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SUMMARY
Micro-electrode arrays (MEAs) are increasingly used to characterize neuronal network activity of human induced pluripotent stem

cell (hiPSC)-derived neurons. Despite their gain in popularity, MEA recordings from hiPSC-derived neuronal networks are not al-

ways used to their full potential in respect to experimental design, execution, and data analysis. Therefore, we benchmarked the

robustness of MEA-derived neuronal activity patterns from ten healthy individual control lines, and uncover comparable network

phenotypes. To achieve standardization, we provide recommendations on experimental design and analysis. With such standard-

ization, MEAs can be used as a reliable platform to distinguish (disease-specific) network phenotypes. In conclusion, we show

that MEAs are a powerful and robust tool to uncover functional neuronal network phenotypes from hiPSC-derived neuronal net-

works, and provide an important resource to advance the hiPSC field toward the use of MEAs for disease phenotyping and drug

discovery.
INTRODUCTION

In vitro neuronal models have become an important tool

to study the complex communication of healthy and

diseased neuronal circuits. In particular, the possibility

to measure and manipulate the electrical activity ex-

hibited by neuronal populations gives insight into

neuronal network development and organization (Ka-

mioka et al., 1996; Maeda et al., 2016; Novellino et al.,

2011). Micro-electrode arrays (MEAs) are cell culture

dishes with embedded micro-electrodes that allow non-

invasive measurement of neuronal network activity.

MEAs have been extensively used to measure activity

from a range of different neuronal culture systems, for

example, primary cell cultures, brain slices, or intact ret-

inas, mainly from rodent origin (McConnell et al.,

2012). With the advancements in human induced plurip-

otent stem cell (hiPSC) technology, the differentiation of

human neurons from somatic cells became possible, al-

lowing phenotyping of human neuronal networks.

hiPSC-derived neuronal networks on MEA mimic the ac-

tivity pattern of rodent neuronal networks, including a

stable state of synchronized network bursting, suggesting

that they successfully develop into functional neuronal
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networks (Frega et al., 2019; Fukushima et al., 2016;

Kayama et al., 2018; Odawara et al, 2014, 2016; Sasaki

et al., 2019). In addition, improvements in MEA analysis

software simplified the extraction of parameters that

describe the pattern of neuronal activity. These advance-

ments in both human neuronal culturing systems and

MEA analysis software contributed to the popularity of

MEA technology to study neuronal network phenotypes

(Deneault et al., 2019; Frega et al., 2019; Klein Gunnewiek

et al., 2020; Wainger et al., 2014).

Despite its increasing popularity, MEA technology is not

always used to its full potential to investigate hiPSC-

derived neuronal network characteristics. hiPSC-derived

neuronal networks have not been benchmarked as exten-

sively as rodent neuronal cultures. Because of the lack of

standardization, it remains undetermined how changes

in cell culture conditions influence batch-to-batch consis-

tency, and whether hiPSC-derived neuronal networks

from different lines are comparable (Engle et al., 2018).

It is advised to use multiple hiPSC-derived neuronal lines

or isogenic sets to reliably determine a disease phenotype,

since differences in genetic background between hiPSC

donors dominate the variance at the transcriptional level

(Germain and Testa, 2017). However, little is known about
The Authors.
ns.org/licenses/by/4.0/).
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the amount of cell lines needed to distinguish a pheno-

type on MEAs, or about the effect of genetic background

on hiPSC-derived neuronal network function. In addition

to experimental design, data analysis remains a hurdle,

even though the extraction of MEA parameters became

easier. Studies often quantify the general neuronal

network activity by a single parameter (i.e., mean firing

rate), thereby failing to explain the complex network

characteristics. Finally, cell culture practices are not always

optimized and thus mature networks, showing network

synchronicity, are not always obtained. In summary, the

question remains how reproducible and comparable

MEA recordings are within and between different lines,

different researchers, and across different batches or devel-

opmental time points, illustrating the need for a quality

standard.

Here, we provide a set of recommendations for the

design, analysis, and interpretation of hiPSC-derived

neuronal networks on MEAs. We performed a meta-anal-

ysis of MEA recordings from excitatory neuronal networks

generated through one of the most widely used differenti-

ation protocols (i.e., Ngn2 induction [Frega et al., 2017;

Zhang et al., 2013]). Specifically, we used hiPSCs derived

from ten healthy subjects (controls), which were cultured

by different researchers over a period of several years. We

show that different control neuronal networks cultured

on MEAs are highly comparable, and identify the most

robustMEA parameters to describe neuronal network activ-

ity and organization. When pooling data from all control

lines, the functional activity of control neuronal networks

is not largely influenced by biological differences between

donors (i.e., age, sex). Finally, using neuronal networks

affected by genetic aberrations causing Kleefstra syndrome

(KS) or mitochondrial encephalopathy, lactic acidosis, and

stroke-like episodes (MELAS), we show that the MEA plat-

form is a powerful tool to identify genotype-phenotype

correlations.
Figure 1. Control neuronal networks show a stable phenotype on
(A) Information regarding the ten control lines used in this study.
laminin). Number of wells represents total number of wells recorded fo
Some batches overlap between lines.
(B) Schematic overview of extracted parameters from MEA (see Table
(C) Representative raster plots of line C6 showing 60 s of electrophys
(D–G) Neuronal network parameters (of line C6) develop to reach a certa
(G) NBD.
(H) Representative raster plots of ten control lines showing 3 min of
(I) Graph showing the range in which MEA parameters of all ten cont
averaged per control line, and then averaged across all control lines.
(J) Percent coefficient of variation explaining the stability of the resp
deviation of the mean). N = 278 wells (Table S2).
DIV, days in vitro; MFR, mean firing rate; PRS, percentage of random sp
rate; IBI, inter-burst interval; NBR, network burst rate; NBD, netwo
variation of all NIBI’s representing the regularity of the NB; RT, rise
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RESULTS

Excitatory neurons derived from healthy subjects

show a comparable phenotype on MEA

To investigate if neuronal network activity from hiPSC-

derived Ngn2-induced excitatory neurons was reproduc-

ible, we performed a meta-analysis on MEA data derived

from multiple control lines used in our lab (Frega et al.,

2019; Klein Gunnewiek et al., 2020; Mossink et al., 2021).

The control lines were derived from fibroblast skin biopsies

from ten healthy individuals, five males and five females,

with a mean age of 33.5 years (Figure 1A), and we extracted

17 parameters in total to describe the neuronal network ac-

tivity and connectivity (Table S1).

During the first 2 weeks of differentiation, neuronal

network activity primarily consisted of random spikes (iso-

lated asynchronous spikes) and bursts (high frequency ac-

tion potentials), which, during development, organized

into network bursts (rhythmic, synchronous events) (Fig-

ures 1B and 1C). During maturation, Ngn2-induced

neuronal networks displayed an increase in firing rate

(MFR) and (network) bursting rate ([N]BR), and a decrease

in (network) burst duration ([N]BD), and percentage of

random spikes (PRS) (Figures 1D–1G and S1A–S1E). From

27 days in vitro (DIV) onward, these parameters plateaued,

and neuronal network activity remained stable (blue

boxes). Because these neuronal networks were generally

measured in this stable period (DIV 27–35), we pooled

data in this developmental window. In this specific time

window, we observed similar patterns of activity and con-

nectivity across all control lines (Figures 1H, S1F–S1O, S2,

and S3).

We next determined the specific range of values for each

parameter that described the neuronal network phenotype

(Figures 1I and S3F; Table S2). Control neuronal networks

showed a general level of activity of 3.5 ± 0.2 spike/s, 4.8 ±

0.2 bursts/min, and 3.2 ± 0.1 network bursts/min, with a
MEA
C6 was recorded on two substrates (H, human laminin; M, mouse
r that line between DIV 27 and 35, including the number of batches.

S1).
iological activity across development (DIV 14–42).
in plateau after DIV 27 (blue box) for (D) MFR, (E) PRS, (F) NBR, and

electrophysiological activity on MEAs.
rol lines behave (mean ±95% confidence interval). Values are first

ective MEA parameter across all ten control lines (mean ± standard

ikes; BR, mean burst rate; BD, mean burst duration; BSR, burst spike
rk burst duration; NIBI, network burst IBI; CVNIBI, coefficient of
time; DT, decay time. All means are reported in Table S2.
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duration of 1.28± 0.04 s (nwells = 278).We did observe slight

differences between individual control lines. For example,

control lines C2 and C9 exhibited synchronous events at

different frequencies compared with the other controls

(i.e., 1.4 ± 0.2 and 4.6 ± 0.3 network bursts/min for C2 and

C9, respectively, Figure S1M), stressing the need of using

multiple lines to uncover the full phenotypic spectrum of

control neuronal networks. Taken together, these results

indicate that neuronal networks on MEA show similar pat-

terns of activity across multiple control lines.

Next, we investigated the variability of the MEA parame-

ters within our control dataset to identify the most robust

parameters (i.e., coefficient of variation lower than 50%

as cutoff, Figures 1J and S3G). Certain parameters were

more stable (i.e., frequency and duration of NBR and

NBD, respectively), whereas others were more variable,

i.e., MFR, the regularity of the network burst appearance,

calculated as the coefficient of variation of the interval dis-

tribution between network bursts (CVNIBI), the degree of

synchronization (C0), and link weight. In most of the

hiPSC-based MEA studies, the MFR has been used as the

main and only parameter, which may confound the char-

acterization and interpretation of the neuronal network

behavior. Beside the fact that MFR is one of the most vari-

able parameters reported here, it is highly dependent on

cell density (Biffi et al., 2013) and lacks information about

network synchronization. Multiple MEA parameters

describing both general activity and bursting behavior

should be included to obtain a comprehensive character-

ization of neuronal network behavior.
Figure 2. Variables that influence neuronal network phenotype
(A–E) Principal-component analysis (PCA) plot on all parameters show
by line, (B) color coded by sex, (C) color coded by the fibroblast age
origin.
(F) Representative images of neuronal cultures grown at different d
extreme clustering) and representative raster plots showing 1 min of
(G) Representative raster plots of a well in which the network burst det
represent the detected network burst by software. Comparison of th
control pool (Call gray), wells in which not all network burst have b
detection have been performed (Coptimal, green) (mean ± standard er
multiple testing was used to compare between control lines.
(H) Representative raster plots of C1 and a well in which only a few ch
highlighted (green and red for three active electrodes and all electrod
between C1, a well in which the analysis has been performed only on a
has been performed on all electrodes (Call el, green) (mean ± standa
multiple testing was used to compare between control lines.
(I) PCA plot on all parameters showing data of one control line (C1
astrocyte batches.
(J) Percentage of variance explained by astrocyte batch and MEA ba
effects of astrocyte and MEA batch independently.
*p = 0.05, **p = 0.01, ***p = 0.001. DIV, days in vitro; MFR, mean firin
NBD, network burst duration; NIBI, network burst IBI; CVNIBI, coefficie
means, p values, and statistic tests used are reported in Table S4.
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Confounding factors in experimental design,

culturing, and analysis that influence the reliability of

neuronal network recordings

Combining all MEA parameters in a principal-component

analysis (PCA), we did not observe clear clustering based

on hiPSC line (Figure 2A), indicating that there was no

consistent line-specific difference at the functional level.

To guarantee these reliable neuronal network recordings,

we explored which confounding factors introduce varia-

tion. Sex and age of the original fibroblast donor had no

major effect on the neuronal network phenotype vari-

ability (Figures 2B and 2C). Furthermore, we found no clear

clustering based on DIV when the cultures reached a stable

developmental stage (i.e., DIV 27–35, Figure 2D). However,

neuronal networks measured earlier (DIV 14–24) clustered

away from measurements performed after DIV 28 (Fig-

ure S1P). Thus, pooling data from different developmental

stages should be avoided since it likely introduces variation

in the data.

Next, we explored whether culturing conditions intro-

duced variation. First, we observed no clear difference be-

tween neuronal networks grown on two types of coating

(mouse or human laminin) at the stable developmental

stage (Figure 2E). However, different developmental trajec-

tories have been observed in neuronal networks grown on

mouse and human laminin (Hyysalo et al., 2017), thus

pooling and comparison of data from different coatings

can affect their comparability. Another culturing variable

that could influence network activity is cell distribution.

With low-resolution MEA systems (i.e., 12 electrodes
ing data of all control lines pooled from DIV 27 to 35 (A) color coded
at biopsy, (D) color coded by DIV, and (E) color coded by laminin

ensities and distributions (even, uneven, and low densities, and
activity exhibited by neuronal networks in each condition.
ection was adapted to detect all network burst present. Colored bars
e MEA parameters NBR, NIBI (on log2 scale), and CVNIBI between
een detected (Csuboptimal, red), and the same wells when optimal
ror of the mean). Kruskal-Wallis ANOVA with Dunn’s correction for

annels are active. In the figure, the electrodes used for analysis are
es, respectively). Comparison of the MEA parameters MFR and NBR
ctive electrode (Cactive el, red) and the same well when the analysis
rd error of the mean). One-way ANOVA with Tukey correction for

) with colors representing MEA batches and shapes representing

tch, calculated based on separate linear models to determine the

g rate; PRS, percentage of random spikes; NBR, network burst rate;
nt of variation of all NIBI’s representing the regularity of the NB. All



spaced 300 mm apart), the activity recorded from the elec-

trodes originates frommultiple neurons. Therefore, homo-

geneous distribution of cells on each electrode should be

achieved. Indeed, we found that changes in cell density

and distribution affected neuronal network functionality

(Figure 2F). While an even distribution of neurons on all

electrodes was accompanied by synchronous activity

involving all channels, an uneven distribution led to

events involving only a few channels (Figure 2F, second

panel). In addition, neuronal networks with (extreme)

low densities exhibited less frequent events (Figure 2F,

third panel) or only random spikes (Figure 2F, third panel).

Cell clustering led to highly frequent local activity, re-

corded only by the electrodes close to the cluster (Figure 2F,

fourth panel). Thus, cell density and distribution should be

consistent to achieve a comparable network pattern, and a

density that allows for proper neuron-electrode coupling

should be chosen (1,200 cells/mm2 in this dataset).

Neuronal networks with low cell density, clustering, or un-

even distribution of cells should be excluded from the

analysis.

In addition to culturing conditions, accurate data anal-

ysis depended on the selection of proper analysis settings.

Suboptimal network burst detection (i.e., not all network

bursts were correctly detected) (Figure 2G) sometimes

occurred by adhering to the standard settings of the anal-

ysis software, or too stringent settings determined by the

experimenter. Visually, raster plots of suboptimal detected

control networks did not differ from raster plots of the total

control pool. However, comparing suboptimal detected

control networks with the total control pool resulted in a

faulty quantification of the neuronal network organization

(Figure 2G, Csuboptimal versus Call). When the analysis set-

tings of suboptimal detected networks were changed to

more optimal detection settings (i.e., the settings that

correctly quantify each network burst, determined by the

experimenter’s observation for each individual recording),

no difference between the two groups was present (Coptimal

versus Call), as expected from the raster plot. Thus, the ex-

perimenter’s observation and intervention on data analysis

for each recording is essential to obtain accurate results.

Similarly, data analysis performed on individual active elec-

trodes led to erroneous results when culturing conditions

were not optimal (Figure 2F). When we analyzed only the

active electrodes in wells with uneven densities, we ob-

tained similar activity patterns as in wells with an optimal

density in which all electrodes were analyzed, resulting in

an incorrect representation of the actual neuronal network

(Figure 2H, Cactive el. versus C1). Analysis on all electrodes,

however, provided a correct image of the neuronal network

phenotype (Call el. versus C1). Thus, stringent criteria

should be used when performing data analysis. Control

neuronal networks should display at least certain activity
levels to be included in further analysis, including an

MFR > 0.1 spike/s, a BR > 0.4 bursts/min, and an NBR > 1

network burst/min, and synchronous activity should be

observed in most of the channels. General activity (i.e.,

spikes) should be detected in at least 80% of the electrodes

and analysis should be performed on all electrodes rather

than only on the active ones.

Finally, we investigated the effect of both independent

astrocyte batches and MEA batches (i.e., independent

neuronal preparations on MEA) on the neuronal network

behavior. PCA showed that samples cluster based on astro-

cyte and MEA batch (Figure 2I), indicating that different

batches affected the neuronal network phenotype. We

calculated the percentage of variance explained by astro-

cyte batch and MEA batch separately. On all MEA parame-

ters combined, astrocyte batch explained 32% of the varia-

tion and MEA batch explained 69% of the variation

(Figure 2J). The PRS, burst spike rate (BSR), BD, NBD, and

decay time (DT) were significantly affected by both astro-

cyte batch andMEA batch (adj. p < 0.05) (Table S4). In addi-

tion, MEA batch significantly affected the BR, NBR,

network inter-burst interval (NIBI), and rise time (RT)

(adj. p < 0.05) (Table S4). These results stress the need for us-

ing multiple experimental batches when comparing

different lines to correct for this technical variation (i.e.,

at least two MEA batches, preferentially with astrocytes

belonging to the same batch).

In summary, our results indicate that certain standards

should be followed to ensure that reliable data were ob-

tained fromMEA experiments (Table 1). To generate repro-

ducible neuronal control network phenotypes, one needs

to (1) culture sufficient neurons that are homogeneously

distributed, (2) properly select the detection settings, (3)

pool data only in a certain developmental time window,

and (4) use sufficient experimental batches.

The MEA system is a reliable platform for disease

phenotyping

To confirm that control neuronal networks can be used as a

platform for disease phenotyping, we compared patient

neuronal network activity from two neurodevelopmental

disorders (NDD) with the total control pool. In particular,

we re-analyzed our previously published data from three

patients with MELAS syndrome (two females and one

male, mean age 34.7 years) (Klein Gunnewiek et al.,

2020) and four patients with KS (three females and one

male, mean age 27.5 years) (Frega et al., 2019) (Figure 3A).

Since control neuronal networks were stable between DIV

27 and 35, recordings from MELAS patient lines (nwells =

112), as well as KS patient lines (nwells = 58), were pooled

in the same time window.

Neuronal networks from MELAS patients showed a

different network phenotype compared with the control
Stem Cell Reports j Vol. 16 j 2182–2196 j September 14, 2021 2187



Table 1. List of recommendations

Experimental design 12 wells per condition, divided over 2 MEA

batches

page 9, paragraph 1

comparison of at least 3 control or patient

lines

page 9

inclusion of isogenic patient-control set page 7

Cell culturing homogeneous distribution of cells page 6, paragraph 1 Figure 2F

cell density allowing neuron-electrode

coupling (i.e., 1,200 cells/mm2)

page 6, paragraph 1

same astrocyte batch for conditions under

comparison

page 6, paragraph 2

Data analysis analyze multiple MEA parameters page 6, 7, 9

pooling of data only in similar developmental

stages

page 5, paragraph 2 Figure S1H

in control: MFR > 0.1 spike/s, BR > 0.4 bursts/

min, NBR > 1 NB/min, active channels > 80%,

channels in NB > 25%

page 6

analysis on all electrodes page 6, paragraph 1 Figure 2H

Recommendations are provided regarding experimental design, cell culture conditions, and MEA data analysis. Page numbers, including paragraph numbers

are shown, which refer to sections of the text that provide information and data to support our recommendations.
pool (Figure 3B). In line with previous findings (Klein Gun-

newiek et al., 2020), the phenotype was mainly driven by a

strong reduction in level of spiking and network bursting

activity, together with an increased PRS (Figures 3C–3F).

In addition to previously published data, MELAS neuronal

networks exhibited bursts with a shorter duration

compared with the control pool (Figure 3E). We did not

observe any difference in burst shape, RT, or DT of MELAS

patient network bursts (Figure S4A). Neuronal networks

derived fromMELAS patients did show a lower level of cor-

relation (Cpeak) and synchronization (C0) in all channels

(Figure S4B). Furthermore, despite a comparable number

of functional connections among electrodes in control

and MELAS patient neuronal networks, we observed that

the connections between MELAS neurons were weaker

(Figure S4C). PCA confirmed that MELAS patient networks

clustered separately from controls (Figure 3L).

Next, we compared neuronal networks from patients

with KS with our total control pool and uncovered a signif-

icantly different network phenotype (Figure 3B). In line

with previously published findings (Frega et al., 2019),

the KS phenotype was mainly characterized by a lower fre-

quency of (network) bursts with a longer duration (Figures

3G–3I). In addition, KS neuronal networks exhibited a

different network burst shape and an increased DT (Figures

3J and 3K), and showed a lower level of synchronicity and

correlation and weaker connections between neurons

compared with controls (Figures S4D and S4E). We
2188 Stem Cell Reports j Vol. 16 j 2182–2196 j September 14, 2021
observed that the differences between patients and con-

trols were more pronounced in KS4 as compared with the

other KS lines (Figure S4F). PCA confirmed that KS

neuronal networks clustered away from controls based on

these parameters (Figure 3M).

In conclusion, the neuronal network phenotypes of

MELAS and KS lines differed from controls on distinct pa-

rameters. Indeed, MELAS and KS samples cluster away

from controls, but also clearly cluster away from each other

(Figure 3N). The ability to distinguish two NDDs based on

their neuronal network phenotypes demonstrates that the

MEA system is an adequate platform for disease-specific

phenotyping.

Comparing patients with isogenic controls reveals a

more detailed phenotype

IsogenichiPSC lines are increasingly used to improve identi-

fication of genotype-phenotype correlations. We compared

data from threeMELASmosaic patient-control isogenic sets,

one KSmosaic patient-control set and one KS CRISPR-Cas9-

engineered isogenic set. The difference between each

MELAS and KS isogenic set was explained by the same pa-

rameters as when patient lines were compared with all con-

trol lines (Figures 3 and4).We also found that the difference

betweenpatient and control lineswas larger for isogenic sets

compared with all lines combined, as indicated by the

higher variance explained by disease status (Figures 3L,

3M, 4G, and 4N).
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For some parameters, we observed smaller differences in

one MELAS set (i.e., isogenic set 1) as compared with the

other isogenic sets (Figures 4A–4E). This was mainly driven

by a difference in the isogenic control (C2) compared with

all controls, rather than a less pronounced MELAS pheno-

type (Figures S1F–S1O). While comparing isogenic sets,

we found a significant difference in the network burst

shape of two MELAS isogenic patient-control sets (Fig-

ure 4F), a phenotype that was not distinguished when

comparing MELAS patients to control pool. Some line-spe-

cific differences were also found in theMEA parameters, ex-

plaining the KS network phenotype. Whereas the DT was

not affected in KS3 compared with its isogenic control,

and only a trend was observed in network burst duration

for KS4, these parameters were altered in all other KS lines

(Figures 4K–4M, and S4G). Post hoc power calculation re-

vealed that the parameters that explained the MELAS and

KS phenotypes reached a power higher than 0.95 (Table

S3), demonstrating the validity of our results. When per-

forming an a priori power calculation on each patient-con-

trol isogenic set or all controls compared with all patient

lines, we found that a minimum of 12 wells per line should

be included in the analysis to observe a patient phenotype

on multiple MEA parameters (Table S3).

To conclude, disease phenotypes are generally consistent

between different lines from patients with the same disor-

der, even though some line-specific differences can be

observed. This persisted when MELAS and KS lines were

compared with their corresponding isogenic controls,

highlighting the importance of usingmultiple patient lines

to uncover the full phenotypic spectrum. Nevertheless, we

show that isogenic patient-control sets uncover more pro-

nounced phenotypes, emphasizing the advantage of

isogenic sets.
Figure 3. MEAs pose a reliable platform for genotype-phenotype
(A) Information regarding the seven patient lines included in this stud
somatic cell line. Number of wells represents total number of wells rec
batches. Some batches overlap between lines.
(B) Representative raster plots showing 3 min of electrophysiologica
(C–F) Graphs showing the values of four MEA parameters, including (C
networks (mean ± standard error of the mean).
(G–J) Graphs showing four MEAs, including (G) BD, (H) NBR, (I) NBD,
error of the mean). Mann-Whitney U test with Bonferroni correction f
their isogenic controls (Table S4).
(K) Representative network burst alignment from one recording of a re
Inset: extracted burst shape and representative raw trace of a network
15, KS2, n = 15, multiple t test on bins using the Holm-Sidak method
(L) PCA plot on 7 MEA parameters, showing parameters that explain t
control lines) and M1-3.
(M) PCA plot on 12 MEA parameters, showing parameters that explain
(N) 3D scatterplot showing PRS, BD, and NBR for all MELAS (green),
**p = 0.01 and ***p = 0.001. DIV, days in vitro; MFR, mean firing rate
network burst rate; NBD, network burst duration; DT, decay time. All
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DISCUSSION

Despite the increasing popularity of MEAs for disease phe-

notyping of hiPSC-derived neuronal networks, there is lit-

tle insight into the variability of control networks and

which conditions influence this. Here, we performed a

meta-analysis of, to our knowledge, the largest dataset of

hiPSC-derivedNgn2-induced excitatory neuronal networks

on MEA, to describe a standard for control network signa-

tures. We uncovered that neuronal networks derived from

ten different healthy subjects clustered together in PCA,

regardless of whether they were cultured by different re-

searchers over the course of years, and independent of

sex and age at fibroblast biopsy.

These control neuronal networks were very comparable

because we adhered to a strict set of guidelines (Table 1).

First, networks could only be pooled in the time window

between DIV 27 and 35, as networks generated by Ngn2

overexpression in our lab presented stable activity at this

stage. Many factors can influence the timing of this stable

network activity. For example, Ngn2-neurons mature

significantly faster than neurons generated using small-

molecule supplementation protocols (Mertens et al.,

2016). In addition, while neuronal networks grown on hu-

man or mouse laminin showed no difference after DIV 28,

cultures grown on human laminin can mature slower (Hy-

ysalo et al., 2017). Therefore, one must define the stable

developmental period depending on each protocol, before

pooling and comparing data.

Second, as hiPSC culture practices and differentiation

protocols consist of many steps, small differences in

handling cells can accumulate over time into different out-

comes (Volpato and Webber, 2020). We showed that astro-

cyte and MEA batch introduced variability, and advise to
correlations
y. Isogenic controls represent the lines made from the same founder
orded for that line between DIV 27 and 35, including the number of

l activity from control, MELAS, and KS patient lines.
) PRS, (D) MFR, (E) BD, and (F) NBR for control and MELAS neuronal

and (J) DT for control and KS neuronal networks (mean ± standard
or multiple testing was used to compare between patient lines and

presentative control and KS1, and a representative control and KS2.
burst (sample size for C representative: C6, n = 58, C9, n = 12, KS1, n =
, p < 0.0001 for both comparisons).
he differences in network behavior between Call (278 wells from 10

the differences in network behavior between Call and KS1-4.
KS (red), and control lines (gray).
; PRS, percentage of random spikes; BD, mean burst duration; NBR,
means, p values, and statistic tests used are reported in Table S4.
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use at least twoMEA batches with the same astrocyte batch.

As an exception, one MEA batch can be used in drug-

screening assays, when cell line variability is accounted

for by comparing interventions. In addition, we advise to

exclude wells with low or uneven cell density and critically

look at the density and distribution on the electrode grid in

conjunction with the corresponding data.

Third, it is essential to accurately analyze the data and

include multiple parameters that describe the network ac-

tivity. The choice of the analysis settings for data extraction

can largely influence the results. Indeed, we showed that

these settings need to be fine-tuned, depending on the

observation of the experimenter to accurately detect

different phenotypic signatures. Network bursts exhibited

by patient-derived neuronal networks might be incorrectly

detected with commonly used settings, since these were

conventionally chosen based on network bursts in control

networks. Moreover, it is possible that the observed pheno-

type cannot be described using any of the commonly used

parameters, and new parameters should be introduced to

capture these signatures. Indeed, we showed that the

extraction of additional parameters from MEA data re-

vealed previously unseen phenotypes.

Finally, we determined the MEA parameter variability,

since stable parameters are themost trustworthy to identify

a disease phenotype. Interestingly, our data show that the

MFR is one of the most variable parameters. In addition,

it only describes the general level of activity and is largely

dependent on cell density. TheMFR should therefore be in-

terpreted with caution when solely used to describe a

phenotype, while this is a common practice in the litera-

ture, as it is easily extracted from the data (Chailangkarn

et al., 2017; Lu et al., 2016;Wainger et al., 2014). Other var-

iable parameters that we determined here (IBI, CVNIBI, RT,
Figure 4. Characterization of isogenic control and patient networ
(A) Representative raster plots showing 1 min of activity from three
(B–E) Comparison of the MEA parameters (B) MFR, (C) PRS, (D) BD, and
(mean ± standard error of the mean).
(F) Burst shape and representative raw trace of a network burst from
n = 23, C5, n = 55, M1, n = 22, M2, n = 8, and M3, n = 7, multiple t test on
M3, p = 0.00021) (Table S4).
(G) PCA plots on seven7 MEA parameters for MELAS isogenic patient
parameters affected in MELAS.
(H) Representative raster plots showing 1 min of activity from two co
(I–L) Comparison of the MEA parameters (I) BD, (J) NBR, (K) NBD,
(mean ± standard error of the mean).
(M) Burst shape and representative raw trace of a network burst from
n = 16, and KS4, n = 12, multiple t test on bins using the Holm-Sidak
(N) PCA plot on 12 MEA parameters for KS isogenic patient-control sets
*p = 0.05, **p = 0.01, ***p = 0.001. DIV, days in vitro; MFR, mean firin
mean burst duration; BSR, burst spike rate; IBI, inter-burst interval; N
burst IBI; CVNIBI, coefficient of variation of all NIBI’s representing t
p values, and statistic tests used are reported in Table S4.
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C0, and link weight), can also be linked to alterations in

cell density. To use MEA parameters with high variability

to determine a patient phenotype, one should includemul-

tiple supporting MEA parameters to describe the neuronal

network characteristics.

We found a strong segregation between control and

MELAS and KS neuronal networks. More interestingly, we

found that KS and MELAS neuronal networks were distin-

guished by different MEA parameters, indicating the po-

tential of MEA recordings to distinguish two different

NDD phenotypes. Previous literature showed that

neuronal networks with different mutations associated

with the same NDD depicted a similar phenotype, albeit

characterized by an individual set of parameters. For

example, we previously identified that rat cortical networks

deficient for the KS spectrum genes Ehmt1,Mll3,Mbd5, and

Smarcb1 all displayed hyperactive neuronal networks.

However, whereas EHMT1- and SMARCB1-deficient net-

works showed a significantly higher MFR, MLL3-deficient

networks showed a higher NBR (Frega et al., 2020). Like-

wise, a recent study that investigated Ngn2-induced

neuronal network behavior of 12 autism spectrum disorder

patients revealed hyperactive neuronal networks specif-

ically from a patient with CNTN5 and a CRISPR-Cas9-engi-

neered line with an EHMT2 mutation (Deneault et al.,

2019). Together, this strengthens the evidence that early

disease-associated network phenotypes can be revealed us-

ing MEAs, and that hiPSC-derived neurons are a powerful

model to study genotype-phenotype correlations.

Although the phenotype of control neuronal networks

was robust, it must be noted that we still observed

significant variation between individual control lines, and

a similar variation was observed in the patient

neuronal network phenotype. While we cannot rule out a
ks
control (C2, C4, C5)-MELAS (M1-3) isogenic sets.
(E) NBR for each corresponding MELAS isogenic patient-control set

C2 and M1, C4 and M2, and C5 and M3 (sample size for C2, n = 15, C4,
bins using the Holm-Sidak method, C2 versus M1, p < 0.001; C5 versus

-control sets C2 and M1, C4 and M2, and C5 and M3 showing MEA

ntrol (C9-10)-KS patient (KS3-4) isogenic sets.
and (L) DT for each corresponding KS isogenic patient-control set

C9 and KS1, C10 and KS4 (sample size for C9, n = 12, C10, n = 17, KS3,
method) (Table S4).
C9 and KS3 and C10 and KS4 showing MEA parameters affected in KS.
g rate; PRS, percentage of random spikes; BR, mean burst rate; BD,
BR, network burst rate; NBD, network burst duration; NIBI, network
he regularity of the NB; RT, rise time; DT, decay time. All means,



patient-specific component, this variation likely reflects

normal variation in the general population (Germain and

Testa, 2017). Gene expression and DNA methylation pro-

files vary significantly among hiPSC lines, of which com-

mon genetic variation is the main driver (DeBoever et al.,

2017; Germain and Testa, 2017; Kilpinen et al., 2017).

Indeed, previous literature uncovered that the heterogene-

ity within 25 different hiPSC lines on a transcriptional level

was due to differences in genetic background (Rouhani

et al., 2014). Adding to this, the differentiation efficiency

of hiPSC-derived neurons can also contribute to variation

seen between lines (Hu et al., 2010). We speculate that

this difference in common genetic variation and differenti-

ation efficiency can result in small variations on a func-

tional level. To correct for line-specific differences and vari-

ability, multiple lines from different individuals should be

used to determine the patient neuronal network

phenotype.

In summary, we here provide a set of guidelines to reduce

the variability in neuronal network recordings on MEAs

(Table 1). We expect that, if cultures are handled according

to these guidelines, our control dataset can be used as a

reference database to determine the performance of

Ngn2-induced control lines. An extensive list of literature

has shown that network parameters can differ between

different sources, neuronal differentiation protocols, or

species (Heikkilä et al., 2009; Hyysalo et al., 2017; Napoli

and Obeid, 2016; Odawara et al., 2016). While we expect

that other neuronal model systems will show network pa-

rameters in a different range than reported here, the guide-

lines that we propose can nevertheless be generalized.

Following these guidelines, MEAs are a valuable tool to

describe the neuronal network phenotypes in hiPSC-

derived neuronal networks.
EXPERIMENTAL PROCEDURES

hiPSC line origin and generation
All hiPSC lines used to generate this dataset were obtained by re-

programmed skin fibroblasts. We used ten hiPSC control lines in

total, of which five are independent control lines (C1, C6-8, and

C10). To illustrate that themodel thatwe use is stable enough to un-

cover patient-specific phenotypes, we included both KS patient

and MELAS patient lines, as well as isogenic patient-control sets.

For KS, we included two isogenic sets consisting of C9 and KS3
and C10 and KS4, which have been described previously in detail

(Frega et al., 2019). In addition, we included two KS patient hiPSC

lines, KS1 and KS2, which were previously characterized and

derived from a 13-year-old female and a 12-year-old female, respec-

tively, diagnosed with KS (Frega et al., 2019). For MELAS, we

included three isogenic sets generated from MELAS individuals

with different levels of m.3242A > G heteroplasmy (0% or

±60%), consisting of C2 andM1, C4 andM2, and C5 andM3, which

have been described previously in detail (Klein Gunnewiek et al.,
2020). All generated hiPSC clones were tested for pluripotency

markers (OCT3/4, SOX2, and NANOG) using immunocytochem-

istry and qPCR. A detailed description of all hiPSC lines included

in this study can be found in the supplemental information.

hiPSCs were cultured on E8 Flex basal medium (Thermo Fisher

Scientific, no. A2858501) supplemented with primocin (0.1 mg/

mL, Invivogen, no. ant-pm-1), puromycin (0.5 mg/mL) (Sigma-Al-

drich, no. P9620) and G418 (50 mg/mL) (Sigma-Aldrich, no.

A1720) at 37�C/5% CO2, on either human recombinant laminin

LN521 (Biolamina, no. LN521-02) or Matrigel (Corning, no.

356237)-coated plates. Medium was refreshed every 2 days and

cells were passaged approximately every 3 days using ReLeSR

(STEMCELL Technologies, no. 05873), an enzyme-free passaging

reagent.
Neuronal differentiation and culture
hiPSCs were differentiated into upper layer excitatory cortical neu-

rons by doxycycline-inducible expression of the neuronal tran-

scription factor neurogenin 2 (Ngn2) (Zhang et al., 2013), accord-

ing to a previously published protocol (Frega et al., 2017). To

generate single cells, rtTA/Ngn2-positive hiPSCs were detached by

incubating accutase (Sigma-Aldrich, no. A6964) at 37�C/5%CO2

and resuspended in E8 basal medium (Thermo Fisher, no.

A15170-01), supplemented with primocin (0.1 mg/mL), RevitaCell

(Thermo Fisher, no. A2644501) (10 mg/mL), and doxycycline

(Sigma-Aldrich, no. D9891) (4 mg/mL) to induce TetO gene expres-

sion. Cells were plated at a density of 20,000 cells per MEA well

(600 neurons/mm2), which were pre-coated with poly-L-ornithine

hydrobromide (Sigma-Aldrich, no. P3655-10MG) (50mg/mL) and,

depending on experiment, either human recombinant laminin

LN521 (5 mg/mL) or laminin from Engelbreth-Holm-Swarm mu-

rine sarcoma basement membrane ([mouse laminin], Sigma-Al-

drich, no. L2020) (20 mg/mL). At DIV 1, the medium was changed

using filtered DMEM/F12 supplemented with primocin (0.1 mg/

mL), doxycycline (4 mg/mL), 1% N-2 supplement (Thermo Fisher,

no. 17502-048), 1% MEM non-essential amino acid solution

(Sigma-Aldrich, no. M7145), neurotrophin-3 ([NT3] Promokine

no. C-66425) (10 ng/mL), recombinant human brain-derived neu-

rotrophic factor ([BDNF] Promokine, no. C-66212) (10 ng/mL),

and mouse laminin (0.2 mg/mL). At DIV 2, rat embryonic astro-

cytes were added in a 1:1 ratio to support neuronal maturation

and viability (Frega et al., 2017). The medium was changed at

DIV 3 to filtered neurobasal medium (Thermo Fisher, no. 21103-

049) supplemented with primocin (0.1 mg/mL), B-27 (Thermo

Fisher, no. 17504044) (20 mg/mL), GlutaMAX (Thermo Fisher,

no. 35050061) (10 mg/mL), doxycycline (4 mg/mL), NT3 (10 ng/

mL), BDNF (10 ng/mL), and cytosine b-D-arabinofuranoside

(Sigma-Aldrich, no. C1768) (2 mM), to remove proliferating cells

from the culture. From DIV 5 to 9, 50% of the neurobasal medium

supplemented with B-27, GlutaMAX, Pen/Strep, doxycycline,

NT3, and BDNF, was refreshed every 2 days. From DIV 9 to 21 on-

ward the neurobasal mediumwas, in addition, supplemented with

2.5% fetal bovine serum (Sigma-Aldrich, no. F7524) to support

astrocyte viability. All neuronal cultures were kept in incubation

at 37�C/5%CO2. Control lines C1, C6, and C7were partly cultured

in the absence of doxycycline from DIV 13 onward. No significant

effect between wells cultured with and without doxycycline were
Stem Cell Reports j Vol. 16 j 2182–2196 j September 14, 2021 2193



found, therefore all data for these respective lines is pooled (data

not shown).

MEA recordings and data analysis
To record spontaneous network activity,multiwellMEAswere used

that consisted of 24 individual wells (Multichannel Systems, MCS

GmbH, Reutlingen, Germany). Each well was embedded with 12

electrodes with a diameter of 30 mm, spaced 300 mm apart. The ac-

tivity of neuronal networks growing on MEAs was recorded for

10min (after a 10min acclimatization period) in a recording cham-

ber that was maintained at 37�C/95% O2/5% CO2. The raw signal

was sampled at 10 kHz and filtered with a high-pass second-order

Butterworth filter with a 100 Hz cutoff frequency and a low-pass

fourth-order Butterworth filter with a 3,500 Hz cutoff frequency.

The noise threshold for individual spike detection was set at ±4.5

standard deviations.

Data analysis
Offline data analysis was performed usingMultiwell-Analyzer soft-

ware (Multichannel Systems) that permitted the extraction of

spike-trains, and either a custom-made in-house code developed

in MATLAB (MathWorks, Natick, MA, USA) or a software package

called SPYCODE (Bologna et al., 2010; Frega et al., 2017), which

both allowed the extraction of parameters describing the sponta-

neous network activity. A detailed description of the acquisition

of different MEA parameters can be found in the supplemental

information.

To guarantee sufficient experimental replicates, we included ex-

periments with a minimum of 12 wells per hiPSC line measured

across at least two independent batches. Control neuronal net-

works showing an MFR < 0.1 Hz and BR < 0.4 bursts/min were

excluded from analysis. Wells were excluded from analysis if

they did not have network bursts at DIV 27. Furthermore, wells

that displayed insufficient quality, for example, a low density of

cells or cell clumping, were discarded. All experiments, excluding

experiments where we investigated neuronal network develop-

ment over time, were carried out during a 1-week time interval,

spanning DIV 27 to 35. Since our results, and previous research,

has shown that network burst parameters are stable from DIV 27

onward, data from DIV 27 to 35 were pooled (Frega et al., 2019).

When analyzing multiple developmental time points of one

MEA batch, we determined the network burst detection settings

at the latest DIV and kept these settings throughout the analysis,

working our way backward to the earliest DIV. Wells in which a

reduction of network parameters was observed were also excluded.

Statistical analysis
Data were analyzed using Prism GraphPad 8 (GraphPad Software,

CA, USA). We ensured normal distribution using a Kolmogorov-

Smirnov normality test. To determine statistical significance, p

values < 0.05 were considered to be significant. Statistical analysis

on all control lines in Figures S1F–S1O, S2B, S2C, S3B–S3E, S4F, and

S4G (for KS1 and KS2) were performed using a Kruskal-Wallis

ANOVA with post hoc Dunn’s correction for multiple testing or

one-way ANOVA with Tukey correction or multiple testing de-

pending on the distribution of the data. When comparing means

of two variables at one individual time point we analyzed signifi-
2194 Stem Cell Reports j Vol. 16 j 2182–2196 j September 14, 2021
cance between groups bymeans of aMann-WhitneyU test (Figures

3C–3J, 4B–4E, 4I–4L, and S4F) (for KS3 and KS4), and, if applicable,

corrected post hoc for multiple testing using the Bonferroni

method. Statistics on histograms was performed using multiple t

test on bins using the Holm-Sidak method (Figures 3K, 4F, and

4M). Data are presented as mean ± standard error of the mean

(SEM) if not differently specified. Means and p values are reported

in Table S4. To check the variability in the dataset we calculated the

coefficient of variation on each parameter independently for all

control lines (Figures 1J and S3G; Table S2).

Data visualization
PCA was performed on various MEA parameters using the prcomp

function from stats R package (v.3.6.1.) on standardized (Z score

scaled) data. PCA figures were generated using the ggplot function

from the ggplot2 R package (v.3.2.1). A detailed description of the

analysis per PCA plot can be found in the supplemental informa-

tion. A 3D scatterplot wasmade for all control (nwells = 278,Nplates =

47), Kleefstra (nwells = 58, Nplates = 9), and MELAS (nwells = 112,

Nplates = 23) samples together showing PRS, BD, and NBR using

the scatter3d function from scatterplot3d R package (v.0.3-41).

Animals
The rodent astrocytes used in this study were derived from embry-

onic day 18 rat brains, as described previously (Frega et al., 2017;

Mccarthy, 1980). Animal experiments were conducted in confor-

mity with the Animal Care Committee of the Radboud University

Nijmegen Medical Center, the Netherlands, and conform to the

guidelines of the DutchCouncil for Animal Care and the European

Communities Council Directive 2010/63/EU.

Data and code availability
Exports of the raw data (i.e., Peak Trains, which are.mat files con-

taining the timing and amplitude of each detected spike for all

electrodes in one MEA) from all recorded patient and control

MEAs and all codes used in this manuscript have been deposited

on Mendeley data with https://doi.org/10.17632/bvt5swtc5h.1.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/

10.1016/j.stemcr.2021.07.001.
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