y and Y are the prediction 

f the teacher model and the transformed prediction of the stu- 

ent model, respectively. We use the Gaussian ramp-up paradigm 

ame to [24] , to ramp up the uncertainty threshold τ from 

3 
4 U max 

o U max , where U max is the maximum uncertainty value ( i.e. , ln2 in 

ur case). 

The procedure of the proposed method USTM -Net is listed in 

lgorithm IX . In the training phase, the transformation consistency 

cheme is incorporated into our framework to regularize it. We use 

he same transformation operation randomly three times. The first 

peration is applied to transform the scribble annotations to get 
˜ 
 n , the second operation is applied to transform the original image 

efore it is input to the teacher model, and the third operation is 

pplied to transform the predicted output from the student model 
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Algorithm IX 

The proposed algorithm 

Input : X, S, M; // X: Original COVID-19 CT train set; S: Scribbled labels corresponding to X; M: The number of times that the teacher model is passed forward. 

Output : f θ (·) with parameters θ ; f θ ′ (·) with parameters θ ′ ; // f θ (·) : The student model; f θ ′ (·) : The teacher model. 

1: for t in [1, epochs] do 

2: for each batch B do 

3: get image and scribble annotation { X n , S n } B n =1 from B ; 

4: randomly choose transformation operation T n (·) ; 
5: ˜ S n ∼ T n ( X n ) ; // transform the scribble labels 

6: add different Gaussian noises to the image X n as the input of the student model X S n and the teacher model X T n ; 

7: for m = 0 , 1 , 2 , . . . . . . M do 

8: X T 
′ 

nm ∼ T n ( X 
T 
n ) ; // transform the input of the teacher model 

9: ˜ Y nm ∼ f θ ′ ( X T 
′ 

nm ) ; // get the prediction from the teacher model 

10: end for; 

11: ˜ Y n ∼ mean ( ̃ Y nm ) ; // obtain relatively reliable predictions and average them 

12: Y S n ∼ f θ ( X S n ) ; // get the prediction from the student model 

13: Y n ∼ T n ( Y S n ) ; // transform the output of the student model 

14: g s 
θ

← −∇ θ
1 
B 

B ∑ 

i =1 

L s ( ̃ S n , Y n ) ; // L s denotes the scribble-level supervised loss, see equation (5) 

15: g c 
θ

← −∇ θ
1 
B 

B ∑ 

i =1 

L c ( ̃ Y n , Y n ) ; // L c is the uncertainty-aware transformation consistency regularized unsupervised loss, see equation (6) 

16: θ ← θ + l · Adam ( θ, g s 
θ

+ λ(t) g c 
θ
) ; // update the student model parameters, see equation (4) 

17: θ ′ ∼ update ( θ, θ ′ ) ; // update the teacher model parameters, see equation (1) 

18: end for; 

19: end for; 
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o get Y n . The supervised information for the model comes from 

he scribble annotations. Y n is compared with 

˜ S n using the super- 

ised loss. At the same time, the teacher model guides the pre- 

iction results of the student model by calculating the pixel level 

ncertainty. The consistency loss is used to encourage the student 

odel and teacher model predictions to become consistent with- 

ut requiring their annotations. 

.4. Extension to Multi-Class Infection Labeling 

Our USTM-Net can effectively identify and provide information 

bout overall lung infections to doctors for diagnosis. However, 

t is necessary to evaluate different kinds of lung infections ( e.g., 

round-glass opacity, and consolidation) in some clinical applica- 

ions. The proposed USTM-Net can deal with multi-class segmen- 

ation to provide richer information for further diagnosis and treat- 

ent of COVID-19. To further separate ground-glass opacity from 

onsolidation, the corresponding scribble annotation for the origi- 

al image is changed to S n ∈ { 0 , 1 , 2 , 3 } H×W . The difference from 

he scribbles of the two classes is that both 1 and 2 are for scrib-

led infection pixels, which represent ground-glass opacity and 

onsolidation, respectively, and 3 denotes unknown pixels. 

. Experiments and Results 

.1. Datasets 

To evaluate our method, we conducted experiments on three 

OVID-19 CT datasets, including a local dataset ( i.e. , uAI 3D) and 

wo public datasets ( i.e. , IS-COVID dataset [17] and Lesion Segmen- 

ation dataset [53] ). 

.1.1. uAI 3D dataset 

The uAI 3D CT dataset consists of 30 volumetric COVID-19 

hest CT images from 30 patients and was obtained from Shang- 

ai United Imaging Intelligence Inc.. The size of data varied from 

12 × 512 × 319 to 512 × 512 × 468 , and the voxel res- 

lution varied from 0 . 685 × 0 . 685 × 0 . 6875 m m 

3 to 0 . 978 ×
0 . 978 × 0 . 6875 m m 

3 . All images of the dataset had been labeled 

ith pixel-level ground truth by two experts with consensus. We 

xtracted 4,0 0 0 2D CT axial slices to annotate scribbled labels. We 

emoved the images which contained non-lung regions and also 

emoved the slices without infections. For image pre-processing, 
8 
e truncated the image intensity values of all slices to the HU 

ange of [-80 0, 10 0] [29] to remove the irrelevant details. To im- 

rove the efficiency of the network training, the selected slices 

ere resized to 256 × 256 using bicubic interpolation and nor- 

alization. Our experiments randomly divided the dataset into two 

ubsets, one of which was used for training and validation (3,200 

lices from 24 patients), and the remaining one (800 slices from 6 

atients) was used for testing. Only testing data requires full seg- 

entation labels for comparison. On the whole, the scribbled pix- 

ls accounted for about 2% of the full labeled pixels, which indi- 

ated that scribble annotations were efficient and time-saving. 

.1.2. IS-COVID dataset [17] 

IS-COVID dataset is a dataset with 110 axial lung CT slices from 

ore than 40 patients with COVID-19 that were converted from 

penly accessible JPG images. All the CT slices were collected by 

he Italian Society of Medical and Interventional Radiology. Each 

lice was annotated for infection regions by a radiologist. The slice 

ize ranged from 153 × 227 to 435 × 430 . The scribbles were 

enerated in the same manner as the CC-COVID dataset. To balance 

he segmentation performance and computational cost, we first 

niformly resized all the inputs to a fixed dimension of 256 × 256 

sing bicubic interpolation before training. Ninety slices randomly 

elected from the 110 slices were used to build the training and 

alidation set, and the remaining 20 were used for testing. 

.1.3. Lesion Segmentation (CC-COVID) dataset [53] 

The CT images (slices) and metadata in this dataset were de- 

ived from the China Consortium of Chest CT Image Investigation 

CC-CCII) [53] . All the CT images were classified into novel coro- 

avirus pneumonia (NCP) caused by SARS-CoV-2 virus, common 

neumonia, and normal controls. The dataset used in our experi- 

ents included 750 CT slices with the size of 512 × 512 from 150 

OVID-19 patients. Each slice was manually segmented into back- 

round, lung field, ground-glass opacity (GGO), and consolidation 

CO). The original slices were resized to 256 × 256 as the input 

o our network. Scribble annotations on CC-COVID were also man- 

ally drawn by referencing the fully annotated ground-truth labels 

rovided in the dataset. We randomly selected 600 CT slices to cre- 

te the training and validation set and the remaining 150 slices to 

reate the test set. 
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Table I 

The quantitative results of infection areas on our uAI dataset compared to the cor- 

responding ground-truth. The best results are highlighted in bold. 

Label Methods DI JA SE SP MAE 

Scribble p-UNet [55] 0.683 0.531 0.837 0.836 0.127 

WSOD [54] 0.706 0.558 0.871 0.885 0.093 

S2L [44] 0.745 0.607 0.843 0.956 0.087 

USTM -Net 

(proposed) 

0.762 0.628 0.882 0.984 0.076 

Point WSCL [18] 0.719 0.573 0.826 0.929 0.114 

Full U-Net [49] 0.788 0.663 0.885 0.978 0.071 
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.2. Comparison Methods and Metrics 

To investigate the infection segmentation performance of the 

roposed USTM-Net, we compared it with other five state-of-the- 

rt methods, including Scribble2Label (S2L) model [44] , weakly- 

upervised salient object detection (WSOD) method [54] , partial 

-Net (p-UNet) [55] , weakly-supervised consistency-based learn- 

ng (WSCL) method [18] , and U-Net [49] . The first three methods 

re weakly supervised learning methods using scribbled annota- 

ions, and the fourth method is a weakly supervised method using 

oint-level annotations. Although S2L is also based on scribble an- 

otations, they focus on cell segmentation, which is different from 

ur problem. The core idea of S2L is to combine pseudo-labeling 

ith label filtering to generate reliable labels from weak supervi- 

ion, while our method filters out the unreliable predictions using 

n uncertainty-aware scheme. WSOD introduces an auxiliary edge 

etection network and a gated structure-aware loss to place con- 

traints on the scope of structure to be recovered. It also uses a 

cribble boosting scheme to iteratively integrate scribble annota- 

ions. WSCL proposes using a consistency-based loss function and 

wo branches with shared weights in the network to encourage 

he consistency between the output predictions. The first branch 

akes the original images as the inputs whereas the second branch 

akes the transformed images as the inputs. One of the main differ- 

nces between our framework and WSCL is that we use a teacher- 

tudent model instead of two that shared-weighted convolutional 

etworks. Although it takes less time to annotate points than scrib- 

les, scribble-level learning can incorporate more supervision in- 

ormation. For fair comparison, we re-implemented these meth- 

ds on the abovementioned three datasets with the same network 

ackbone as our methods. Partial U-Net uses scribble-level labels 

nd it only calculates the cross-entropy loss with scribbled fore- 

round and background pixels. In addition, we used full pixel-wise 

nnotations to train a U-Net. 

Our method used the improved 2D DenseUNet architecture 

48] for both the teacher and student models. For the uAI 3D 

ataset, the network was trained with a batch size of 4 for a total

f 20 0 0 0 iterations with the Adam optimizer [56] , and the initial

earning rate was set to 0.0 0 01. Data augmentation including rota- 

ion, flipping, and scaling are utilized on the student model with 

espect to scribble supervision. The same augmentation procedure 

s also applied in other compared methods. Our model was imple- 

ented using PyTorch, and was accelerated by an NVIDIA GeForce 

080 Ti GPU. The training time was around 18 hours on the uAI 

ataset and the testing time was around 40 milliseconds per slice. 

Based on previous papers related to COVID-19 segmentation 

5,17] , we utilized five widely adopted metrics to quantitatively 

valuate the method, including dice coefficient (DI), Jaccard in- 

ex (JA), sensitivity (SE), specificity (SP), and Mean Absolute Error 

MAE). DI is a set similarity metric commonly used to measure the 

imilarity between the predictions and the ground truth. DI is de- 

ned as: 

I = 

2 ∗T P 

2 ∗T P + F N + F P 
, (7) 

here T P, T N, F P and F N refer to the number of true positives, true

egatives, false positives, and false negative pixels of all the images 

n the test set, respectively. The equations for the other three met- 

ics are expressed as follows: 

A = 

T P 

T P + F N + F P 
, SE = 

T P 

T P + F N 

, SP = 

T N 

T N + F P 
, (8) 

AE is also introduced to measure the pixel-wise errors between 

he prediction map and the ground-truth, which can be formulated 
9 
s follows: 

AE = 

1 

W ∗H 

W ∑ 

x =1 

H ∑ 

y =1 

| P ( i, j ) − G ( i, j ) | , (9) 

here P and G are the final prediction maps and the object-level 

egmentation ground-truth, respectively. W and H denote the im- 

ge width and height. 

.3. Results on uAI Dataset 

This section presents the results of qualitative and quantitative 

omparisons between the proposed USTM-Net and several compar- 

son methods on uAI Dataset. 

.3.1. Qualitative Results 

Fig. 6 . shows the segmentation results of our scribble- 

upervised method and other two methods (S2L and p-UNet) on 

he uAI 3D CT dataset. In the experiment, we only segmented the 

esion and the background areas without distinguishing the lesion 

ypes. By visually checking the segmentation results in Fig. 6 ., we 

an find that, for the large and clear infections (as shown in the 

rst row), all the segmentation methods can get relatively good 

esults. However, for cases of small lesion areas (as shown in the 

econd and third rows) and lesions of ambiguous boundaries (as 

hown in the fourth row), our method achieved closer results to 

he ground truth than the other two weakly supervised methods. 

lthough S2L (see in the second column) adopted a technique to 

ombine pseudo-labels with scribbled labels, which still created 

nsatisfactory results and could not capture the boundary accu- 

ately. S2L also made several false positive results ( i.e. , label normal 

issues as infections) and some false negative results. Because p- 

net learned using only scribble annotations, p-Unet (in the third 

olumn) failed in yielding accurate segmentation results and pro- 

uced more false positive results. These observations showed the 

dvantage of the proposed uncertainty-aware mean teacher frame- 

ork, which made our segmentation results (see in the fourth col- 

mn) have a higher overlap ratio with the ground truth. In addi- 

ion, the success of USTM-Net was due to the strategy of trans- 

ormation consistency, which made our approach easier to deal 

ith the segmentation of the irregular lesion areas. Overall, the re- 

ults in Fig. 6 can reflect the effectiveness of the strategies in our 

ethod. 

.3.2. Quantitative Results 

We employed five metrics to perform quantitative comparisons. 

able I lists the specific quantitative results obtained from the ex- 

eriments on the uAI 3D dataset. As shown in Table I , our method

chieved the highest performance on all the evaluation metrics. 

ompared with p-UNet, WSOD achieved competitive performance 

n most evaluation metrics. WSOD outperformed p-UNet with 2.3% 

mprovement on DI, from 68.3% to 70.6%, and the performance 

n JA was also improved by 2.7%. Because it was learned only 
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Fig. 6. Examples of lung infection segmentation results of three methods on UAI dataset, where the red denotes the result of the segmented lesion and the blue arrows 

highlight some mis-segmentations. 
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y scribbles, while WSOD explicitly used edge structure auxil- 

ary information, p-UNet failed in predicting the results as accu- 

ately as WSOD. Under the same supervision, S2L performed better 

han other scribble-level weakly supervised methods. Our method 

chieved the best performance among all the weakly supervised 

ethods, with DI of 76.2% and JA of 62.8%. Compared with S2L[42], 

he improvements were 1.7% on DI and 2.1% on SE. Compared with 

SCL [18] , our method improved by at least 4.3% on four met- 

ics, including DI, JA, SE and SP. A smaller MAD value also indi- 

ated that the predictions of our method were closer to the ground 

ruth. The results also confirmed that using uncertainty guidance 

nd scribbles was effective in generating accurate boundaries, com- 

arable to the point-level segmentation. Furthermore, it was ob- 

erved that the performance obtained by our method was compa- 

able to the performance obtained by full supervision. In terms of 

pecificity, the proposed method outperformed the fully supervised 

-Net model by 0.6%. This observation demonstrated that trans- 

ormation consistency played an important role in our scribble la- 

el based weak segmentation and made our model produce better 

redictions. 

.4. Ablation Study 

We introduced the uncertainty-aware self-ensembling and 

ransformation-consistent techniques in the network to improve 
10 
he segmentation predictions in the proposed method. This sec- 

ion will first describe the ablation experiments to evaluate the 

wo techniques’ impacts on our framework. Then, we describe the 

xperiments only using one type of transformation operation. We 

lso provide the experiments with the U-Net [49] architecture and 

GG16-FCN8 [57] network as the backbone networks. Finally, we 

xplore the effects of weighting parameters on the loss function. 

ll the experiments were performed on the uAI dataset. 

.4.1. Effectiveness of Uncertainty-aware and 

ransformation-consistent Strategies 

To investigate the effectiveness of the proposed uncertainty- 

ware scheme and transformation-consistent strategy, we con- 

ucted ablation experiments on the uAI dataset, and the results are 

hown in Table II . Table II . “baseline” refers to scribble-supervised 

enseUNet with ASPP, without transformation consistency or un- 

ertainty guidance. In other words, we used the original teacher 

nd student model with scribble annotations in the training pro- 

ess. “USTM-T” refers to the baseline with the transformation con- 

istency strategy. “USTM-U” refers to the baseline with an uncer- 

ainty guidance scheme. Our proposed “USTM” refers to the base- 

ine with both the transformation consistency strategy and uncer- 

ainty guidance scheme. As shown in Table II , both strategies in- 

ependently contributed to the performance of the weakly super- 

ised learning. By introducing the transformation consistency strat- 
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Table II 

Ablation of our USTM-Net method on uAI dataset. “T” denotes transformation. “U”

denotes uncertainty guidance. “TU” denotes both of these operations. The best re- 

sults are highlighted in bold. 

Setting DI JA SE SP MAE 

baseline 0.714 0.569 0.822 0.924 0.094 

USTM-T 0.743 0.604 0.852 0.957 0.082 

USTM-U 0.736 0.592 0.834 0.940 0.085 

USTM (proposed) 0.762 0.628 0.882 0.984 0.076 

Table III 

Ablation experiments for different types of transformations on uAI dataset. The best 

results are highlighted in bold. 

Transformation operations DI JA SE SP MAE 

baseline 0.714 0.569 0.822 0.924 0.094 

Flip 0.721 0.575 0.833 0.937 0.090 

Scale 0.725 0.581 0.836 0.951 0.089 

Rotate 0.732 0.594 0.841 0.942 0.086 

Table IV 

The quantitative results of infection areas on our uAI30 dataset compared to the 

corresponding ground-truth using U-Net architecture [49] and VGG16 FCN8 net- 

work [57] . The best results are highlight in bold. 

Method backbone DI JA SE SP 

WSCL [18] U- 

Net 

0.702 0.550 0.819 0.803 

S2L [44] 0.732 0.589 0.856 0.927 

USTM -Net (proposed) 0.751 0.616 0.867 0.971 

WSCL [18] FCN8 0.685 0.513 0.806 0.785 

S2L [44] 0.720 0.575 0.820 0.909 

USTM -Net (proposed) 0.734 0.592 0.854 0.949 
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Table V 

Average result of metrics on our proposed method with different weights for seg- 

mentation network function 

λ DI JA SE SP 

λ= 0.05 0.758 0.621 0.880 0.962 

λ= 0.1 0.754 0.619 0.879 0.966 

λ= 0.5 0.749 0.613 0.873 0.954 

λ= 1 0.743 0.605 0.864 0.951 

λ(t) = 0 . 1 ∗ e (−5 (1 −t/ t max ) 
2 
) 0.762 0.628 0.882 0.984 

Table VI 

Sensitivities to scribble length evaluated on the uAI dataset. The length ratio is the 

ratio by which a scribble is shortened. The best results are highlighted in bold. 

length ratio DI JA SE SP 

1(proposed) 0.762 0.628 0.882 0.984 

0.9 0.759 0.623 0.879 0.978 

0.8 0.752 0.616 0.874 0.971 

0.7 0.746 0.603 0.867 0.964 

0.6 0.735 0.591 0.855 0.952 

0.5 0.723 0.572 0.841 0.938 
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gy into the baseline, the performance was boosted from 71.4% to 

4.3% in terms of DI, and from 56.9% to 60.4% in terms of JA. The DI

f “USTM-U” is 73.6%, which was a 2.2% increment compared with 

he baseline framework. From these two comparisons, we can find 

hat the improvement of transformation-consistent strategy was 

ery competitive, compared with the uncertainty guidance scheme. 

t is worth mentioning that the performance can be further en- 

anced when they were employed together, with 76.2% in terms 

f DI and 62.8% in terms of JA. This significantly outperformed the 

aseline framework by 4.8% in terms of DI and 5.9% in terms of JA. 

.4.2. Ablation Experiments for Different Types of Transformations 

In this section, we analyze the impact of different types of 

ransformation operations. Three different types of transformation 

perations ( i.e. , flip, scale, rotation) were investigated in the exper- 

ments. The results are listed in Table III . From Table III , we can find

hat random rotation improved the results noticeably, and other 

ransformations also positively affected the results. Compared with 

he baseline framework, the random rotations improved the per- 

ormance by 1.8% in DI and 2.5% in JA. For the flipping operations, 

here was also a slight increase in the performance (from 71.4% to 

2.1% in DI compared with the baseline framework). In addition, 

ompared with “USTM-T” in Table II , it is observed that the gen- 

ralized form of transformation-consistent strategy improved the 

eak-supervised learning more effectively. 

.4.3. Effectiveness of the Backbone Segmentation Network 

As abovementioned, our framework can use a variety of seg- 

entation networks. We conducted two experiments with a U-Net 

rchitecture [49] and VGG16-FCN8 network [57] as the backbone 

etwork, respectively. As shown in Table IV , using U-Net [49] archi- 

ecture as the backbone network, our method performed better on 

our quality metrics than other comparison methods. For example, 

ompared with WSCL [18] , the proposed method improved the per- 

ormance from 70.2% to 75.1% in DI. Using VGG16 FCN8 [57] as the 

ackbone network, our method was also superior to other com- 
11 
arative methods on all metrics. Overall, when using one of these 

wo networks as the backbone network, the results were inferior to 

he one using the improved DenseUNet network on uAI 3D dataset, 

hich proved the effectiveness of our segmentation network. 

.4.4. Effects of Weighting Parameters on Loss Function 

The segmentation network was optimized by the joint loss 

unction defined in Eq. (4) . The joint function consisted of two 

omponents, which influenced the training of the network through 

ifferent weight parameters. A time-dependent Gaussian warming 

p function [24] was used to weight the two losses. For compar- 

son, we also set the weighting parameter λ be 0.05, 0.1. 0.5 and 

 to train the network and used the trained network to test. The 

xperimental results are shown in Table V . From the results in 

able V , we can find that our setup achieved the best performance. 

.4.5. Sensitivities to Scribble Quality 

Since the scribbles are manually annotated, the quality of the 

cribbles depends on the habit and experience of the annotators. 

n this case, we investigated the influence of the annotation qual- 

ty on the performance of our method. Since labeling the dataset 

ith different scribbles requires additional time and labor, we used 

xisting scribble annotations to generate new scribbles, similar to 

58] . Specifically, we used the existing annotations as a baseline 

o scale down the length of each scribble. We randomly selected 

 point from the original scribble as one of the end-points of the 

hortened scribble, and the length of the reduction determined the 

ther end-point. 

Table VI shows the results of our USTM-Net method with dif- 

erent lengths of scribbles for supervision. When the length ratio 

ropped from 1 to 0.7, the performance of the network decreased 

lowly, the performance of DI and JA was only reduced by 0.016 

nd 0.025, respectively. The stable performance indicated that our 

ethod was quite robust for the scribble quality. When the length 

atio was reduced from 0.7 to 0.5, the performance of the network 

ecreased faster. It deserves to note that it is not difficult to obtain 

easonable quality scribbles in practice. 

.5. Results on IS-COVID Dataset 

IS-COVID [17] is a smaller dataset compared with uAI 3D 

ataset and CC-COVID dataset. In this dataset, we also segmented 

he infections besides the background without distinguishing the 

nfection types. Fig. 7 shows the segmentation results on IS-COVID 

ataset by two other weakly supervised methods. The experi- 

ents showed that WSOD may face difficulty in correctly iden- 
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Fig. 7. Examples of lung infection segmentation results of three methods on IS-COVID dataset [17] . Red denotes the results of the segmented lesions. 

Table VII 

The quantitative results of infection areas on IS-COVID dataset [17] . The best results 

are highlighted in bold. 

Label Methods DI JA SE SP MAE 

Scribble p-UNet [55] 0.660 0.516 0.833 0.825 0.138 

WSOD [54] 0.684 0.533 0.842 0.871 0.114 

S2L [44] 0.708 0.550 0.805 0.926 0.091 

USTM-Net 

(proposed) 

0.725 0.582 0.854 0.967 0.086 

Full U-Net [49] 0.736 0.595 0.867 0.961 0.082 
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ifying some tissue areas and lesions, resulting in missing lesion 

egments and ambiguous boundaries. The segmentation of p-UNet 

as not very accurate. Compared with other methods, the pre- 

ictions of the proposed method had the highest match with the 

round truth. The quantitative results for each comparison method 

re listed in Table VII . S2L performed slightly better than WSOD on 

he IS-COVID dataset. The results showed that the proposed USTM- 

et achieved the best performance among all compared weakly- 

upervised methods. 

.6. Results on CC-COVID Dataset 

In clinical diagnosis, distinguishing different types of infections 

an provide more quantitative information about the infected ar- 
12 
as. Therefore, we extended our method to multi-class ( i.e. , GGO 

nd CO) labeling. Then, we evaluated our multi-class weakly super- 

ised learning model on CC-COVID dataset [53] . The challenge of 

he multi-class segmentation problem is that the two lesions (GGO 

nd CO) are difficult to distinguish. Fig. 8 shows typical multi-class 

nfection segmentation results on CC-COVID dataset [53] . From 

ig. 8 , we can find that both the segmentation results of GGO and 

O obtained by the proposed USTM-Net had higher overlap with 

he ground truth than other methods, which further indicated the 

ffectiveness of our model. In contrast, other weakly supervised 

ethods obtained unsatisfactory results, where neither GGO nor 

O can be accurately segmented. For example, WSCL mistakenly 

egmented part of the background as infections in some images. 

esides, both WSCL and S2L confused these two types of infec- 

ions, leading to inaccurate segmentation. It was obvious that the 

roposed USTM-Net, obtained the best performance among all the 

eakly-supervised methods. 

The quantitative comparison is listed in Table VIII . As can be 

een from the table, the proposed USTM-Net outperformed other 

eakly supervised methods in terms of DI, SE, and SP to the seg- 

entation of the infections. For GGO, our method also achieved 

he best results among all the weakly supervised methods. For in- 

tance, our weakly supervised method improved the performance 

y 6.6% in terms of DI, compared with p-UNet on GGO. Compared 

ith S2L, our method improved from 71.1% to 72.3% in terms of DI 
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Fig. 8. Visual comparison of multi-class lung infection segmentation results on CC-COVID dataset [53] , where the green and red labels indicate the GGO and CO, respectively. 

Table VIII 

Quantitative results of GGO and CO on CC-COVID dataset [53] . Bold fonts show the best results. 

Label Methods 

Consolidation Ground-Glass Opacity Average 

DI SE SP DI SE SP DI SE SP 

Scribble p-UNet [55] 0.672 0.806 0.908 0.643 0.789 0.894 0.658 0.798 0.901 

WSOD [54] 0.695 0.833 0.917 0.674 0.801 0.902 0.685 0.817 0.910 

S2L [44] 0.724 0.857 0.934 0.698 0.840 0.928 0.711 0.849 0.931 

USTM-Net (proposed) 0.736 0.862 0.958 0.709 0.829 0.947 0.723 0.846 0.953 

Point WSCL [18] 0.705 0.827 0.920 0.681 0.803 0.916 0.693 0.815 0.918 

Full U-Net [49] 0.748 0.874 0.966 0.713 0.825 0.952 0.731 0.850 0.959 
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we need to avoid the occurrence of false annotations since anno- 
n GGO and CO. In addition, our proposed method achieved similar 

esults with the fully supervised U-Net [49] on average. Both the 

uantitative and qualitative comparisons demonstrated that the 

roposed scribble supervision was able to outperform other weakly 

upervised methods and performed competitively compared to the 

ully supervised methods. 

. Conclusion 

This paper proposed a novel and effective weakly supervised 

ethod for the segmentation of COVID-19 infections in CT slices 

ith scribble supervision. The whole framework was constructed 

ith a mean teacher framework and optimized by a weighted 

ombination of the supervised and unsupervised losses. Specifi- 
13 
ally, we introduced a transformation-consistent technique to en- 

ance the accuracy of the segmentation. We also explored the 

ncertainty-aware self-ensembling strategy to improve the qual- 

ty of segmentation. The comparisons with other weakly super- 

ised methods demonstrated the effectiveness of the proposed 

ethod. The experiment results on a local dataset and two public 

atasets demonstrated the performance of the proposed method, 

hich outperformed four state-of-the-art weakly supervised meth- 

ds, and achieved similar performance even to the fully supervised 

ethods. In the future work, we will further explore more trans- 

ormations (such as deformable transformation) in our segmenta- 

ion framework and investigate scribble-based COVID-19 infection 

egmentation on 3D CT images directly instead of slices. Besides, 
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ation errors in weak supervision may degrade the performance 

f the proposed method. Although some methods have been pro- 

osed to deal with noise annotations in segmentation with dense 

nnotations, few of them can deal with weak supervision-based 

egmentation [5,59,60] . In prospective work, we will try to re- 

earch an effective method to overcome the impact of noise anno- 

ations on the network in the case of a large number of inaccurate 

abels. 
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