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SUMMARY
The ε4 allele of APOE-encoding apolipoprotein (ApoE) is one of the strongest genetic risk factors for Alzheimer’s disease (AD). One of the

overarching questions is whether and how this astrocyte-enriched risk factor initiates AD-associated pathology in neurons such as am-

yloid-b (Ab) accumulation. Here, we generate neurons and astrocytes from isogenic human induced pluripotent stem cells (hiPSCs) car-

rying either APOE ε3 or APOE ε4 allele and investigate the effect of astrocytic ApoE4 on neuronal Ab production. Secretory factors in

conditioned media from ApoE4 astrocytes significantly increased amyloid precursor protein (APP) levels and Ab secretion in neurons.

We further found that increased cholesterol secretion fromApoE4 astrocyteswas necessary and sufficient to induce the formation of lipid

rafts that potentially provide a physical platform for APP localization and facilitate its processing. Our study reveals the contribution of

ApoE4 astrocytes to amyloidosis in neurons by expanding lipid rafts and facilitating Ab production through an oversupply of cholesterol.
INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative

brain disorder that accounts for the majority of cases of de-

mentia (2021 Alzheimer’s Disease Facts and Figures, 2021).

One of the major hallmarks of AD is the accumulation of

amyloid-b (Ab) in the brain (O’Brien and Wong, 2011).

Ab is a fragment peptide derived from amyloid precursor

protein (APP), which is highly expressed in neurons and

is known to be important for neuronal development and

function (O’Brien andWong, 2011). Tomaintain a homeo-

static environment, generated Ab is taken up by glial cells,

such as astrocytes and microglia, to be degraded (Canter

et al., 2016).

Genome-wide association studies have identified novel

genetic risk factors associated with AD, even in late-onset

AD (LOAD) cases. In contrast with genetic variants in famil-

ial cases, many LOAD-associated variants are located in

genes known to be enriched in glial cells (Canter et al.,

2016; Liu et al., 2017). The precise AD-related phenotypes

induced by these variants, and the mechanisms by which

they arise, remain to be elucidated.

APOE4 is one of the strongest genetic risk factors for

LOAD (Liu et al., 2017). ApoE is an apolipoprotein encoded

by theAPOE gene and is well known for its function in lipid

transport by the formation of lipoprotein complexes. In

the central nervous system, ApoE is produced primarily

by astrocytes, and its expression is upregulated inmicroglia

under neurodegenerative conditions (Liu et al., 2017).

There are three genotypes for APOE in humans, namely
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APOE2, APOE3, and APOE4. Each genotype produces pro-

teins that are considered to have structural differences

according to amino acid sequences at 112 and/or 158 (Liu

et al., 2013). Although the difference in their sequence ap-

pears subtle, the translated proteins result in a significant

difference in the risk for AD. While the ε2 allele is known

to be protective, bearing ε4 increases the risk of AD (Liu

et al., 2013).

Recent studies using human induced pluripotent stem

cells (hiPSCs) from APOE4 carriers suggested that ApoE4

contributes to amyloidosis by increasing Ab secretion in

neurons and decreasing Ab clearance in astrocytes (Lin

et al., 2018; Wang et al., 2018). However, the involvement

and mechanisms by which ApoE4 astrocytes contribute to

neuronal Ab production remain to be determined. Here, us-

ing hiPSC-derived astrocytes and neurons carrying APOE3

or APOE4, we aimed to investigate whether and how

ApoE4 astrocytes regulate neuronal Ab production.
RESULTS

ApoE4 ACM increased APP expression and Ab42

secretion in hiPSC-derived neurons

To address the effect of ApoE4 astrocytes on neuronal APP

expression and Ab generation, we utilized an iPSC line

derived from healthy individuals carrying the APOE3 allele

and its isogenic line in whichAPOE3 is converted to APOE4

(Lin et al., 2018). Both iPSC lines were differentiated into

astrocytes or excitatory neurons (Figure 1A), and their
The Author(s).
ecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. ApoE4 astrocyte conditioned medium increases amyloid precursor protein expression and Ab secretion in hiPSC-derived
neurons
(A) Schematics for generating astrocytes and excitatory neurons from hiPSCs, and experimental procedure.
(B) Images of hiPSC-derived neurons with synaptic markers, synaptophysin and PSD-95, and hiPSC-derived astrocytes with astrocytic
markers, GFAP and AQP4. Scale bars, 10 mm.
(C) Images of amyloid precursor protein (APP) staining from astrocyte conditioned medium (ACM)-treated neurons. Scale bar, 10 mm.
Right: APP area, intensity, and area 3 intensity in neurons (n = 12 images from three experiments).
(D) Western blotting for APP in neurons. Bottom: levels of APP were normalized to GAPDH expression (n = 3 experiments).
(E and F) Levels of secreted Ab40 (E) and Ab42 (F) from neurons detected by ELISA (n = 3 experiments for E, n = 5 experiments for F).
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant (Student’s t test). Error bars represent SEM.
identity was confirmed by immunostaining (Figure 1B).

To investigate whether secretory factors from ApoE4

astrocytes could affect neuronal APP expression and its pro-

cessing to Ab, we cultured ApoE3 neurons in astrocyte

conditioned medium (ACM) from other healthy iPSC-

derived astrocytes (APOE3/E4 heterozygote) for 5 weeks, af-

ter which the medium was replaced with either ApoE3 or

ApoE4 ACM for 4 days (Figure 1A). Immunostaining and

immunoblotting analyses in neurons revealed that APP

levels were significantly increased by ApoE4 ACM (Figures

1C and 1D). We then directly measured the secreted levels
of Ab40 and Ab42 and found that only Ab42 secretion was

significantly increased by ApoE4 ACM. These data show

that secretory factors from ApoE4 astrocytes positively

regulate neuronal APP expression and Ab secretion. We

further investigated whether increased APP processing to

Ab42 occurs through facilitated clathrin-dependent endo-

cytosis, whichwas shown to be required for activity-depen-

dent APP processing (Das et al., 2013). We treated neurons

with Dynasore, which inhibits dynamin activity and

thereby abolishes clathrin-mediated endocytosis. Neurons

cultured with ApoE3 ACM showed a reduction of Ab40 and
Stem Cell Reports j Vol. 16 j 2128–2137 j September 14, 2021 2129
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Figure 2. Extracellular cholesterol positively regulates the formation of lipid rafts and its association with APP in hiPSC-derived
neurons
(A) Measurement of secretory levels of cholesterols in ApoE3 or ApoE4 ACM.
(B) Filipin III signals in ACM (n = 4 experiments).
(C) Levels of total cholesterol, free cholesterol, and cholesteryl ester in ACM (n = 3 experiments).
(D) Images of filipin III staining in neurons. Scale bar, 10 mm. Right: quantification of filipin III area, intensity, and area3 intensity in
neurons (n = 13–15 images from three experiments).
(E) Images of CTX-B and APP staining in neurons. Scale bar, 10 mm.
(F) CTX-B area, intensity, and area 3 intensity in neurons (n = 12 images from three experiments).
(G) APP area, intensity, and area 3 intensity in neurons (n = 12 images from three experiments).
(H) Co-localization of CTX-B and APP in neurons (n = 12 images from three experiments).

(legend continued on next page)
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Ab42; however, elevated levels of Ab42 in neurons cultured

with ApoE4 ACMwere not affected byDynasore treatment.

These data suggest that ApoE4 ACM-induced Ab42 upregu-

lation is mediated by clathrin-independent mechanisms

(Figure 1F).

Extracellular cholesterol positively regulated the

formation of lipid rafts and APP expression in hiPSC-

derived neurons

Accumulation of intracellular cholesterol in hiPSC-derived

ApoE4 astrocytes comparedwith isogenic ApoE3 astrocytes

has been recently reported (Lin et al., 2018; Tcw et al.,

2019), and Lin et al. further reported increased cholesterol

secretion from ApoE4 astrocytes. Astrocytes supply choles-

terol to neurons to support synapse formation and regulate

membrane fluidity (Vance, 2012). Moreover, cholesterol,

along with ganglioside and triglyceride, is a critical compo-

nent ofmembrane lipid rafts, which provide a suitable plat-

form for various membrane-bound proteins including

glutamate receptors. APP and its processing secretases, b-

and g-secretase, are also known to be located in lipid rafts,

while a-secretase is mainly expressed in non-lipid rafts

(Cheng et al., 2007; Raffai and Weisgraber, 2003).

Previous studies have shown that increasing cholesterol

in the membrane induced the formation of lipid rafts and

increased Ab production (Cossec et al., 2010; Marquer

et al., 2014). Therefore, we hypothesized that increased

cholesterol in ApoE4 ACM could be a key factor in upregu-

lating APP and its processing by facilitating the formation

of lipid rafts. First, we verified increased cholesterol secre-

tion from ApoE4 astrocytes by measuring the signals of fil-

ipin III, which is naturally fluorescent upon cholesterol

binding (Figures 2A and 2B) in ACM. We further measured

exact levels of total cholesterol as well as its composition

(free cholesterol and cholesteryl ester) in ApoE3 and

ApoE4 ACM (Figure 2C). We repeatedly observed increased

levels of total cholesterol (about 5 mg/mL higher) in ApoE4

ACM compared with ApoE3 ACM. Although free choles-

terol is dominant in ACM,we also observed increased levels

of cholesteryl ester in ApoE4 ACM, which could induce

neuronal dysfunction as reported recently (van der Kant

et al., 2019). To address whether such an increase of choles-

terol is sufficient to promote APP expression and its pro-

cessing in neurons, we next treated neurons with 20 mM

cholesterol (about 7.6 5 mg/mL). We found that cholesterol

treatment for 4 days was sufficient to increase neuronal

cholesterol visualized by filipin III staining (Figure 2D).

To directly deplete cholesterol in ACM, we applied methyl

b-cyclodextrin (MbCD).We did not observe any alterations
(I) APP intensity in CTX-B/APP co-localization area in neurons (n = 1
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significa
Error bars represent SEM.
in cholesterol levels in neurons treated with MbCD-con-

taining control ACM, suggesting minimal effects of choles-

terol depletion in control ACM and/or the homeostatic

mechanism of neurons to compensate for the possible

loss of their cholesterol by MbCD. We then determined

whether increased cholesterol induces lipid raft expansion

in neurons. We accessed the levels of lipid rafts in neurons

treated with cholesterol or MbCD bymeasuring the area or

intensity of cholera toxin B (CTX-B), a previously reported

well-known lipid raft marker (Lin et al., 2019), and found

that cholesterol treatment increased the area of CTX-B sig-

nals without affecting intensity, suggesting the expansion

of lipid rafts (Figures 2E and 2F). We also measured APP

levels in neurons and found significant upregulation of

APP by cholesterol treatment, due to increased area of

APP signals rather than intensity (Figures 2E and 2G). We

further found that the co-localization of APP and CTX-B

was significantly increased by cholesterol treatment in neu-

rons (Figures 2E and 2H). To determine whether APP upre-

gulation is caused simply by the expansion of lipid rafts or

whether more APP is recruited to the given area of lipid

rafts, we measured the intensity of APP in the CTX-B/APP

co-localized area. The data showed that there was no alter-

ation in APP intensity in these regions (Figure 2I), suggest-

ing that increased APP expression by extracellular choles-

terol supply is mainly due to the increased area of lipid

rafts. There was a slight reduction of lipid rafts and APP

levels following MbCD treatment, a finding that also sup-

ports the regulatory role of cholesterol in neuronal lipid

raft formation and APP expression.

Cholesterol in ApoE4 ACM is required to increase the

formation of lipid rafts in hiPSC-derived neurons

Wenext investigated whether the effects of ApoE4 ACMon

neuronal cholesterol levels and lipid raft formation were

due to cholesterol oversupply.Wemeasured levels of filipin

III in neurons cultured with ACM from either ApoE3 or

ApoE4 astrocytes as described in Figure 1A, whereby

ApoE4 ACM-treated neurons displayed increased filipin

III signals (Figure 3A) as shown in neurons treated with

cholesterol (Figures 2D and 2E). We also found that the

area and total levels (area3 intensity) of CTX-Bwere signif-

icantly increased in these neurons compared with those of

ApoE3 ACM-treated neurons (Figure 3B). To directly mea-

sure cholesterol on the plasma membrane that is enriched

in lipid rafts in a label-free way, we utilized time-of-flight

secondary ion mass spectrometry (TOF-SIMS) imaging.

We observed increased cholesterol and fragmented choles-

terol levels in ApoE4 ACM-treated neurons compared with
2 images from three experiments).
nt (Student’s t test or ANOVA followed by Dunnett’s post hoc test).
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Figure 3. Cholesterol in ApoE4 ACM is required to increase the formation of lipid rafts in hiPSC-derived neurons
(A) Images of filipin III staining in neurons. Scale bar, 10 mm. Bottom: filipin III area, intensity, and area3 intensity in neurons (n = 25
images from five experiments).
(B) Images of CTX-B staining in neurons. Scale bar, 10 mm. Bottom: CTX-B area, intensity, and area3 intensity in neurons (n = 12 images
from three experiments).
(C) TOF-SIMS imaging for membrane surface cholesterol, fragmented cholesterol, and phosphocholine in neurons. Scale bar, 50 mm.
Bottom: relative intensity of cholesterol, fragmented cholesterol, and phosphocholine in each pixel of images.
(D) Experimental procedure to examine the effect of cholesterol or MbCD treatment on neurons.
(E) Images of filipin III staining in neurons. Scale bar, 10 mm. Right: filipin III area, intensity, and area3 intensity in neurons (n = 15–16
images from four experiments).
(F) Images of CTX-B staining in neurons. Scale bar, 10 mm. Right: CTX-B area, intensity, and area3 intensity in neurons (n = 15–16 images
from four experiments).
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant (Student’s t test or ANOVA followed by Tukey’s post hoc test). Error
bars represent SEM.
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Figure 4. Cholesterol in ApoE4 ACM is required to induce APP upregulation and Ab42 secretion in hiPSC-derived neurons
(A) Images of CTX-B and APP staining in neurons. Scale bar, 10 mm.
(B) APP area, intensity, and area 3 intensity in neurons (n = 23–24 images from six experiments).
(C) Co-localization of CTX-B and APP in neurons (n = 23–24 images from six experiments).
(D) APP intensity in CTX-B/APP co-localization area in neurons (n = 23–24 images from six experiments).
(E) Western blotting for APP in neurons. Right: levels of APP were normalized to GAPDH expression in neurons (n = 6 experiments).
(F) Levels of APP, BACE1, and PSEN1 mRNA in neurons (n = 3 experiments).
(G) Western blotting for a-CTF and b-CTF of APP, BACE1, and PSEN1 in neurons.

(legend continued on next page)
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neurons with ApoE3 ACM, whereas phosphocholine,

another metabolite in the plasma membrane, was not

distinguishable between the two groups (Figure 3C). To

determine whether the cholesterol in ApoE4 ACM is the

major cause of the expansion of lipid rafts in neurons, we

added MbCD to ApoE4 ACM during neuronal culture (Fig-

ure 3D) and found that the upregulation of neuronal

cholesterol by ApoE4 ACM was significantly attenuated

by MbCD, potentially due to its scavenging effect toward

exogenous cholesterol (Figure 3E). The addition of MbCD

to ApoE4 ACM also completely abolished the ApoE4

ACM-induced lipid raft expansion in neurons (Figure 3F).
Cholesterol in ApoE4 ACM is required to induce APP

upregulation and Ab42 secretion in hiPSC-derived

neurons

To determine whether cholesterol in ApoE4 ACM is neces-

sary for the upregulation of APP and its metabolism to pro-

duce Ab in neurons, we examined APP expression in

neurons cultured with ApoE3 ACM, ApoE4 ACM, or

MbCD-included ApoE4 ACM (Figure 3D). As shown in Fig-

ure 1C, neurons cultured with ApoE4 ACM showed

increased expression of APP compared with those cultured

withApoE3ACM (Figures 4A and 4B). However, in the pres-

ence of MbCD, ApoE4 ACM was not able to induce signif-

icant upregulation of APP (Figures 4A, 4B, and 4E).

Increased co-localization of lipid rafts and APP by ApoE4

ACM was also abolished in neurons treated with MbCD

(Figures 4A, 4C, and 4D). We examined whether APP pro-

cessingwas altered by ApoE4 ACMpreferentially to Ab gen-

eration as shown in Figure 1F. First, we found that ApoE4

ACM increases APP transcription without affecting the

levels of BACE1 and PSEN1 transcripts (Figure 4F). Unlike

the protein levels of APP, this was not inhibited by MbCD

treatment. Although inhibition of cholesterol was suffi-

cient to prevent APP protein upregulation (Figure 4E), these

data suggest that secretory factors other than cholesterol

from ApoE4 ACM or ApoE4 itself as shown by Huang

et al. (2017) could increase APP transcription. We then

examined the levels of APP C-terminal fragments (CTFs)

and observed increased generation of b-CTF over a-CTF

by ApoE4 ACM, which was completely abolished by

MbCD (Figures 4G and 4H). The levels of BACE1 and

PSEN1 CTF were not altered by ApoE4 ACM (Figures 4G

and 4I). Finally, we observed that MbCD treatment in-

hibited the ApoE4 ACM-induced increase in Ab42 secretion
(H) Levels of a-CTF and b-CTF of APP (normalized to GAPDH expressi
(I) Levels of BACE1 and PSEN1 were normalized to GAPDH expression
(J) Levels of secreted Ab40 and Ab42 from neurons detected by ELISA
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not signific
SEM.
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in neurons (Figure 4F). Taken together, these data suggest

that an excess supply of cholesterol is responsible for

ApoE4 ACM-mediated amyloidogenic processing of APP.
DISCUSSION

Abnormal neuronal cholesterol levels have been linked to

AD-related pathology both in vitro and in vivo. For example,

increased levels of cholesterol were observed in AD brain

samples, and the severity of pathology was correlated

with cholesterol levels (Cutler et al., 2004; Lazar et al.,

2013). Inhibition of cholesterol efflux by reducing the

expression of CYP46A1, a cholesterol 24S-hydroxylase, in

a neuron-specific manner was shown to result in cognitive

deficits and neuronal death in wild-type mice. The study

further showed the recruitment of APP to lipid rafts and

Ab upregulation before neuronal death in both wild-type

and APP23 mice (Djelti et al., 2015). Here, we revealed

the contribution of secretory cholesterol from ApoE4 astro-

cytes to lipid raft expansion and APP expression, which

promotes Ab42 secretion in neurons.

A recent study showed that Chinese hamster ovary cell

lines expressing familial AD-associated PSEN1 DE9 display

increased levels of cholesterol, which leads to the enrich-

ment of APP in lipid rafts (Cho et al., 2019). Similarly, a pre-

vious study suggested binding between cholesterol and

b-CTF of APP (Beel et al., 2008). These data propose the

active role of cholesterol in recruiting APP to lipid rafts.

Here, we found that cholesterol oversupply by ApoE4 astro-

cytes increases APP levels in lipid rafts. Althoughwe did not

find a difference in APP intensity (local clustering density)

in lipid rafts by extracellular cholesterol supply (Figure 2I),

neurons cultured in ApoE4 ACM displayed increased APP

intensity in lipid rafts, whichwas abolished byMbCD treat-

ment (Figure 4D). Cholesterol was shown to increase the

proximity between APP and BACE1 in themembrane (Mar-

quer et al., 2011). Although we did not observe change in

BACE1 and PSEN1 expression, further studies are required

to determine the expression pattern of b- and g-secretases

on lipid rafts in neurons when they are cultured with

ApoE3 or ApoE4 ACM.

Cholesterol was also shown to increase Ab production

through the facilitation of APP endocytosis to endosomes

(Cossec et al., 2010). Moreover, cholesterol loading to the

neuronal plasma membrane was shown to result in

enlarged endosomes (Marquer et al., 2014). In the current
on), and the ratio of b-CTF/a-CTF in neurons (n = 3 experiments).
in neurons (n = 3 experiments).
(n = 3 experiments).
ant (ANOVA followed by Tukey’s post hoc test). Error bars represent



study, we revealed for the first time the impact of ApoE4 as-

trocytes on neuronal cholesterol and lipid rafts that affect

APP processing toward Ab production. Additionally, its ef-

fect was not attenuated by inhibition of clathrin-mediated

endocytosis. Further studies are required to determine

whether astrocytic cholesterol promotes APP processing

on lipid rafts or by facilitating raft-dependent APP

endocytosis.

Lipid rafts provide a platform for not only APP but also

multiple neuronal membrane proteins that are important

for synaptic functions (Hering et al., 2003). Previously,

cholesterol was shown to promote synapse maturation,

whereas depletion of cholesterol significantly reduced the

lipid raft domain and synapses (Hering et al., 2003; Mauch

et al., 2001). The positive correlation between neuronal ac-

tivity and Ab production has been supported by multiple

studies (Bero et al., 2011; Das et al., 2013), so it is possible

that the expansion of lipid rafts by ApoE4 ACM could

also contribute to the upregulation of Ab by increasing

neuronal activity.

APOE4, the strongest genetic risk factor for AD, has

recently been shown to have detrimental effects on astro-

cytes, including endocytic defects and impaired homeo-

static functions (Fernandez et al., 2019; Narayan et al.,

2020). It is not clear, however, whether and how altered

astrocytic properties could affect neighboring neurons

and induce AD-associated pathology. Here, we revealed

that ApoE4 astrocytes could regulate neuronal APP

metabolism to induce amyloidosis through cholesterol

oversupply. This study provides new insight into the

contribution of ApoE4 and astrocytes to amyloidosis in

AD, as well as the importance of regulating astrocytic

APOE isotypes and its cholesterol oversupply for disease

intervention.
EXPERIMENTAL PROCEDURES

A detailed description of all materials and methods is presented in

supplemental experimental procedures.

iPSC culture
The use of human iPSCs was approved by the Institutional Review

Board of DGIST (Permit Number: DGIST-190829-BR-071-01). The

ApoE3 iPSC line was generated from the Coriell Institute’s fibro-

blast line derived from a healthy individual (age 75 years, female;

#AG09173) by Dr. Yankner’s Laboratory at HarvardMedical School

(Meyer et al., 2019). The ApoE4 isogenic line was generated by

CRISPR/Cas9 genome editing as previously described (Lin et al.,

2018). For ApoE3/E4 heterozygous ACM, an iPSC line derived

from a healthy individual (age 22 years, female; #GM23720) was

obtained from the Coriell Institute. iPSCs were maintained onMa-

trigel (Corning #354277)-coated plate in mTeSR1 medium (STEM-

CELL Technologies) at 37�C with 5% CO2-conditioned incubator.

A detailed description of differentiation into neural progenitor
cells, astrocytes, or neurons is presented in supplemental experi-

mental procedures.

Statistical analysis
Prism 8 (GraphPad) was used for statistical analysis. Unpaired Stu-

dent’s t test or one-way ANOVA test with Tukey’s or Dunnett’s post

hoc analysis was used.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/

10.1016/j.stemcr.2021.07.017.
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