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SUMMARY
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is often caused by an adenine to guanine variant at

m.3243 (m.3243A>G) of theMT-TL1 gene. To understand how this pathogenic variant affects the nervous system, we differentiated hu-

man induced pluripotent stem cells (iPSCs) into excitatory neurons with normal (low heteroplasmy) and impaired (high heteroplasmy)

mitochondrial function from MELAS patients with the m.3243A>G pathogenic variant. We combined micro-electrode array (MEA)

measurements with RNA sequencing (MEA-seq) and found reduced expression of genes involved in mitochondrial respiration and pre-

synaptic function, as well as non-cell autonomous processes in co-cultured astrocytes. Finally, we show that the clinical phase II drug

sonlicromanol can improve neuronal network activity when treatment is initiated early in development. This was intricately linked

with changes in the neuronal transcriptome. Overall, we provide insight in transcriptomic changes in iPSC-derived neurons with

high m.3243A>G heteroplasmy, and show the pathology is partially reversible by sonlicromanol.
INTRODUCTION

Mitochondrial diseases (MDs) predominantly involve tis-

sues with high energy needs, such as the brain (Gorman

et al., 2016; Kim et al., 2019; Klein Gunnewiek et al.,

2020). The most common MD, mitochondrial encephalo-

myopathy, lactic acidosis, and stroke-like episodes

(MELAS), presents with epilepsy, stroke-like episodes, intel-

lectual and cortical sensory deficits, cognitive decline,mus-

cle weakness, cardiomyopathy, and/or diabetes (El-Hattab

et al., 2015). The pathogenic variant underlying most

MELAS cases is an adenine to guanine variant at position

m.3243 (m.3243A>G) of the MT-TL1 gene (tRNAleu(UUR)),

in the mitochondrial genome (mtDNA) (OMIM: 590050)

(Goto et al., 1990). Approximately 1:20,000 are clinically

affected by this pathogenic variant (Chinnery et al., 2000;

Majamaa et al., 1998; Manwaring et al., 2007). The

m.3243A>G pathogenic variant affects mitochondrial pro-

tein synthesis (King et al., 1992; King and Koga, 1992),

likely by reducing amino acid incorporation efficiency dur-

ing translation of 13mtDNA-encoded proteins that are part

of the oxidative phosphorylation system (OXPHOS)

subcomplexes I–V (Sasarman et al., 2008). When the per-

centage of mutated mtDNA copies (heteroplasmy) in a
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cell reaches a threshold, normal OXPHOS function is dis-

rupted (Ciafaloni et al., 1992; Kobayashi et al., 1990; Ylikal-

lio and Suomalainen, 2012). OXPHOS reduces oxygen to

water using electrons from NADH and FADH2, producing

adenine triphosphate (ATP), and serves as themain produc-

tion site of reactive oxygen species (ROS) (Holmström and

Finkel, 2014). OXPHOS complex (I–V) deficiencies lead to

a disbalanced cellular redox state (Tito et al., 2016), often

with increased ROS production (Distelmaier et al., 2009),

distorted mitochondrial signaling, and macromolecule

damage (Daiber, 2010).

Classic treatments for mitochondrial disease, such as an-

tioxidants (Garrido-Maraver et al., 2012; Glover et al.,

2010) or dietary supplements (Parikh et al., 2015), mainly

target symptoms, but none consistently improve patients’

strength or quality of life (Pfeffer et al., 2012). Sonlicroma-

nol (KH176), full name (S)-6-hydroxy-2,5,7,8-tetramethyl-

N-((R)-piperidin-3-yl)chroman-2-carboxamide hydrochlo-

ride, is currently in clinical trial stage IIB (Janssen et al.,

2019). As a Trolox derivative (soluble vitamin E), it aims to

restore the redox balance and reduce ROS (Beyrath et al.,

2018; Koene et al., 2017). This is achieved by modulation

of the thioredoxin system/peroxiredoxin enzyme machin-

ery (TrxR-Trx-Prdx system), which reduces H2O2 into water
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using electrons from NADPH (Beyrath et al., 2018). Rodent

studiesdetected sonlicromanol inmuscle and thebrain, in a

dose-dependent manner and without marked accumula-

tion after frequent daily exposure (Beyrath et al., 2018).

Ndufs4�/� mice treated with sonlicromanol lived longer

and showed improved performance and gait, with less

retinal ganglion cell degeneration (Frambach et al., 2020;

Haas et al., 2017). Phase I and II clinical trials demonstrated

acceptable safety, pharmacokinetic properties (Koene et al.,

2017), and tolerance in humans, and improved alertness, as

well as reduced depressive symptoms in patients (Janssen

et al., 2019).

Here, we combined neuronal network recordings from

microelectrode arrays (MEAs) with transcriptomics data

(MEA measurements with RNA sequencing [MEA-seq]) to

investigate (1) the mechanisms downstream of the

impaired neural bioenergetics, and (2) whether we can

reverse neuronal pathology caused by the m.3243A>G

pathogenic variant. Our MEA-seq approach revealed

reduced expression of genes involved in mitochondrial

and presynaptic function linked to neuronal network

dysfunction in high m.3243A>G heteroplasmy neurons.

This neuronal phenotype non-cell autonomously induced

gene expression changes in the healthy co-cultured rat as-

trocytes. Furthermore, sonlicromanol treatment improved

the neuronal network pathology and reversed gene expres-

sion changes in a patient-specific manner.
RESULTS

High m.3243A>G heteroplasmy affects neuronal

network development

We previously generated induced pluripotent stem cell

(iPSC) clones, with a wide range of m.3243A>G hetero-

plasmy levels on an isogenic background, ranging from

0% to 83%, from three separate individuals (Klein Gunne-

wiek et al., 2020). We specifically differentiated these

isogenic sets of iPSCs with low (0%; LH1–3) and high

(±60%; HH1–3) levels of heteroplasmy into glutamatergic

neurons via tetracycline-induced Neurogenin-2 (Ngn2)

expression (iNeurons) (Figures 1A and S1A).We co-cultured

them with rat astrocytes to ensure proper maturation (Fig-
Figure 1. Neuronal network development for LH1-3, and HH1-3 n
(A) Patient-derived fibroblasts were reprogrammed to iPSCs, generatin
differentiated into excitatory neurons, co-cultured with rat astrocyt
-DIV44.
(B) Representative image of iPSC-derived neurons and co-cultured rat
Hoechst (blue) at DIV30 (scale bar, 30 mm).
(C–E) Representative raster plots of MEA recordings, as well as the quan
HH1 (n = 27), (D) LH2 (n = 16) and HH2 (n = 14), and (E) LH3 (n = 23) a
***p < 0.001, ****p < 0.0001, using restricted maximum likelihood
See also Figure S1.
ure 1B) and measured the spontaneous neuronal network

activity using MEAs, at 30, 37, and 44 days in vitro (DIV).

In healthy control networks, the firing and network burst

rates remained relatively stable from DIV30–37 onward

(Figure S1B), indicators of a functionally ‘‘mature’’ network

(Frega et al., 2017). We found that HH lines as a group

showed a significantly different mean firing rate (MFR),

percentage of random (non-burst) activity (PRS)??, and

network burst rate (NBR) (Figure S1C). When we looked

at each HH line specifically, HH1, HH2, and HH3 lines all

showed a reduced NBR up to DIV44, compared with their

isogenic controls (Figures 1C–1E). Furthermore, all three

lines displayed an increased PRS and a reduced MFR over

time (Figures 1C–1E). Other parameters, such as the burst

rate, were not affected (Figures S1D–S1G). For HH2, the dif-

ferences in the MFR and PRS were less pronounced, espe-

cially at DIV37, indicating HH2 neuronal network activity

is less affected compared with HH1 andHH3. Nevertheless,

the results point to a persistent neuronal network pheno-

type in the HH iNeurons past DIV30.
Mitochondrial and synaptic gene expression are

affected in high m.3243A>G heteroplasmy iNeurons

We optimized a bulk RNA sequencing (RNA-seq) method

that can be used in combination with MEA experiments

(MEA-seq). RNAwas isolated from the neuronal co-cultures,

directly after network activity was measured on DIV44 (Fig-

ure 2A). Reads from the human neurons and rat astrocytes

were separated by mapping to a combined human- and rat

genome.We confirmed the cell identity based on the expres-

sionof genesknowntobehighlyexpressed ineitherneurons

(e.g.,MAP2) or astrocytes (e.g., GFAP) (Figure 2B). We deter-

mined how the impaired neuronal bioenergetics caused by

high m.3243A>G heteroplasmy levels affect gene expres-

sion. Therefore, we used the gene expression data from HH

and LH iNeurons by extracting the reads that uniquelymap-

ped to the human genome. Principal component analysis

(PCA) showed that HH samples cluster away from LH sam-

ples (Figure S2A). Differential expression (DE) analysis be-

tween HH samples (HH1 + HH2) and LH samples (isogenic

controls, LH1 + LH2) revealed 1,169 downregulated genes

and 411 upregulated genes (adjusted p < 0.05) (Figures 3A
euronal networks
g low (0%) and high (60%–65%) heteroplasmy clones. These were
es, on MEAs recorded for a 10-min period at DIV30, -DIV37, and

astrocytes at 1:1 ratio, stained for MAP2 (green), GFAP (red), and

tification of the MFR, the PRS, and the NBR, for (C) LH1 (n = 27) and
nd HH3 (n = 21). Data represent means± SEM. *p < 0.05, **p < 0.01,
model, with Holm-Sidak’s correction for multiple comparisons.
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Figure 2. Expression of stem cell, neuronal progenitor cell, neuronal, and glial cell markers in iNeurons co-cultured with astro-
cytes
(A) RNA-seq was performed on several representative MEA wells containing iNeurons co-cultured with rat astrocytes.
(B) Heatmap showing gene expression levels of stem cell/NPC genes (top section), neuronal and synaptic genes (middle section), and glial
genes (bottom section), including rat homologs (left section, astrocyte samples), and human homologs (right section, iNeuron samples)
in LH1 (n = 3), LH2 (n = 3), HH1 (n = 2), and HH2 (n = 2) iNeurons co-cultured with rat astrocytes. For iNeuron gene expression profiles,
reads uniquely mapping to the human genome were extracted. For astrocyte gene expression profiles, reads uniquely mapping to the rat
genome were extracted. Voom-transformed and batch-corrected counts per million (log2 scale) are shown.
and 3B; Table S1). To gain insight into the biological pro-

cesses that were affected, we performed gene set enrichment

analysis (GSEA) on the DE results. We observed enrichment

of upregulated genes involved in cell cycle regulation, extra-

cellularmatrix organization,protein translation, andembry-

onic organ development (adjusted p < 0.05) (Figures 3C and

3D; Table S1). Interestingly, several of the top gene sets en-

riched for downregulated genes represented (pre)synaptic

processes and mitochondrial respiration (adjusted p < 0.05)

(Figures 3C and 3E; Table S1).

Focusing on the mitochondrial and synaptic genes, we

observed significant downregulation of several mtDNA
2200 Stem Cell Reports j Vol. 16 j 2197–2212 j September 14, 2021
genes regulated by MT-TL1, namely MT-ATP6, MT-CO1,

MT-CO2, MT-CO3, MT-CYB, MT-ND2, and MT-ND4

(adjusted p < 0.05) (Figure 3F, Table S1). Furthermore,

several nuclear mitochondrial genes encoding for com-

plex I and complex V subunits of the electron transport

chain were significantly downregulated, e.g., NDUFA4,

NDUFA5, NDUFS5, and COX5A (adjusted p < 0.05) (Fig-

ure 3F, Table S1). Downregulated synaptic genes were

involved in synaptic vesicle formation and fusion with

the presynaptic membrane, e.g., SYP, SYT4, SYT5,

VAMP1, and VAMP2 (adjusted p < 0.05) (Figure 3G, Table

S1). In addition, we observed downregulation of genes
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linked to epilepsy, such as STXBP1, DNM1, KCNT1,

KCNQ3, and SCN2A (adjusted p < 0.05) (Table S1). Over-

all, the results show that high m.3243A>G heteroplasmy

is accompanied by significant expression changes in genes

essential for mitochondrial and synaptic function, which

likely contribute to the neuronal network dysfunction we

observed on MEAs.
Non-cell autonomous effects of high m.3243A>G

neuronal heteroplasmy on astrocytes

The different species of origin (rat astrocytes versus hu-

man neurons) allowed us to investigate whether the

neuronal m.3243A>G heteroplasmy level non-cell auton-

omously affected gene expression in astrocytes. Gene

expression profiles from astrocytes were obtained from

the co-cultured samples by extracting the reads that

uniquely mapped to the rat genome. We compared gene

expression profiles of astrocytes co-cultured with HH iN-

eurons (Astro+HH1 and Astro+HH2) with astrocytes co-

cultured with LH iNeurons (Astro+LH1 and Astro+LH2).

DE analysis revealed 79 significant DE genes (adjusted

p < 0.05); 70 upregulated genes and nine downregulated

genes (Figures 4A, 4B, and S2B; Table S1). Interestingly,

two downregulated genes play key roles in mitochondrial

ATP production: Cox4i2 and Mt-nd1. GSEA revealed sig-

nificant enrichment of upregulated genes in extracellular

matrix organization, the immune response, and signaling

cascades (adjusted p < 0.05) (Figure 4C; Table S1). The top

gene sets enriched for downregulated genes contain genes

involved in, e.g., mitochondrial function, amino acid

metabolism, and synaptic function (Figure 4D; Table

S1). These data reveal that the neuronal m.3243A>G het-

eroplasmy is accompanied by non-cell autonomous

changes in astrocytic gene expression, including genes

involved in mitochondrial function. Possibly, the changes

in astrocyte gene expression result from the neuronal bio-

energetic deficit induced by m.3243A>G heteroplasmy

(Klein Gunnewiek et al., 2020), or direct neuronal-astro-
Figure 3. Gene expression changes in HH versus LH iNeurons
(A) Volcano plot showing DE genes in HH versus LH iNeurons (genes
(logFC > 0) and downregulated genes in blue (logFC < 0).
(B) Heatmap showing expression of DE genes in HH iNeurons (n = 4)
counts per million (log2 scale) were scaled per gene.
(C) Circos plot showing gene sets significantly enriched for up- and d
leading edge genes within each gene set.
(D and E) Bar plot showing 10 gene sets that are among the top gene
versus LH iNeurons. The �log10(p value) (x axis) and the normalized
negative NES) for Reactome pathways and GO terms representing bio
(F and G) Heatmap showing top 20 leading edge genes for the gene set
Voom-transformed and batch-corrected counts were scaled per gene.
See also Figure S2.
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cytic connections (Sun et al., 2012; Wang and Gerdes,

2015).

Sonlicromanol improves neuronal network

dysfunction of high m.3243A>G heteroplasmy

iNeurons in a patient-specific manner

Next, we exposed HH neuronal networks to sonlicromanol

(KH176) (Beyrath et al., 2018;Haas et al., 2017; Koene et al.,

2017) to test its ability to improve the HH neuronal

network phenotypes. We treated MEA-grown neuronal

networks (HH1–HH3) short term (2 weeks; DIV29–

DIV44) and long-term (6 weeks; DIV3–DIV44), with

different concentrations of sonlicromanol (0.5 mM, 1 mM,

3 mM, and 5mM + dimethyl sulfoxide [DMSO] vehicle con-

dition), and recorded network activity at DIV30, DIV37,

and DIV44 (Figure 5A). We chose these concentrations

based on previous work that found improved viability at

0.1–1 mM sonlicromanol (half-maximal effective concen-

tration [EC50] = 0.27 mM) in fibroblasts with complex I sub-

unit pathogenic variants (Beyrath et al., 2018). We

included higher concentrations (3 and 5 mM) to reach

maximal efficacy in our cell type.

Sonlicromanol treatment of mature HH1 or HH3 net-

works from DIV29 onward had no significant effect on

the key MEA parameters (Figures S3A and S3B). When we

started sonlicromanol treatment earlier in neuronal devel-

opment, at DIV3, we observed improved MEA activity in

lines HH1 and HH3, predominantly at the 1 mMconcentra-

tion (Figures 5B–5D). At DIV44, we found a significant in-

crease in the MFR (p < 0.01) and NBR (p < 0.001), and a

decrease in the PRS (p < 0.005), in HH1 + 1 mM sonlicroma-

nol compared with the HH1-vehicle condition (Figure 5B).

We report similar but less pronounced improvements in

HH1 + 3 mM sonlicromanol (Figure 5B) but observed no dif-

ferences at 5 mM. The HH3 line showed similar improve-

ments when treated with 1 mM sonlicromanol from DIV3

onward (Figure 5D). Already at DIV30 we observed a signif-

icantly reduced PRS (p < 0.01) and increased NBR (p < 0.05)

in HH3 + 1 mM sonlicromanol compared with HH3 +
with adjusted p < 0.05 are labeled), with upregulated genes in red

versus LH iNeurons (n = 6). Voom-transformed and batch-corrected

ownregulated genes in HH versus LH iNeurons. LogFC is shown for

sets enriched for (D) upregulated or (E) downregulated genes in HH
enrichment score (NES) (color coded: red for positive NES, blue for
logical processes (BPs) are shown.
s (F) oxidative phosphorylation and (G) neurotransmitter secretion.



Figure 4. Non-cell autonomous effects of HH iNeurons on astrocyte gene expression
(A) Volcano plot showing DE genes in astrocytes co-cultured with HH iNeurons compared with astrocytes co-cultured with LH iNeurons
(genes with adjusted p < 0.05 are labeled), with upregulated genes in red (logFC > 0) and downregulated genes in blue (logFC < 0).
(B) Heatmap showing expression of DE genes in astrocytes co-cultured with HH iNeurons (n = 4) versus astrocytes co-cultured with LH
iNeurons (n = 6). Voom-transformed and batch-corrected counts (log2 scale) were scaled per gene.
(C and D) Bar plot showing 10 gene sets that are among the top gene sets enriched for (C) up- or (D) downregulated genes in astrocytes co-
cultured with HH iNeurons compared with astrocytes co-cultured with LH iNeurons. The�log10(p value) (x axis) and the NES (color coded:
red for positive NES, blue for negative NES) for Reactome pathways and GO terms representing BPs are shown.
See also Figure S2.
vehicle condition. At DIV44, these differences between

HH3 + 1 mM and HH3 + vehicle were no longer significant.

However, where the HH3 + vehicle still showed a signifi-

cantly higher PRS and reduced NBR compared with LH3

isogenic controls, the HH3 + 1 mM sonlicromanol did not

significantly differ from LH3. This shows sonlicromanol

at a concentration of 1 mM improved the neuronal pheno-

type of HH3 neurons to more closely resemble LH3

isogenic controls. Interestingly, these improvements did

not translate to the HH2 line (Figure 5C), suggesting the ef-

fects could be patient specific as well as dose dependent.
Next, we investigated whether the sonlicromanol treat-

ment affected neuronal survival, m.3243A>G hetero-

plasmy levels, and ROS-induced DNA damage. A propi-

dium iodide test showed no cell death in the untreated

and 0–5 mM sonlicromanol-treated neurons, confirming

the compound is not toxic (Figure S4A). Furthermore, we

observed no differences in MAP2-positive cell density be-

tween untreated and 0–5 mM sonlicromanol-treated cul-

tures (Figure S4B and S4C), nor did we find changes in

m.3243A>G heteroplasmy levels (Figure S4D). Subse-

quently, we asked whether the sonlicromanol treatment
Stem Cell Reports j Vol. 16 j 2197–2212 j September 14, 2021 2203
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reduced ROS levels, as in othermodels (Beyrath et al., 2018;

Haas et al., 2017). We quantified the level of oxidative

stress-induced DNA damage, using an 8-Oxo-2’-deoxygua-

nosine (8-OXO-dg) staining (Figures S5A–S5D). We

observed significantly increased DNA damage in the

soma of HH1 (p < 0.001) and HH3 (p < 0.05) iNeurons

compared with their LH1 and LH3 isogenic controls (Fig-

ures S5B and S5D). However, we found no significant re-

ductions in 8-OXO-dg levels in iNeurons treated with 1–

3 mM sonlicromanol, compared with their DMSO vehicle

controls. It is possible sonlicromanol targets different

forms of ROS (e.g., causing lipid peroxidation), or the 1–

3 mM sonlicromanol concentration was insufficient to

reduce the DNA damage, since previous work showed the

compound is 10 timesmore potent to restore the redox bal-

ance compared with its effects on ROS levels (Beyrath et al.,

2018; Haas et al., 2017). These results show the sonlicroma-

nol treatment did not improve neuronal network perfor-

mance by affecting the network density, nor through over-

all reductions in m.3243A>G heteroplasmy or the levels of

oxidative stress-induced DNA damage.

Together, we showed that, for patients with HH1 and

HH3, sonlicromanol was beneficial in restoring some

neuronal network activity and synchronicity, when treat-

mentwas initiated early inneuronal networkdevelopment.

These effects were dose dependent and patient specific.

Sonlicromanol reverses changes in gene expression in

high m.3243A>G heteroplasmy iNeurons in a patient-

specific manner

To determine how the sonlicromanol treatment affects

gene expression in HH iNeurons, we isolated RNA at

DIV44 from HH1 and HH2 iNeurons co-cultured with rat

astrocytes on MEAs, with and without treatment of 1 mM

sonlicromanol. Again, we extracted reads uniquely map-

ping to the human genome to investigate the effects of son-

licromanol on the iNeurons specifically. We compared

gene expression changes for the first (HH1 and LH1) and

second (HH2 and LH2) isogenic sets separately, to deter-

mine potential patient-specific treatment-induced gene

expression changes. DE analysis for the first isogenic set

(HH1 versus LH1) revealed 1,715 significantly DE genes

(adjusted p < 0.05); 846 downregulated and 869 upregu-
Figure 5. Neuronal network activity after sonlicromanol (KH176)
(A) Representative raster plots of 2-min neuronal network activity rec
sonlicromanol (n = 8), HH1 + 3 mM sonlicromanol (n = 5), LH2 (n = 6),
sonlicromanol (n = 5), LH3 (n = 16), HH3 vehicle (n = 9), HH3 + 1 mM
(B–D) Quantification of the overall MFR, PRS, and NBR for (B) set #1 in
#3 including HH3 + 0.5 mM sonlicromanol (n = 13). Data represent m
treated- and sonlicromanol-treated HH1–3 conditions. *p < 0.05, **p
likelihood model, with Holm-Sidak’s correction for multiple comparis
See also Figure S3.
lated, in HH1 samples (Figures 6A and 6C; Table S2). Sonli-

cromanol treatment of HH1 (HH1 + KH176) compared

with untreated HH1 revealed 116 DE genes (adjusted p <

0.05); 112 downregulated genes and four upregulated

genes (Figure 6B and Table S2). Remarkably, 113 of these

116 genes overlapped with genes differentially expressed

in HH1 compared with LH1 (odds ratio [OR] = 454, p <

2.23 10�16) (Figures 6D and 6E). We observed sonlicroma-

nol-treated HH1 samples cluster toward LH1 samples,

showing sonlicromanol reversed gene expression changes

affected in HH1 (Figures S2C and 6C).

We performed GSEA on DE genes from HH1 + KH176

versusHH1 andHH1versusHL1 to investigatewhat biolog-

ical processes are reversed by sonlicromanol treatment

(adjusted p < 0.05) (Table S2). We first confirmed there

was a high overlap between gene sets upregulated in HH1

and downregulated by sonlicromanol treatment, and vice

versa (OR = 129 and OR = 94, respectively; p < 2.2 3

10�16) (Figure 6E).We observed enrichment of upregulated

genes inHH1 iNeurons treatedwith sonlicromanol for gene

sets representing mitochondrial respiration and (pre)syn-

aptic function (Figure 6F), and enrichment of downregu-

lated genes in gene sets representing, e.g., chromatid segre-

gation and embryonic organ development (Figure 6G),

which were affected in HH lines (Figures 3D and 3E). Genes

thatwere partlynormalized inHH lines after sonlicromanol

treatmentwere genes encoding formembers of the electron

transport chain, includingMT-CO1,MT-CO2,MT-CYB, and

COX5A (unadjusted p < 0.1) (Figure 6H). In addition, we

identified genes important for synaptic vesicle release that

were upregulated and showed a trend in the direction of

the LH lines (unadjusted p < 0.05), including SNAP25,

SYT4,VAMP1,VAMP2, STXBP1, SCNA, and SYN1 (Figure6I).

Sonlicromanol’s positive effect on synaptic gene expression

likely results from improved mitochondrial function and

could contribute to the increased neuronal activity

observed in sonlicromanol-treated HH1 iNeurons.

Finally, we analyzed the RNA-seq data for the second

isogenic set, which did not show neuronal network

improvements after sonlicromanol treatment.Acomparison

of gene expression profiles fromHH2 to LH2 iNeurons iden-

tified 857 DE genes (adjusted p < 0.05); 197 upregulated

genes and 660 downregulated genes (Figures S6A and S2D
treatment starting from DIV3, in HH1-3 neuronal networks
ordings at DIV44 of LH1 (n = 17), HH1 vehicle (n = 12), HH1 + 1 mM
HH2 vehicle (n = 16), HH2 + 1 mM sonlicromanol (n = 4), HH2 + 3 mM
sonlicromanol (n = 14), and HH3 + 3 mM sonlicromanol (n = 10).

cluding HH1 + 0.5 mM sonlicromanol (n = 5), (C) set #2, and (D) set
eans ± SEM. We determined the statistical difference between un-
< 0.01, ***p < 0.001, ****p < 0.0001, using restricted maximum

ons between treated and untreated samples.
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and Table S3). Interestingly, we identified no significant DE

genes when comparing sonlicromanol treated with un-

treated HH2 samples (Table S3). A heatmap of HH2 versus

LH2 DE genes revealed HH2 iNeurons treated with sonlicro-

manol clustered together with HH2 (untreated) samples,

whereas LH2 samples clustered away, confirming the com-

pound had minor to no effects on expression of genes

affected in HH2 iNeurons (Figure S6B).

Overall, these results illustrate those significant func-

tional improvements observed after sonlicromanol treat-

ment were accompanied by improved transcriptomic

changes, showing increased expression of genes involved

in mitochondrial and synaptic function.
DISCUSSION

WecombinedMEA recordingswith transcriptomics to study

the biological processes underlying the neuronal network

phenotype linked to high levels (60%) ofm.3243A>Gheter-

oplasmy. This revealed downregulation of mtDNA and nu-

clear genes involved in mitochondrial ATP production, and

genes involved in (pre)synaptic processes, in line with

decreased neuronal network activity, and previously

observed bioenergetic and single-cell presynaptic deficits

(Klein Gunnewiek et al., 2020). Sonlicromanol treatment,

started early in neuronal development, resulted in improved

neuronal network activity in two patient-derived iNeuron

lines (HH1andHH3) and theupregulationof genes involved

in mitochondrial respiration and (pre)synaptic function.

Synaptic function, and specifically the presynaptic

vesicle cycle, rely on local ATP synthesis (Rangaraju et al.,

2014). We previously linked high m.3243A>G hetero-

plasmy to reduced OPXHOS, less Synapsin 1/2 puncta

,and less mitochondria at presynaptic sites (Klein Gunne-

wiek et al., 2020). Here, this was accompanied by downre-

gulation of mtDNA genes encoding for subunits of

OXPHOS complexes I, III, IV, and V; nuclear genes coding
Figure 6. Effects of sonlicromanol (KH176) treatment on gene e
(A and B) Volcano plot showing DE genes in (A) HH1 compared wit
iNeurons (genes with adjusted p < 0.05 are labeled), with upregulated
(C) Heatmap showing expression of DE genes in HH1 versus LH1, for
transformed and batch-corrected counts per million (log2 scale) were
(D) Venn diagram showing overlap between DE genes in HH1 versus L
(E) The log(odds ratio) is shown for overlap between DE genes in HH
gene sets enriched for upregulated genes in HH1 versus LH1 and gene
and vice versa. Error bars represent the 95% confidence interval.
(F and G) Bar plot showing 10 gene sets that are among the top gen
HH1+KH176 versus HH1. The�log10(p value) (x axis) and the NES (co
pathways and GO terms representing BPs are shown.
(H and I) Heatmap showing top 20 leading edge genes in HH1+KH176
neurotransmitter secretion, for LH1, HH1, and HH1+KH176 samples. V
See also Figures S2+ S6.
for complex I; and various genes linked to mitochondrial

disease (Table S1) (Rahman and Rahman, 2018; Thompson

et al., 2020). Furthermore, key synaptic geneswere downre-

gulated, such as SYN1 and SYN2 (Synapsin 1/2), GRIA4,

GRIN1/3A, and VAMP1/2 (Table S1), as well as presynaptic

Ca2+ sensor synaptotagmins (SYT1/4/5/6/7), linked to pre-

synaptic release probabilities (Kwon et al., 2016). Com-

bined, these findings suggest the high m.3243A>G hetero-

plasmy affects a wide range of mitochondrial and

presynaptic processes, not merely dysfunctional ATP pro-

duction. Reduced expression of STXBP1 and other epi-

lepsy-related genes stand out, as epilepsy occurs frequently

in MELAS patients. STXBP1 is linked to infantile epileptic

encephalopathy and epilepsy (Pavone et al., 2012), and

STXBP1 knockdown reduces sEPSC frequency (not ampli-

tude) in human iNeurons (Zhang et al., 2013), as we previ-

ously observed in HH iNeurons (Klein Gunnewiek et al.,

2020). Future work using excitatory-inhibitory neuronal

co-cultures could further elucidate these findings.

Sonlicromanol, a compound targeting mitochondrial

function, improved both neuronal network function and

changes in gene expression, representing mitochondrial

respiration and synaptic function. In a phase II clinical

trial, sonlicromanol improved mood and alertness, often

found in patients suffering from m.3243A>G related and

other MDs (Janssen et al., 2019). We provide molecular

and functional evidence for potential positive effects of

sonlicromanol on these neuronal-specific deficits. We

observed no toxicity at any sonlicromanol concentrations,

nor any effects of treatment on neuronal survival or

m.3243A>G heteroplasmy levels, suggesting the drug

intrinsically improves neuronal function. ROS-induced

DNA damage, as seen in MELAS (Katayama et al., 2009)

and following stroke (Mizukoshi et al., 2006), was not

improved by sonlicromanol treatment, but this could be

due to insufficiently high sonlicromanol concentrations

or a different ROS adduct type that is affected by sonlicro-

manol (e.g., lipid peroxidation).
xpression in HH iNeurons for isogenic set 1 (HH1)
h LH1 iNeurons or (B) HH1+KH176 compared with untreated HH1
genes in red (logFC > 0) and downregulated genes in blue (logFC<0).
LH1 (n = 3), HH1 (n = 2), and HH1+KH176 (n = 3) samples. Voom-
scaled per gene.
H1, and DE genes in HH1+KH176 versus HH1.
1 versus LH1 and HH1+KH176 versus HH1, and for overlap between
sets enriched for downregulated genes in HH1+KH176 versus LH1,

e sets enriched for (F) upregulated or (G) downregulated genes in
lor coded: red for positive NES, blue for negative NES) for Reactome

versus HH1 for the gene sets (H) oxidative phosphorylation, and (I)
oom-transformed and batch-corrected counts were scaled per gene.
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Intriguingly, astrocyte gene expression was affected by

the presence of HH iNeurons. Genes involved in meta-

bolism and tubulin formation were downregulated in as-

trocytes co-cultured with HH iNeurons. Naturally, neuron

activity facilitates astrocyte maturation and expression of

astrocyte genes, potentially through Notch signaling Hasel

et al. (2017). Both neuronal Notch ligands and astrocyte

Notch1/2 receptors facilitate astrocytic glutamate uptake,

and although Notch1/2 expression is unaffected in astro-

cytes co-cultured with HH iNeurons, the HH iNeurons do

show reduced expression of Notch ligands JAG2 and

DLK2. Aberrant Notch signaling has also been observed

in MELAS organoids (Winanto et al., 2020), and could pre-

sent an additional treatment target.

Our study has several limitations. A small patient sample

size prevents us from drawing definitive conclusions about

the utility of sonlicromanol to treat the neurological symp-

toms of MELAS. This is further confounded by the signifi-

cant inter-patient variability in the results, the use of rodent

as opposed to human astrocytes, and the inherent variance

of our analytical methods. Testing sonlicromanol’s efficacy

in a larger cohort of individuals withMELAS is warranted to

increase clinical trial readiness. Although the HH1–3 lines

have similar heteroplasmy levels, it is unclear whether

other nuclear factors might influence treatment response.

This could contribute to a specific, individual response to

sonlicromanol. If so, the efficacy of sonlicromanol should

be assessed in, e.g.,MEA-based in vitroplatforms to test indi-

vidual variations in drug response. This could refine enroll-

ment (only responders to sonlicromanolwouldbe enrolled)

and could ultimately increase the success of future clinical

trials. Furthermore, personalized testing like ‘‘N = 1’’ clinical

trials (Schork, 2015) might be more suited for MELAS and

mitochondrial disease, where average performance scores

could blur promising findings. More advanced co-culture

setups, using human astrocytes and other neuronal sub-

types, will improve predictive value of our model.

By combining electrophysiological and transcriptomics

data we disentangled several neuronal features of MELAS,

advancing the understanding of the impact of m.3243A>G

heteroplasmy on the human nervous system. Our findings

on neuronal responses to sonlicromanol treatment confirm

the heterogeneity and individualized nature of patient

response to treatment, as well as the need for treatments

tailored to theneedsof the individualmitochondrial disease.
EXPERIMENTAL PROCEDURES

iPSC generation and culture
iPSC reprogramming and karyotyping for lines LH1–3 and HH1–3

have been described previously (Klein Gunnewiek et al., 2020; Per-

ales-Clemente et al., 2016). Fibroblasts of MELAS subjects with the

pathogenic variant m.3243A>G inMT-TL1 (tRNALeu(UUR)) were re-
2208 Stem Cell Reports j Vol. 16 j 2197–2212 j September 14, 2021
programmed (Takahashi and Yamanaka, 2006), generating clones

with 0% m.3243A>G heteroplasmy (LH1–3) and one clone with

60%–65% m.3243A>G heteroplasmy (HH1–3). Lines LH2+3 and

HH2+3 were generous gifts from Ester Perales-Clemente and

Timothy Nelson. All lines were previously karyotyped and were

tested for m.3243A>G heteroplasmy levels using droplet digital

PCR (ddPCR). All iPSCs were discarded after 15 passages post initial

heteroplasmymeasurement, to ensure heteroplasmy levels did not

decrease. iPSCs were passaged 1–2 per week; mediumwas changed

every 2–3 days. Collecting patient material and establishing

hiPSCs have all been performed according to locally (Radbou-

dumc) IRB protocols.
Neuronal differentiation
Neuronal differentiation was described previously (Frega et al.,

2017; Klein Gunnewiek et al., 2020). iPSCs were derived into up-

per-layer, excitatory cortical neurons by overexpressing Neuroge-

nin 2 (Ngn2). rtTA/Ngn2-positive iPSCs were plated as single cells

at DIV0 onto 24-well multi-electrode arrays (Multichannel Sys-

tems, MCS GmbH, Reutlingen, Germany), coated with 50 mg/mL

poly-L-ornithine hydrobromide (PLO; Sigma-Aldrich #P3655-

10MG) and 5 mg/mLhuman recombinant laminin 521 (BioLamina

#LN521-02) in E8 basal medium (Gibco #A1517001) supple-

mented with 1% penicillin/streptomycin (Pen/Strep; Sigma-Al-

drich P4333), 1% RevitaCell (Thermo Fisher Scientific

#A2644501), and 4 mg/mL doxycycline (Sigma-Aldrich #D9891-

5G) to drive Ngn2 expression, at 20,000 cells per well for LH1+2,

and 30,000 cells per well for HH1+2, to ensure similar mature

neuron cell density. At DIV1, medium was changed to DMEM/

F12 (Gibco #11320-074) supplemented with 1% Pen/Strep, 4 mg/

mL doxycycline, 1% N-2 supplement (Gibco #17502-048), 1%

MEM non-essential amino acid solution (NEAA; Sigma-Aldrich

#M7145), 10 ng/mL human recombinant brain-derived neurotro-

phic factor (BDNF) (Promokine #C66212), 10 ng/mL human re-

combinantNT-3 (Promokine #C66425).We added primary cortical

rat astrocytes (isolated as described by Frega et al., 2017) in a 1:1 ra-

tio on DIV2 and changed 100% of medium at DIV3, to Neurobasal

(Gibco #21103-049), supplemented with 20 mg/mL B-27 (Gibco

#0080085SA), 1% GlutaMAX (Gibco), 1% Pen/Strep, 4 mg/mL

doxycycline, 10 ng/mL human recombinant NT3, and 10 ng/mL

human recombinant BDNF. At DIV3 only we added 2 mM cytosine

b-D-arabinofuranoside (Ara-C; Sigma-Aldrich C1768-100MG) to

remove proliferating cells. From DIV5 to DIV44, 50% of the me-

dium was refreshed every 2 days, supplemented with 2.5% fetal

bovine serum (FBS; Sigma-Aldrich #F2442-500ML) from DIV9

onward.
MEA recordings
Following a 10-min acclimatization period (37�C; 5% CO2), we

recorded 10-min periods of spontaneous activity of LH1–3 and

HH1–3 neuronal networks at DIV30, DIV37, and DIV44, using the

24-well MEA system (Multichannel Systems, MCS GmbH, Reutlin-

gen, Germany), at a 10-KHz sampling rate, high-pass filter (i.e., But-

terworth, 100-Hz cutoff frequency), and ±4.5 SD noise threshold.

Spike trains were extracted using Multiwell Analyzer. A custom

script forMATLAB (TheMathworks, Natick, MA) extracted parame-

ters describing the network activity (Bologna et al., 2010), using



thresholds to determine theMFR, mean burst rate (MBR), andNBR,

as per Klein Gunnewiek et al. (2020) andMossink et al. (2021).

Sonlicromanol (KH176) was provided by Khondrion as a powder

for reconstitution in DMSO (Beyrath et al., 2018). DMSO was used

as vehicle. Sonlicromanol was added at 500 nM, 1 mM, 3 mM, or

5 mM, from either DIV3 or from DIV29, up to DIV44, during every

medium change.
Immunocytochemistry
iNeurons were washed with ice-cold DPBS (Gibco #14190-094) and

fixatedwith4%paraformaldehyde/4% sucrose (v/v), andpermeabi-

lized (DPBS, 0.2% Triton X-100, Sigma-Aldrich #9002-93-1). Cells

were DPBS washed three times and incubated in blocking buffer

to prevent a specific antibody binding (DPBS, 5% normal horse

serum, 5% normal goat serum, 5% normal donkey serum, 0.1%

bovine serum albumin [BSA], 1% glycine, 0.4% Triton, and 0.1%

lysine, all fromSigma-Aldrich) for 1 h at room temperature. Primary

antibodies were diluted 1:1,000 in blocking buffer, and were incu-

bated overnight at 4�C. Next, cells were DPBS washed three times

and incubated with secondary antibodies, diluted 1:1,000 in block-

ing buffer, for 1 h at room temperature. After three DPBS washing

steps, Hoechst (Thermo Fischer Scientific #H3570) diluted

1:10,000 in DPBS was added for 10 min at room temperature. After

one lastDPBSwash, the coverslipswere embedded inmountingme-

dium (DAKO #S3023). Primary antibodies: mouse anti-8-OXO-dg

(1:100; R&D Systems 4354-MC-050), guinea pig anti-MAP2

(1:1,000; Synaptic Systems 188,004), and rabbit anti-GFAP

(1:1,000; Abcam AB7260). Secondary antibodies: goat anti-mouse

Alexa Fluor 488 (1:1,000, Invitrogen A-11029), and goat anti-

guinea pig Alexa Fluor 568 (1:1,000, Invitrogen). We imaged on a

Zeiss Axio Imager Z1 with apotome, using the same settings for all

batches and groups, at a resolution of 1,0243 1,024 at 403magni-

fication.We imaged15 randomareas, andquantified theMAP2-pos-

itive cells per surface area, using ImageJ software (Schneider et al.,

2012).
RNA-seq
RNA-seq was performed on human iPSC-derived neurons from LH

(LH1+2) samples, HH (HH1+2) samples, and HH1+2 samples

treated with 1 mM sonlicromanol. In all conditions, iNeurons

were co-cultured with rat astrocytes. RNA was isolated after

measuring network activity of the neurons on MEAs at DIV44,

from two to three biological replicates per condition. LH and HH

samples were distributed across two MEA batches. HH samples

treated with sonlicromanol were included only in the second

batch. RNA was isolated with the Quick-RNA Microprep kit

(Zymo Research, R1051) according to manufacturer’s instructions.

RNA quality was checked using Agilent’s Tapestation system (RNA

High Sensitivity ScreenTape and Reagents, 5067–5579/80). RIN

values ranged between 6.4 and 9.1. Library preparation was per-

formed using a published single-cell RNA-seq protocol (Cao

et al., 2017), adapted for bulk RNA-seq experiments.

For each sample, 25 ng total RNA was used as input for RNA-seq

library preparation. In short, an anchored oligo-dT primer was

used for reverse transcription, followed by second-strand synthesis

and subsequent removal of excess primers using Exonuclease I

(NEB, M0293). cDNA samples were pooled per sets of eight,
randomized across three pools, and a 1.23 Ampure XP beads

clean-up was performed (Beckman Coulter, A63881). Next, tag-

mentation was performed using TDE1 enzyme (Illumina,

15027865), followed by a 2.03 beads clean-up. PCR amplification

was performed for 15 cycles using the NEBNext High-Fidelity 2X

PCR Master Mix (NEB, M0541), followed by a 0.83 beads clean-

up. Gel extraction was performed to select for products between

200 and 1,000 bp. cDNA concentrations of the final libraries

were measured by Qubit dsDNA HS Assay kit (Invitrogen,

Q32854). Product size distributions were visualized using Agilent’s

Tapestation system (D5000 ScreenTape and Reagents, 5067–5588/

9). Libraries were sequenced on the NextSeq 500 platform (Illu-

mina) using a V2 75 cycle kit (read 1, 18 cycles; read 2, 52 cycles;

index 1, 10 cycles). A full description of the RNA-seq library prep-

aration can be found in the supplemental information.
RNA-seq data pre-processing
Base calls were converted to fastq format and demultiplexed using

Illumina’s bcl2fastq conversion software (v.2.16.0.10) tolerating

one mismatch per library barcode. Reads were filtered for a valid

unique molecular identifier (UMI) and sample barcode, tolerating

one mismatch per barcode. Trimming was performed using Trim-

momatic (version 0.33) (Bolger et al., 2014). Trimmed reads were

mapped to a combined human (GRCh38.p12) and rat (Rnor_6.0)

reference genome using STAR (Dobin et al., 2013) (version

2.5.1b), with default settings (--runThreadN 1, --outReads

Unmapped None, - -outFilterType Normal, --outFilterScoreMin 0,

--outFilterMultimapNmax 10, --outFilterMismatchNmax 10,

--alignIntronMin 21, - -alignIntronMax 0, --alignMatesGapMax 0,

--alignSJoverhangMin 5, --alignSJDBoverhangMin 3, --sjdb

Overhang 100). Uniquely mapped reads (mapping quality of 255)

were extracted and read duplicates were removed using the UMI-

tools software package (Smith et al., 2017). Raw reads from BAM

files were further processed to generate count matrices with HTSeq

(Anders et al., 2015) (version 0.9.1) using a combined Gencode

GRCh38.p12 (release 29, Ensembl 94) and rat (Rnor_6.0) reference

transcriptome, to separate counts from human neurons and rat

astrocytes.
RNA-seq data analysis
Raw counts from count tables were transformed to counts per

million (cpm) using edgeR version 3.26.8 (R package) (Robinson

et al., 2009). Transcripts with a cpm > 2 in at least two samples

were included. Counts were voom-transformed (log2-transforma-

tion on cpm values), and corrected for MEA batch effect and ge-

netic background for DE analysis using limma version 3.40.6 (R

package) (Ritchie et al., 2015). Genes with a Benjamini-Hochberg

(BH)-corrected p < 0.05 were considered to be significantly differ-

entially expressed between two conditions. GSEA was performed

using fgsea version 1.10.1 (R package) (Korotkevich and Sukhov,

2019), using a DE gene list ranked on the t statistic. Enrichment

of genes was tested in Gene Ontology (GO) terms (C5 collection),

Reactome pathways (C2 canonical pathways sub-collection), and

in NRF2 transcription factor target (TFT) gene sets (C3 TFT sub-

collection) from the Molecular Signatures Database (MSigDB) us-

ing msigdbr version 7.1.1 (R package) (Dolgalev, 2019). Gene sets

with a BH-corrected p < 0.05 were considered to be significantly
Stem Cell Reports j Vol. 16 j 2197–2212 j September 14, 2021 2209



enriched for up- or downregulated genes. A detailed description

can be found in the supplemental information.

ddPCR to measure MT-TL1 m.3243A>G heteroplasmy
This was described in detail previously (Klein Gunnewiek et al.,

2020). In short, ddPCRwas performed onDNAextracted fromneu-

rons atDIV44, usingddPCRprimers custom synthesized to amplify

the mitochondrial MT-TL1 m.3243 region. Data analysis was per-

formed with QuantaSoft Analysis Pro version 1.0.596 (Bio-Rad).

Statistical analysis
Analysis was done using unpaired t tests, one-way analysis of vari-

ance with Bonferroni post hoc correction, one-way repeated mea-

sures ANOVA with sequential post hoc Bonferroni corrections, or

Kolmogorov-Smirnov test, and restricted maximum likelihood

model with Holm-Sidak’s correction for multiple comparisons,

where appropriate, using GraphPad Prism 6 (GraphPad Software).

p values of p < 0.05, were deemed significant. Sample sizes were

based on our previous experiences in the calculation of experi-

mental variability. The number of wells (n) used are reported for

each experiment.

Data and code availability
The GEO accession number for the RNA-seq data in this paper is

GSE154825.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/

10.1016/j.stemcr.2021.07.002.
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