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DEVOLUTION—A method for phylogenetic
reconstruction of aneuploid cancers based
on multiregional genotyping data
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Phylogenetic reconstruction of cancer cell populations remains challenging. There is a par-
ticular lack of tools that deconvolve clones based on copy number aberration analyses of
multiple tumor biopsies separated in time and space from the same patient. This has ham-
pered investigations of tumors rich in aneuploidy but few point mutations, as in many
childhood cancers and high-risk adult cancer. Here, we present DEVOLUTION, an algorithm
for subclonal deconvolution followed by phylogenetic reconstruction from bulk genotyping
data. It integrates copy number and sequencing information across multiple tumor regions
throughout the inference process, provided that the mutated clone fraction for each mutation
is known. We validate DEVOLUTION on data from 56 pediatric tumors comprising 253 tumor
biopsies and show a robust performance on simulations of bulk genotyping data. We also
benchmark DEVOLUTION to similar bioinformatic tools using an external dataset. DEVO-
LUTION holds the potential to facilitate insights into the development, progression, and
response to treatment, particularly in tumors with high burden of chromosomal copy number

alterations.
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Darwinian selection. Most cancers are presumed to ori-

ginate from a single mutated cell, from which each
mutation is conveyed to its daughter cells, that in turn can acquire
additional aberrations, establishing subpopulations (subclones) of
cells with diverse genetic compositions within the tumor!. This
evolution of cancer cells is further shaped by genetic drift and
selection pressure from the tumor microenvironment and onco-
logical treatment?=>. Due to this process, many cancers exhibit
vast intratumor heterogeneity (ITH) as well as intertumor het-
erogeneity between the primary tumor and its metastases®~10.
Knowledge about how ITH emerges over time remains limited
and multiple models have been proposed to explain it such as
punctuated, neutral, linear, and branched evolution as well as a
big bang model of tumor growth followed by neutral
evolution!1-13, By analyzing the genetic variation of the tumor
spatially as well as temporally, mathematical methods can be
employed in order to reconstruct its evolution, commonly in the
form of a phylogenetic tree that links together distinct cancer cell
subpopulations in an inferred temporal order. Such phylogenetic
reconstructions can improve the understanding of tumorigenesis,
progression to metastatic disease, and aid the development of
novel therapeutic strategies”-814,

One of the biggest challenges in phylogenetic analysis of bulk
sample data from tumors is that the genetic analysis of each
sample is conducted on millions of cells at once, usually con-
stituting multiple subclones. The relative proportions of the
subclones within each biopsy may also vary across the biopsied
regions, stressing the need to integrate information from multiple
biopsies separated in space to thoroughly assess the genetic profile
of the tumor. Not addressing this may result in the prediction of
illicit biological trajectories and so-called biopsy trees, not con-
stituting true phylogenies!®. Phylogenetic relationships should
thus ideally be constructed based on the deconvolved clonal
structure, i.e., one should infer which subclones are characterized
by which alterations and, in addition, the ancestral order of these.

Even though single cell sequencing (SCS) has emerged as an
important tool for temporal reconstruction that circumvents the
issue of clonal deconvolution it is very costly to implement on the
scales needed in the clinic and usually provides limited sequence
coveragel®. A more cost-effective alternative is to perform com-
puterized deconvolution of bulk genotyping data derived from
single nucleotide polymorphism array (SNP-array), targeted deep
sequencing (TDS), whole exome sequencing (WES) or whole
genome sequencing (WGS). Bulk genotyping yields a set of
genetic alterations present in each biopsy along with information
(e.g., log2 ratios, B allele frequencies, and variant allele fre-
quencies) that together with allelic composition can be utilized to
estimate the proportion of cells harboring each aberration in each
biopsy, denoted the mutated clone fraction (MCF)$17-19, Because
MCE:s can be calculated for allelic/copy number imbalances and
sequence mutations alike, it provides an excellent parameter for
clonal deconvolution based on integrated data on these two types
of genetic changes. However, most tools developed for compu-
terized deconvolution of bulk genotyping data focuses solely on
somatic point mutations, presumes a diploid background, lacks
specific pipelines to handle intratumoral heterogeneity of copy
number alterations (CNAs) encompassing chromosomal seg-
ments or whole chromosomes, and often assumes that the genetic
alteration is present in all biopsies. In addition, they do not
provide the possibility to infer phylogenetic trees solely on copy
number aberration data from multiple biopsies separated in time
and space20-23, Since many cancers are aneuploid to some
degree?4, this is a serious shortcoming, especially for cancer types
where aneuploidy is a common feature such as high-grade adult
carcinomas, high-grade brain tumors, and many childhood

N eoplasms are a heterogenous group of diseases driven by

cancers®2>26. Consequently, there is a particular need for tools
capable to infer phylogenetic trees based on multiregional copy
number data.

To fill this methodological gap, we introduce DEVOLUTION,
an algorithm for subclonal deconvolution followed by phyloge-
netic reconstruction from bulk genome profiles including high-
resolution copy number data (e.g., from SNP-array, WES or
WGS) and sequencing information (e.g., from WES, WGS or
TDS) separately or in unison. The deconvolution is based on a
priori MCF-estimation of the individual aberrations in each
sample and the algorithm systematically combines information
from all available biopsies throughout the inference process to
reconcile the most probable temporal evolution of the tumor by
inferring an event matrix that is used to reconstruct phylogenetic
trees. Importantly it can deduce evolutionary trajectories based
on copy number data alone. In addition, predictions of the sub-
clonal size and compositions across biopsies are visualized
directly in the phylogenetic tree. DEVOLUTION provides an
objective framework for creating event matrices and phylogenetic
trees from bulk genotyping data, avoiding subjective bias com-
promising the validity of tree-to-tree comparisons (Supplemen-
tary Table 1).

To demonstrate DEVOLUTION’s utility, the algorithm was
evaluated using SNP-array data from 253 tumor regions from 56
pediatric cancers including neuroblastoma (NB), Wilms tumor
(WT), and rhabdomyosarcoma (RMS)!7, comprising the most
common extracranial, solid tumors in children. Additionally,
extensive comparisons were made for WES-data alone, SNP-array
data alone, and when using the two data sets conjointly for 18 of
the tumors. The algorithm also showed a robust performance on
simulated and publicly available multiregional bulk genotyping
data. DEVOLUTION holds the potential to facilitate further
insights into the development, progression, and response to
treatment, particularly in tumors with a high burden of chro-
mosomal copy number alterations.

Results

Overview of the algorithm workflow. The algorithm operates on
multiregional sampling data analyzed using whole genome pro-
filing followed by MCF-computation (Fig. 1a—c). The input file is
an ux v dimensional matrix, containing information about the u
genetic alterations detected in a tumor. For each alteration there
are v columns indicating the genetic position, alteration type as
well as the proportion of cells in each biopsy harboring the
alteration (Supplementary Table 2). For copy number aberra-
tions, the matrix is subjected to an algorithm identifying all
unique events across the samples while considering the uncer-
tainty in the aberration breakpoint measurement (Supplementary
Fig. 1). The DBSCAN (density-based spatial clustering of appli-
cations with noise) algorithm is then used to identify clusters of
genetic alterations having similar cellular proportions across
multiple samples, indicating that they might be reflecting a group
of cells having an identical genetic profile (Fig. 1d)?”. By identi-
fying these clusters of genetic alterations, the computational load
can be decreased and the unfolding of the subclonal composition
aided.

DBSCAN prepares the data set to be subjected to the
deconvolution algorithm which is employed to elucidate the
temporal order of the clusters of mutations, deducing the
subclones present across the biopsies. Information from multiple
biopsies is integrated throughout this process to minimize the
occurrence of parallel evolution (PLC) and back mutation
contradictions (BMC). PLC in copy number data means that
the same type of genetic alteration with the same genomic start-
and endpoints in the chromosome appears independently in
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Fig. 1 Overview of the methodological outline. a An example of multiregional sampling to obtain biopsies P1-P5 from a Wilms tumor. The tumor is
composed of several subclones with distinct genomic profiles, exemplified by the schematic genomic landscape in the rightmost panel where each color
unifies cells with identical sets of genetic alterations. The photograph is adapted from a previous publication'* and the colors do not represent true sets of
genetic alterations. b Acquisition of genomic tumor data for each sample, exemplified by copy number analysis by SNP-array. ¢ The whole genome profiling
data can be used to compute the mutated clone fraction (MCF) illustrating the proportion of cells in each biopsy harboring a certain genetic alteration (M1-
9 in the left column). d A clustering algorithm is employed to identify genetic alterations that seem to follow each other in size across samples. e A
subclonal deconvolution algorithm determines the temporal order of these clusters by considering the information obtained throughout all samples while
minimizing the occurrence of parallel evolution and back mutations. f The proposed solution for the temporal order of subclones (Sc) is integrated into an
event matrix. g This event matrix can be used to generate phylogenetic trees with either the maximum likelihood or the parsimony method. At the stem, all
available biopsies for the patient are visualized as filled circles with the biopsy name (P1-P5). At the branches of the tree the subclones can be seen along
with pie charts illustrating in which biopsies, and in what fraction of the tumor cells they appear.

different cells within the tumor. This is, in most cases, unlikely
from a biological standpoint, unless the copy number alteration
incorporates an entire chromosome or chromosome arm. BMC
implicate genetic alterations that are gained and then lost further
down the evolutionary history in the tree, which may be feasible
scenarios for some types of genetic alterations, such as a gain of a
whole chromosome that is later lost, but are less likely to occur
for structural chromosomal aberrations and point mutations, and
should never occur for loss of heterozygosity events?S.

In addition, the user can provide a matrix containing
information about illicit orders of genetic events, that can be
taken into consideration during the deconvolution (Fig. le). The
deconvolution culminates in a suggestion of the most likely
temporal order of all genetic aberrations, constituting the basis
for the creation of an event matrix, illustrating the distribution of
genetic alterations across subclones (Fig. 1f). Using this event
matrix, the biological distance, representing the number of
genetic alterations, between the subclones is calculated using the
Hamming distance?® and phylogenetic trees are reconstructed
using the maximum likelihood and parsimony methods. In
addition, the algorithm provides the distribution and size of the
clusters across the samples, resulting in an overview of the
dynamics, spatial distribution, and dissemination of the tumor
(Fig. 1g). The mean execution time of the algorithm is in the
order of seconds.

Validation on pediatric tumors confirms concordance to
established evolutionary scenarios. DEVOLUTION was applied
to a previously reported dataset of 56 pediatric cancers and
phylogenetic trees were generated based on copy number data for
22 neuroblastomas, 20 Wilms tumors, and 8 rhabdomyosarcomas
comprising a total of 253 biopsies (Fig. 2, Supplementary Figs.
2-7, Supplementary Data 1 and 2)!7. Event matrices but not

phylogenetic trees could be reconstructed from six patients (NB1,
NB24, WT1, WT2, WT3, and WT5) in which all cells across the
samples from the same patient had identical genomic profiles.
The phylogenetic trees of the remaining 50 tumors all represented
plausible biological scenarios and often illustrated key events in
tumor evolution, in line with previous studies!¥. For example,
MYCN-amplification, known to be an early event in NB, was placed
in the stem by DEVOLUTION in 7/7 tumors in which it was
present. Among other early events of pathogenic importance in NB,
whole chromosome 17 gain (+17) was placed in the stem in 8/9
cases where it was present. In the discrepant case (NB10) merely
two biopsies were present of which +17 was 100% in one of them.
17q gain, was identified in 13 NBs of which it was placed in the stem
in 8. In the 5 remaining tumors it was found in all biopsies but were
not present in >90% in all of them, nonetheless indicating that the
genetic alteration consistently presents early in the evolution of these
tumors, in line with previous studies'4. As for established early
pathogenic drivers in RMS, 11p cnni was found in the stem in 5/6
tumors (in RMS2 it was found in the first branch after the stem).
Both the PAX3/FOXOI-fusion in RMS7 and PAX7/FOXOI-fusion
in RMS8 were confined to the stem. As for WT, 11p cnni was placed
in the stem in 7/9 cases. The remaining cases were in one case a
tumor only encompassing 3 genetic alterations of which the 11p
alteration made up 60% of one of the biopsies. The other case was a
complex case with 4 different types of cnni:s in 11p that were early
in the branching of the phylogeny (Supplementary Figs. 2-7).
DEVOLUTION was also useful for tracing patterns of
metastasis. In NB5 (Fig. 2a), where a primary tumor and a
metastasis presented at the same time, the metastasis was
demonstrated to originate from a population of cells having the
genetic alterations of the stem as well as one group of cells
encompassing a subclone also present in the primary tumor. This
indicates polyclonal seeding. A more complex pattern of
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polyclonal seeding was observed in NB22 (Fig. 2b), a patient with
progressive tumor growth across multiple metastatic locations.
Here there was more subclonal variation among the lymph node
metastases than among metastases to distant organs. The
metastases to distant organs often presented as solitary branches,
exemplified by the same subclone colonizing both the lung and
skull. This might indicate that the threshold for tumor cells to

Subclone J ‘
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Subclone O @

L Subclone P '

Subclone | .

Subclone F ‘

Subclone E

escape the primary tumor and colonize the lymph nodes is lower
than that for colonization of distant organs, displayed as a wider
variety of different subclones across lymph node locations
compared to an extensive selection for a certain subclone in
distant loci. RMS8, an alveolar rhabdomyosarcoma (Fig. 2e),
displayed an intricate evolutionary pattern with many genetic
alterations. Here the primary tumor’s subclones form a cluster at

4 COMMUNICATIONS BIOLOGY | (2021)4:1103 | https://doi.org/10.1038/s42003-021-02637-6 | www.nature.com/commsbio


www.nature.com/commsbio

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02637-6

Fig. 2 Phylogenetic trees of childhood cancers. At the stem of the maximum parsimony trees illustrated here, the biopsies available from each patient are
denoted. The genetic alterations belonging to the stem are present in all cells in all samples, indicated by filled pies. The endpoints represent cell
populations harboring distinct genomic profiles (subclones), whose fractions per sample are visualized by pie charts. The scale bar indicates the distance
corresponding to one genetic aberration. Gains and losses of chromosomes or segments of chromosomes that are characteristic of each tumor subtype are
indicated by + and - signs. a In NB5 samples are available from the primary tumor before treatment (B1-B3), a synchronous metastasis (M), and the
primary tumor post treatment (P1-P2). The metastasis must have originated from a subclone harboring the stem events only and another subclone with
the copy number profile seen in subclone A, indicating polyclonal seeding. The metastasis also has a private copy number neutral imbalance (cnni) of
chromosome 4. b NB22 also shows evidence of polyclonal seeding. Samples are from the primary tumor before treatment (B), the primary tumor post
treatment (P1-P3), metastases to the lung (M-LU1-2), to the lymph nodes (M-LN1-4), the skull (M-SK), and from the area around the clavicle (M). The
stem harbors a 1p cnni, MYCN-amplification and a NF1 deletion. Greek letters denote different structural alterations targeting partly overlapping regions. ¢
WT11 shows subclones present across multiple primary tumor areas (P1-P5). d WT19 displays a similar distribution of subclones as WT11 across the post-
treatment biopsies P1-5. e In RMS8, subclones in the biopsies from a local relapse (R) and a distant metastasis (M) form their own branch harboring
several additional genetic alterations compared to the primary tumor biopsies (B). The information used to produce the phylogenies can be found in

Supplementary Data 1 and 2.

the root of the tree, while the cell populations from a metastasis
and a local relapse share a branch having a vast amount of
additional genetic alterations. As to evolutionary trajectories
across the primary tumor space, WT11 and WT19 (Fig. 2¢, d)
both showed subclones that were distributed across several
locations within the primary tumors, a phenomenon called
subclonal coexistence which has previously been demonstrated to
be common in Wilms tumors!”. Hence, phylogenetic trees
produced from copy number profiles by DEVOLUTION, can
provide biological insights that might aid the understanding of
how cancer develops and progresses in individual patients.

Contradictions are rarely seen in the phylogenetic trees. In 80%
of all tumors analyzed, the maximum likelihood (ML) and par-
simony (MP) methods resulted in identical phylogenetic trees
(19/22 NB, 17/20 WT, 4/8 RMS) (Fig. 3a-d). When the ML and
MP tree for the same case did differ from one another, the dif-
ferences in the branching structure were minor (Supplementary
Figs. 2-7). We identified the positions of the genetic copy number
alterations in each tree to identify contradictions based on prior
knowledge about how genetic aberrations occur in cancer cells.
More specifically, we analyzed instances of PLC and BMC.
When the ML and MP trees differed from one another, this
was always due to a PLC/BMC in the phylogeny, often with both
contradictions together in the same tree. PLC and/or BMC were
found in 14/50 ML-trees and 14/50 MP-trees (5 NB, 5 WT, 4
RMS), hence 28/100 trees in total. Of these, 3/5 NB, 3/5 WT, and
1/4 RMS trees contained only one single contradiction located
among the leaves of the trees i.e, it did not have any significant
impact on the tree structure. In addition, there did not seem to be
any apparent difference between the frequency of the types of
contradictions between ML and MP trees (Fig. 3e). Excluding the
cases with PLC and BMC of whole chromosomes and chromo-
some arms, which are plausible events, only 8/50 ML-trees and 8/
50 MP-trees (0 NB, 4 WT, and 4 RMS) exhibited contradictions
in the tree structure. In these eight cases, merely a few genetic
alterations were responsible for the PLC and/or BMC. They were
caused by aberrations altering clone size compared to another
event across samples or similar aberrations that still fell outside
the breakpoint cutoff for similarity causing them to be considered
separate events. These situations may be resolvable by critically
reviewing the original data (Supplementary Fig. 8). Alternating
clone sizes were particularly common in the RMS trees
(Supplementary Fig. 9). The number of branches, total branch
length, and stem length of the phylogenetic trees for the NB-,
WT-, and RMS-tumors for MP and ML were compared using a
two-sided Mann-Whitney U test. Statistically significant differ-
ences were seen between MP and ML for NB and WT compared
to RMS for total branch length and stem length. Consequently,

the RMS tumors had a significantly higher total branch length
and stem length than NB and WT (Fig. 3b), indicating a more
complex genomic profile. They also had a mean number of
genetic alterations per biopsy of 20, most of them present in
>50% of cells in a single biopsy thus allowing just one single
solution of the temporal evolution. These two aspects explain the
residual difference between the MP- and ML-trees. To prompt
review of original data when pertinent, the software will warn the
user that there is a contradiction in the data set and the tree might
therefore not be entirely biologically accurate.

Evaluation using simulated data. The reliability of the algorithm
was further evaluated using simulated bulk sampling data. In the
patient data set, the median number of unique subclonal altera-
tions in total across all biopsies were 6 for NB, 5 for WT, and 13
for RMS. To accommodate this large variation, the simulation
was conducted for three different mutation frequencies resulting
in 15, 50, and 100 subclonal genetic alterations distributed across
40,000 virtual tumor cells (Fig. 4a). Virtual biopsies were sampled
randomly from the set of cells while varying the number of
biopsies from 1 to 10, generating a segment file along with a list of
true unique subclones across biopsies for each mutational fre-
quency. Hence, analysis could be performed using DEVOLU-
TION while having the true subclonal composition at hand.

As expected, when increasing the number of biopsies or the
mutation frequency more genetic aberrations were identified. In
addition, a higher number of subclones were correctly allocated
(Fig. 4b). The performance for common clinical scenarios where
merely one or two biopsies per patient is often available, are
visible in Fig. 4b-c. A higher number of overall mutations will
provide the software with more information, which is why the
number of correctly allocated genetic alterations increase with
mutation frequency for the same number of biopsies. Specifically,
the number of positions in the temporal sequence at which
genetic alterations can be allocated decreases with the number of
genetic alterations. The number of unique subclones increases
while the proportion of cells in each biopsy representing each
subclone decreases. However, when more alterations are correctly
allocated, in absolute numbers, the proportion of correctly
allocated alterations will not increase. Throughout the different
mutational frequencies 93 £ 5.5% of the genetic alterations were
correctly allocated in the event matrix (Fig. 4c). Thus, when
increasing the number of biopsies, the absolute number of
correctly allocated genetic alterations increases, but the propor-
tion of correctly allocated alterations does not change signifi-
cantly. The reason for this is that sampling additional locations
will also increase the chance of finding an area with a late genetic
alteration that is hard to correctly place in the phylogeny because
of its low spatial dissemination. We further dissected why not all
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Fig. 3 Structural properties of the generated phylogenetic trees. Violin plots of a the number of branches, b total branch lengths, and ¢ total stem lengths
for neuroblastoma (NB), Wilms tumor (WT), and rhabdomyosarcoma (RMS) using either the maximum likelihood (ML) or parsimony (MP) method for
phylogenetic reconstruction. Significance represented by P-values were calculated using the two-sided Mann-Whitney U-test. The box plots within the
violin plots illustrates the interquartile range. The red dot is the median value. d In 14% of neuroblastomas, 15% of Wilms tumors, and 50% of the 8

rhabdomyosarcomas analyzed, the phylogenetic trees obtained using the ML and MP methods differed from one another. NB1, NB24, WT1, WT2, WT3,
and WT5 are not included in this calculation since they did not display any private genetic alterations. Hence only event matrices could be generated but
not phylogenetic trees. If including these cases, the proportions would be 12.8% for NB and 12.5% for WT. e Venn diagrams of how often discrepancies
between ML/MP trees, back mutations, and parallel evolution occurred together in the same case/tree. Numbers indicate the number of tumors where a
particular contradiction or combination of contradictions occurred. The information used to produce the plots can be found in Supplementary Data 1 and 2.

subclones were correctly allocated. It was hypothesized to occur
due to low spatial dissemination, resulting in the presence of
certain genetic alterations in a subset of biopsies. Excluding all
genetic alterations found in only one single biopsy in fact resulted
in the correct allocation of 99.5 + 0.8% of the genetic alterations
in this mixture of entities (Fig. 4d-e).

Unifying sequencing and SNP-array data reveals additional
evolutionary pathways. DEVOLUTION with subsequent phylo-
genetic reconstruction was then applied to tumors in the pediatric
cancer dataset for which SNP-array as well as sequencing data was
available, including 8 NB (median 3 biopsies ranging from 2 to 7),
9 WT (median 3.5 biopsies ranging from 2 to 7), and 3 RMS
(median 3 biopsies ranging from 2 to 8) (Fig. 5a-h, Supplementary
Figs. 10-13). Phylogenetic trees were constructed based on
sequencing data alone, SNP-array data alone, as well as with both

datasets in unison. Biopsies for which only information from one
of the methods were available, were excluded from the analysis.
NBI18 (Fig. 5a-d) exemplifies how additional information con-
cerning the evolutionary trajectory of the tumor is revealed when
unifying the data types. The sequencing data revealed an APO-
BEC4-mutation in the stem that is not identified using SNP-array.
When analyzing the SNP-array data four different amplicons in
the MYCN region in 2p24 as well as a 17q gain are identified, both
of which are predictors of poor prognosis and aggressive disease in
neuroblastoma that were not identified with sequencing data
alone. Combining the data sets for subclonal deconvolution with
DEVOLUTION conveys a unified picture providing a more
detailed representation of the tumor’s evolution. NB16 (Fig. 5e-h)
is near diploid, disclosed by the diminutive SNP-array tree. The
sequencing data tree, on the other hand, exhibits several muta-
tions. Also, here a unifying picture captures additional aspects of
the tumor evolution with a MYCN-amplification in the stem and a
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Fig. 4 Properties of the simulated bulk genotyping data set along with the performance measure of DEVOLUTION. a Visualization of three simulated
tumors with increasing mutation frequency. To the right of each tumor are cross-sections at five positions (z). Each color represents a subclone harboring a
unique genetic profile. b When increasing the number of biopsies, more genetic alterations and hence subclones, are identified. In addition, the algorithm is
also able to identify more subclones correctly. Each point in the graph is the mean of three consecutive measurements and the error bars consequently the
standard deviation. ¢ The proportion of genetic alterations correctly allocated + 1SD when increasing the number of biopsies from 1 to 10 for three

different mutation frequencies resulting in 10 (green), 50 (blue), and 100 (red) genetic alterations present in the virtual tumor. Each point is the mean of
three iterations. d The proportion of correctly allocated genetic alterations when excluding genetic alterations that were only found in a single biopsy. e
Violin plot showing the spread of the proportion of correctly allocated genetic alterations when including all alterations and when excluding the genetic
alterations only found in one biopsy. The box plots within the violin plots illustrates the interquartile range. The red dot is the median value. The information

used to produce the plots can be found in Supplementary Data 3 and 4.

subclonal NRAS mutation. Analyses of NB3 and NB7 (Supple-
mentary Fig. 10) further emphasizes the importance of including
copy number aberrations in the analyses of pediatric tumors. A
two tailed Mann-Whitney U test was applied to compare the stem
length, number of branches, and branch length for MP and ML
based on data sets consisting of sequencing data, SNP-array, and
sequencing data together with SNP-array data. Significant

differences were found between the stem length for sequencing
data MP/ML versus sequencing data together with SNP-array MP/
ML as well as between the branch lengths for SNP-array MP/ML
versus sequencing data together with SNP-array MP/ML for
neuroblastoma, with trends towards similar differences for the
other tumor types (Supplementary Fig. 13). Consequently, unify-
ing the genetic information obtained from sequencing data and
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SNP-array further elucidates details in evolutionary trajectories.
Combining information from multiple data types also allows for
the construction of phylogenetic trees even if limited data is
obtained with one method on its own.

SciClone30. The publicly available TRACERx data set for non-
small-cell lung cancer (NSCLC) provides WES profiles for each
tumor, some multi-regionally, along with copy number profiles
for a subset of tumors3!. WES data was extracted from 20 tumors
for which multiple biopsies were available along with copy
number profiles for each biopsy. Only cases where a sufficient

Using an external dataset for benchmarking. The performance number of mutations passed quality control for the mutations

of DEVOLUTION was finally evaluated on a typical solid adult
tumor, in comparison to MAGOS, which has been shown to
outperform existing clustering algorithms such as PyClone and

were included, defined as a read depth >10 and total coverage
>200 reads for each mutation across all samples. Further, only
mutations present in diploid segments in all samples in which it
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Fig. 5 Multimodal phylogenetic trees and application on adult cancers. a NB18 including samples from the primary tumor at diagnosis (B) and after
treatment (P4). b Phylogenetic reconstruction using sequencing data alone reveals an APOBEC4 mutation in the stem while € SNP-array identifies a MYCN-
amplification and 17q gain. d Combining the data sets gives a refined description of this tumor’s evolution. @ NB16 including three biopsies from the tumor
before treatment (B1-3). g The tumor is near diploid as seen in the phylogenetic tree comprising the SNP-array data, f while having a larger amount of
somatic point mutations. h Also, here combining the data sets gives a more refined phylogenetic description of the tumor. Panel i-l illustrates a
phylogenetic analysis of the NSCLC CRUKOO38. i A scatterplot illustrating the VAF of the mutations across the biopsies R1 and R2 for the NSCLC
CRUKOO038. The corresponding phylogenetic trees are based on j MAGOS alone, k DEVOLUTION on the events included in the MAGOS analysis (events
present in all samples) as well as I the tree obtained with DEVOLUTION including events present in the individual biopsies. m The number of mutations
includable in analysis using DEVOLUTION compared to MAGOS. n The number of phylogenetic branches produced using DEVOLUTION on the full data
compared to DEVOLUTION on the events includible in the MAGOS analysis. Dotted lines connect data points from the same tumor. P-values were
computed using a two-sided Mann-Whitney U-test. 0 The number of branches using DEVOLUTION on the events includible in the MAGOS analysis
compared to the number of branches obtained in the phylogenetic tree based on nesting of the MAGOS clusters. Dotted lines connect data points from the
same tumor. P-values were computed using a two-sided Mann-Whitney U-test. The box plots within the violin plots illustrates the interquartile range and

the red dot is the median value. The information used to produce the phylogenies can be found in Supplementary Data 5 and 6.

existed were included in the analyses. The 20 NSCLC tumors had
a median of 3.5 (median absolute deviation (MAD) 0.5) biopsies
and 98.25 CNVs per biopsy (MAD 45.375). Since MAGOS can
only analyze somatic point mutations present in all biopsies
analyzed, a truncated data set was constructed fulfilling this
requirement for MAGOS. DEVOLUTION can, on the other
hand, include mutations present in a subset of biopsies as well.
Compared to MAGOS, DEVOLUTION revealed in higher
detail the spatial heterogeneity of the analyzed NSCLCs. As an
example, for CRUK0038 (Fig. 5i-1) in total 26 unique mutations
were present in both biopsies (R1 and R2). MAGOS clustering
(Fig. 5j) resulted in two clusters of similar size (variant allele
frequency (VAF) 0.15 and 0.1, respectively, in R1 and 0.13 and
0.11 in R2). Here, MAGOS assigned the KRAS mutation as being
subclonal despite high VAFs (0.13 in R1 and 0.18 in R2) in both
samples while DEVOLUTION used on the same set of mutations
inferred it as clonal (Fig. 5k). When DEVOLUTION was
employed for analysis also of mutations present in merely a
subset of the biopsies, this revealed a more elaborate phylogenetic
architecture than was possible to obtain with MAGOS (Fig. 51).
The number of mutations possible to include were consistently
higher for DEVOLUTION compared to MAGOS across the
NSCLC (Fig. 5m, Supplementary Figs. 14-17). The total number
of branches in the phylogenetic trees were also significantly
(p <0.0001) higher using DEVOLUTION compared to MAGOS
(Fig. 5n-o, Supplementary Figs. 14-17, Supplementary Data 4)
using a two-sided Mann-Whitney U-test. Also, MAGOS not
including mutations that were regionally localized, occasionally
resulted in mutations specific for metastatic lesions along with
information on the primary tumor origin being disregarded
(Supplementary Fig. 15 CRUKO0013), which may hamper the
analyses of timing of mutations during the metastatic process.

Alternative solutions for the phylogenetic tree structure. There
may be situations where multiple phylogenetic trees are able to
explain the observed data. An algorithm was therefore con-
structed to assess alternative solutions of the evolutionary tra-
jectory of the genetic alterations. In the case where there is more
than one solution, the user is asked if an alternative solution
should be shown in addition to the suggested solution by
DEVOLUTION. In that case, the clusters of genetic alterations
unique for those subclones that have multiple solutions are first
removed from the tree structure and then randomly reshuffled to
produce a new phylogenetic tree, that does not violate any of the
rules in any of the samples or rules provided by the user (Sup-
plementary Figs. 18 and 25, Supplementary Methods). The user is
also provided with a matrix illustrating which subclones in the
tree are reliable and which are uncertain due to multiple possible
evolutionary trajectories.

Discussion

A single biopsy from a tumor can contain multiple distinct
subclones and their prevalence may vary across biopsied areas.
Not addressing this fact when studying cancer cell evolution can
be deleterious and result in incorrect phylogenies!?, stressing the
need for multispatial and temporal sampling to unfold the
genomic landscape. DEVOLUTION thoroughly assesses the
problem by combining information obtained across multiple
biopsied regions throughout the entire subclonal deconvolution,
effectively deconvolving subclones transversing clonal territories,
with the potential to concomitantly include both point mutations
and copy number alteration data. In contrast to other methods
DEVOLUTION allows phylogenetic trees to be constructed using
copy number information alone and integrating information
from multiple biopsied areas throughout the inference procedure.
The algorithm can combine data from SNP-array, TDS, WES,
and WGS, provided the MCF for each genetic alteration is
known, which can be computed based on the log2 ratio for copy
number alterations or variant allele frequencies (VAF) for point
mutations as described extensively elsewhere!7-2122. Since aneu-
ploidy is a common feature across many adult carcinomas and a
majority of childhood cancers, the integration of copy number
aberrations in the phylogeny holds the potential to increase the
understanding of the evolution of these diseases. If needed, there
is also a possibility for user curation, for example if it is known
that certain genetic alterations cannot co-exist.

Evaluating the software using high-throughput SNP-array data
from 253 multitemporal and spatial regions from 56 pediatric
tumors produced phylogenetic trees that were in concordance
with prior knowledge of how chromosomal aberrations occur in
cancer cells'*. Surprisingly, generating phylogenetic trees using
ML and MP predominantly yielded identical tree structures.
When thoroughly examining these trees, contradictions such as
PLC and BMC were identified in the cases where the ML/MP
trees differed, which were found to always be due to disagree-
ments in the original data set. The user is therefore encouraged to
reevaluate this genetic alteration in the input segment file, since it
may be particularly subjected to noise or keep the tree if the
phylogenetic situation is considered biologically plausible. The
extensive evaluation of the two methods did not indicate that the
choice of mathematical method favors a certain type of error in
the phylogenetic tree. We found, however, that the RMS tumors
had a significantly higher branch length compared to NB and
WT, suggesting a more complex genomic profile—compromising
the possibility of robust clonal deconvolution.

Clustering genetic alterations using DBSCANs was sufficient
for analyzing the pediatric tumors incorporated in this study and
the simulated data sets. The size of ¢ can be changed by the user
to increase the flexibility in the clustering, thus optimizing it
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further for the data set at hand to account for noise. The purpose
of the ad hoc clustering mainly is to reduce the computational
complexity and not to find clones and is not to be confused with
the clustering used in dedicated clustering algorithms for clonal
determination. The choice of clustering method can also easily be
changed by the user.

While DEVOLUTION enables further analysis of heterogenous
multiregional and temporal tumorigenic data there are still
venues for improvements. Firstly, using the MCF as an input for
the algorithm stresses the need of a robust pre-analysis of the data
set. The inferred subclones identified could be affected by the
choice of method for computation of the MCF-values. Methods
to compute these has been discussed extensively elsewhere!7-31,32
and novel methods are being developed3334. The simulations
performed in this study show that if the MCF-values are correctly
inferred, the algorithm provides a robust nesting and prediction
of the subclones in the samples. Secondly, for cases where solely
stem events are identified, creating a phylogeny will not provide
the user with additional information since the phylogeny will just
be a horizontal line. Alternatively, for cases where a vast number
of genetic alterations are found, such as in the RMS, the noisiness
of the MCF computation becomes more apparent and events that
cross over one another in sizes across samples becomes more
common, which will aggravate the performance of DEVOLU-
TION. Increasing the number of mutations in your data set will
require a stronger preclustering to reduce the occurrence of PLC
and BMC. Events that cross each other in size across samples are
problematic since there is no way to elucidate in which order they
appeared in the evolutionary history of the tumor. The user is in
these cases advised to revisit the data to make sure it is biologi-
cally feasible, since it implies parallel evolution or back mutations
of the events in question.

Much progress has been made in the field of clonal deconvo-
lution. However, many methods are limited to integrating
information from a single biopsy, such as TITAN and THetA in
addition to only accepting sequence data3>36, PyClone and Sci-
Clone are, however, employable on multiple biopsies, but assume
that all detected CNAs are clonal i.e., present in all cells in each
biopsy, do not infer the evolutionary relationship between the
identified clusters, and require sequence data to operate?122, In
addition, SciClone focuses exclusively on sequence variants in
copy number neutral and loss of heterozygosity (LOH) free
portions of the genome. Both PyClone and SciClone mainly
operate as clustering algorithms and do not infer the order of
genetic alterations. Their output could, in fact, be used as an input
to DEVOLUTION. Hence, DEVOLUTION and PyClone/Sci-
Clone fulfill different purposes and are not meant to exclude one
other. PhyloWGS on the other hand can use both sequence
variants and CNAs to infer a phylogeny and is employable on
multiple samples. However, the algorithm does not integrate
information between samples during the inference procedure,
representing a loss of valuable information, and is limited to WGS
data?0. Also, other methods such as Clomial, LiCHeE, and
SCHISM are specifically designed for SNVs and cannot solely
include CNAs to infer a phylogeny’’-3°, REVOLVER also
requires sequencing data, cannot use CNA-data alone, and is
specifically designed to integrate phylogenies from large cohorts
of patients to infer common trajectories of repeated evolution®’,
SPRI4JCE requires input of sequencing data to infer phylogenetic
treestl.

In contrast to these sequence-oriented applications, MEDICC
is specifically designed for CNA evolution but does not allow
inclusion of point mutations; the inferred phylogenies are solely
sample trees and can only handle copy numbers up to 4%2.
TuMult is also limited to sample trees and cannot integrate point
mutations*>. HATCHet allows for copy number variations but

requires whole genome sequencing data. It looks at copy number
profiles jointly across multiple tumor samples from the same
patient. However, it does not reconstruct a phylogeny of the
identified genetic alterations. The output of HATCHet is number
states and the clone proportion indicating the fraction of cells in a
sample having that particular alteration. Hence the output of the
HATCHET algorithm, which provides an intriguing improve-
ment of current methods, can be used as the input for
DEVOLUTION#4. Taken together, most methods available focus
exclusively on sequencing data and there is currently no available
tool that can reconstruct a phylogenetic tree based on multi-
regional SNP-array data alone, which is a commonly used gen-
otyping method in the clinic. Additionally, many methods
focused on sequence variation only produce clusters of genetic
alterations and their MCF. Event matrices are subsequently often
constructed manually from these MCF estimates, posing a risk for
unintentional subjective bias in the deconvolution process,
especially when integrating information from multiple biopsies.
These methodological gaps are filled by DEVOLUTION, which
provides an objective method to infer phylogenies based on a
priori MCF estimations based on preset rules that are employed
equally across all patient data, hence providing a standardized
framework for inferring phylogenies from bulk genotyping data,
thus allowing tree-to-tree comparison without the risk of bias
from subjective curation.

In summary, we have seen how DEVOLUTION can be used to
analyze the intratumoral heterogeneity as well as the intertumoral
heterogeneity between the primary tumor and metastasis through
evaluation on a dataset of pediatric tumors harboring extensive
aneuploidy. By analyzing a cancer’s phylogenetic tree, an over-
view of its heterogeneity and temporal order of genetic alterations
can be assessed, which can be used to follow the tumor’s evolu-
tionary response to treatment*>4¢ and may aid the identification
of subclones posing a risk of metastasizing, relapsing, or being
resistant to therapy. It may also make it possible to identify
genetic alterations that seem to appear early in the tumor’s
development, posing attractive targets for therapy since they are
present in a large proportion or all cells in the tumor.

Methods

Ethics statement—Pediatric tumor data set. The present study complied with all
relevant laws and ethical guidelines regarding human research participants. Ana-
lysis of human tumors was approved by the Regional Ethics Board of Southern
Sweden (permit nos. 119-2003 and 289-2011). Patients were selected after written
informed consent from themselves, their parents, or legal guardians from a cohort
of pediatric cancer patients treated at the Skane or Karolinska University Hospitals
in Sweden!”.

The software. The major structure of the software (Supplementary Methods,
Supplementary Figs. 19-29) can be divided into five steps

1. Preprocessing of the data.

2. Clustering of genetic alterations based on information from multiregional
sampling from the same patient.

3. Subclonal deconvolution based on information from multiregional sampling
from the same patient.

4. Construction of an event matrix.

5. Usage of a mathematical model to reconstruct the phylogenetic trees, in this
case maximum likelihood and maximum parsimony.

Preprocessing of the data. The input data consist of an ux v dimensional matrix
containing information about the u detected genetic alterations present in each
biopsy. The matrix should also specify the genetic location of each alteration, its
type (gain, loss, cnni etc.) as well as the proportion of cells harboring the alteration
in that particular biopsy (the mutated clone fraction, MCF), represented by the v
columns (Supplementary Table 2). There are multiple dedicated tools that can infer
MCFs from sequencing data such as the clustering algorithms PyClone, SciClone,
and MAGOS, and recently also DeCiFer®? and for structural variants SVclone®?
which could be used as an input for DEVOLUTION. How the MCF can be
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computed from log2 ratios for copy number aberrations as well as VAFs is
described extensively elsewhere!”.

If allelic copy number alterations are considered, the user is advised to choose a
cutoff for the detected genetic alterations in the segment file to be considered
separate events, reflecting the measurement uncertainty regarding the start and end
positions of the genetic alterations. The default cutoff is 1 Mbp. The user can also
choose which data types to include in the analysis. In this way e.g., SNP array and
sequencing data can be analyzed separately for comparison or in unison without
having to separate the matrix manually.

The algorithm scans the MCFs for missing values, indicating that the MCF has
not been able to be determined. If the event is considered to belong to the stem,
based on biological knowledge or additional data, the missing value is replaced by
100%. Amplicon accumulation is an example of such a case when it is not possible
to determine the fraction of cells harboring it since the number is hypervariable. A
stem event is defined as the presence of the alteration in >90% of the cells in all
samples. The alterations containing missing values for MCF are removed entirely if
part of a subclone to not overestimate genetic variation within the tumor.

The clustering algorithm was constructed to localize all unique genetic
alterations throughout the tumor samples. The program loops through the rows of
the data file representing the genetic aberrations. For each row it compares the
genetic alterations and their position on the chromosome to all the other rows,
representing other detected genetic aberrations throughout the samples. If the
events’ start or end positions differ by a certain cutoff, set by the user based on the
measurement uncertainty of the data set, and/or they are different aberration types,
they are considered as two separate events, else they are considered as the same
event (Supplementary Fig. 1). Thus, all conditions stated below must be met for the
algorithm to consider two alterations detected in the same patient to be the same.

1. Alteration 1 and 2 are localized on the same chromosome.
2. Alteration 1 and 2 harbor the same type of alteration.
3. Neither alteration 1 nor 2 should belong to the stem.

Alterations belonging to the stem are always considered as separate events.

Xp =14y, — Ay IIscog

start start

X, = ||A1end - AZ‘»nd | <coe,

In the present study, considering allelic copy number aberrations, the cutoff
(co,,) for measurement uncertainty in the start and end position of the events was
set to 1 Mbp, also constituting the default for DEVOLUTION. Since the
chromosome sizes range from 48 to 250 Mbp, this cutoff constitutes a start and end
point deviation of 0.4-2% of the chromosome length.

Clustering of genetic alterations incorporating information from multiregional
and temporal sampling from the same patient. In our model a tumor is pro-
posed to consist of multiple subpopulations of cells that harbor different sets of
genetic alterations. Each individual alteration is part of a mutation space m; €
{m,, m,... my) comprising all mutations present in the tumor where i,6 € N*
and 6 is the total number of mutations. The mutational profile obtained from the
biopsies thus represent a subset of the total mutation space and is the information
at hand to describe the evolutionary trajectory of the tumor. For this purpose, all
detected mutations are combined with their respective MCF-values into a matrix
representing their distribution across samples (Supplementary Fig. 30). For a
particular tumor, this results in a matrix Ty, with the dimensions M x B, where M
is the total number of unique genetic alterations and B is the total number of
biopsies available. Hence m indicates a certain genetic alteration 6, and b,
represents a biopsy w. The value ¢4, consequently corresponds to the MCF for an
alteration, mg, in a sample, b, where tg, € [0,100] i.e., it is bound between 0 and
100%. This can be written as

ta bt s
by ty . L

Ty = | . . . 1)
tr tmz - tup

where ts, € [0,100],8 € {1, ... ,M},w € {1, ... ,B}and §,w € N

In order to generate phylogenetic trees illustrating the relationship between the
subclones present in the tumor, which aberrations reside in the same cells as well as
which subpopulations of cells the tumor consist of must be determined. To solve
this, the idea is that a true subclone of cells should form a cluster of unique genetic
alterations that persist is adopted. They should remain grouped irrespective of
inclusion of new data from an additional region of the primary tumor or
metastasis. Alterations that seem to follow each other are more likely to be in the
same cells. The first step is thus to yield a clustering to identify groups of genetic
alterations, uniquely identifying a certain subclone. The subsequent step is to
determine the temporal order of the alterations in question, since each subclone
will represent a linear combination of the clusters identified. Note that for
DEVOLUTION the clustering is only used to reduce the computational complexity
for the upcoming subclonal deconvolution algorithm. Mostly alterations are
clustered that show similar MCF in all available biopsies. This is not to be confused
with the more intricate clustering methods used in for example SciClone.

Density-based clustering techniques such as DBSCAN?7 are superior at
unsupervised clustering of non-uniform clusters. Furthermore, the number of
clusters does not have to be specified beforehand, which you have to do with many
other established clustering algorithms. In addition, it does only have two
hyperparameters named minPts, which is the minimal number of points that is
allowed in a cluster, and € representing the radius in which points i.e., the genetic
alterations’ position in the B-dimensional space, are included, where B is the total
number of biopsies. The default value of € is 0.5 for DEVOLUTION if no other
value is provided by the user through the input command to the function. Running
the algorithm also yields a k-distance-graph which illustrates the distance to the
minPts-1 = k nearest neighbor along with a designation of where € = 0.5 is
located. The optimal value is where this plot shows an elbow. If the default value
differs from this, for this particular data set, the user can provide the input function
with a new epsilon, overriding the default parameter, for optimal clustering. The
clustering method is well-confined within the algorithm and is therefore easy to
replace with another method if the user finds so suiting?’.

The algorithm provides a matrix containing all clusters of genetic alterations.
Let Cy,y be the matrix representing the clusters of genetic alterations. It has the
dimensions Kx N where K is the number of genetic alterations in the cluster and N
is the cluster number. All matrix positions ¢, #0 are unique i.e., the same genetic
alteration cannot belong to multiple clusters.

Cii G2 -GN
Q1 G2 0 GON
Cieny = . . . . (2)
k1 k2 - CkN
where ¢, € mg A ¢, %y, (Vk,e € {1, ... , K} &n,d €{1,... ,N} A ¢,#0)

A matrix representing the clusters present in each biopsy and their size
determined by the mean of the aberrations in the cluster is also constructed.

Zyp L - LB
Ly Zyp - Dy

Zep = wherez, € [0,100] (3)
Zcqi Zcp - Zcw

where c is a specific cluster of aberrations, b the biopsy and z, the size of the
cluster ¢ in sample b.

Subclonal deconvolution based on information from multiple samples from
the same patient. The space of a single biopsy is 100% and the space of all biopsies
can thus be represented by a matrix where p is the partitioning of the available
space in the biopsy and s, is the space available in a specific partitioning p in
biopsy b. Initially s, j, = 100 A's;}, = 0.

Si1 S12 .- SiB
S21 S22 -+ S2B P

Spxp = wheress,, € [0,100]and p; 55 =100Abefl, ..., B} e N*
Sp1 Spp .- Sp

4)

The clusters of aberrations in each biopsy, as supplied by Z 4, are allocated to
the space in decreasing order, altering the magnitude of the spaces in Sp,; based on
the MCF of the clusters allocated to it.

The allocation iteration algorithm is initially conducted considering each
sample individually, resulting in a matrix encompassing all possible allocations of
each cluster in every biopsy. Subsequently, all possible allocations throughout the
samples are addressed to minimize the occurrence of parallel evolution. The
algorithm hence tries to produce one uniform solution of the temporal order of
events that does not contradict any information provided in the biopsies. The
solution should be in concordance to every biopsy provided. If not possible, parallel
evolution or back mutations will occur in the final phylogenetic tree and the user is
advised to reconsider the original data set, since it may be biologically unlikely. It
may be possible to allocate a cluster to multiple positions without producing
contradicting temporal orders in any of the samples, for which the largest available
space assumption is employed to make an objective decision, based on the
presumption that the mutational frequency is equal in all cells within the biopsy no
matter how many mutations they have. The cluster will consequently be placed as a
descendant to the cluster constituting the largest proportion of the biopsy, in the
absence of further biological information steering it elsewhere. Clusters presenting
with only one possible allocation in a biopsy provides especially valuable
information concerning the temporal order of events, e.g., having a group of
alterations that are all present in all cells in a biopsy clearly indicates that there
exists a group of cells in the tumor harboring all of these alterations, aiding the
temporal allocation in other samples where these alterations may present
themselves as subclonal. DEVOLUTION does allow some overlap in cellular
frequency in the allocation algorithm taking into consideration the measurement
uncertainty of MCF. This iterative computation results in the subclones present in
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the biopsies along with an estimation of their size and distribution across the
samples.

Incorporating user-controlled rules for avoiding imposition of illicit biological
trajectories. Some genetic aberrations present in the data set might be known to
never occur in the same cell for some well-known biological reason. Such con-
straints should optimally be supplied to the algorithm to ensure biologically
plausible solutions. The user can therefore provide the DEVOLUTION algorithm
with a matrix indicating which genetic aberrations in the data set that cannot be
placed after one another. The first column represents a mother genetic alteration
that the daughter alteration specified in the second column, cannot have (Sup-
plementary Fig. 31). The subclonal deconvolution algorithm extracts a list for each
genetic alteration containing information about in how many of the samples it can
be allocated after a certain cluster. There might be multiple possible solutions,
equally prevalent. In this instance the matrix containing information about illicit
biological orders can aid the program in taking a decision regarding which of these
allocations are less likely, subsequently discarding them. These rules will thus only
be employed if the data set allows the genetic alterations to be placed in any other
way. If the only possible way for the events to be allocated is to place them as
descendants, the user will be advised to revise the original data set. No such rules
were integrated in the analysis of the 56 pediatric tumors in the present study.

Construction of an event matrix. Based on the estimated subclonal composition,
an event matrix E = [a,, 4, ... a;] was constructed illustrating the distribution of
genetic alterations across the identified subclones. Each 4; is binary vector
belonging to subclone i. Each row represents a genetic alteration indicated with a 1
if present or 0 if absent in the subclone. The event matrix is used as the foundation
for phylogenetic tree generation, illustrating the relationship between the subclones
within the tumor.

Reconstruction of phylogenetic trees. In order to generate the phylogenetic trees,
the genetic distances between all the subclones must be computed. Here, the
Hamming distance between the subclones in the event matrix was used to assess a
distance matrix displaying the genetic distance between each of the subclones. It
computes the distance between two vectors by adding all positions in which they
differ from one another, in this case the number of genetic alterations or positions
in the event matrix the entities differ from one another, resulting in branch length
in units of number of aberrations. No bias in the estimation of branch lengths were
seen for ML in this study.

The user can choose in which entity the phylogenetic tree is to be rooted in. The
default is a normal cell containing no genetic alterations. The event matrix is then
transformed into phyDat format using the function phydatevent. This is the data
class needed for phylogenetic analysis using the R package phangorn?’.

In the next step the maximum likelihood and maximum parsimony algorithms
were used in order to reconstruct phylogenetic trees based on the event matrices.
Both of which are well established methods.

The maximum parsimony method assumes that genetic alterations are rare and
reconstructs the tree that requires the smallest number of evolutionary steps to
explain the data, thus minimizing the occurrence of homoplasy, but does not forbid
it. There are although multiple examples of homoplasy across species, such as the
extensive convergent and regressive evolution of the traits of the cave fish*3. In the
context of point mutations and intrachromosomal copy number aberrations this is
rare, but evolutionary pressures could possibly result in selection of similar
phenotypical manifestations while maintaining an unchanged genotype. The
maximum likelihood method strives to find the tree that maximizes the likelihood
of obtaining our data set. The maximum likelihood trees were reconstructed using
the pml algorithm in the package phangorn?’. First a Hamming distance matrix
was calculated from the event matrix which was used to obtain an initial tree given
by the neighbor joining method. The initial tree as well as the initial event matrix
was used as input variables in the pml algorithm. This function returns an object
containing the tree parameters, the data as well as the likelihood for that
phylogenetic tree. In order to optimize the tree parameters further, the function
optim.pml was used in combination with the Jukes Cantor model, assuming equal
transition rates and equilibrium frequencies for all states, and optEdge = TRUE.
The tree was subsequently rooted in a constructed cell having all the events shared
between all subclones. Since the model used is time reversible the choice of the root
does not influence the computed likelihood*®. The tree was visualized using the
ggtree package in R%0.

The maximum parsimony trees were constructed using the parsimony
ratchet algorithm (pratchet) in the R package phangorn with the Fitch algorithm®!.
Using the acctran algorithm the branch lengths and the ancestral character
probability distributions were obtained. The trees were rooted in a cell containing
no alterations.

Performance testing using simulated bulk sampling data. In order to further
assess the reliability of the algorithm, it was evaluated using simulated bulk gen-
otyping data using a basic 3D-lattice based, stochastic model of tumor growth. The
simulation is initiated imagining a cell having one single genetic aberration,
representing a stem event, which will be conveyed to all cells comprising the virtual

tumor. In each time unit one cell can proliferate. When a cell has been chosen for
proliferation a certain inherent mutation frequency determines whether the cell
will mutate or not. If not, two cells identical to the mother cell are obtained,
otherwise a stochastic genetic copy number aberration algorithm is used to ran-
domly select a genetic alteration (copy number alteration), conjointly considering
the chromosome boundaries and sizes. Making use of a random number generator,
a chromosome is randomly selected, then a start and end position and finally the
type of event. The result is one cell identical to the mother and one cell harboring
one additional genetic aberration. The spatial orientation of the cells is also con-
sidered where each cell is assumed to have 26 neighbors and two cells cannot
occupy the same position. The position of the second daughter cell is randomly
selected among the available neighbor positions. The simulation was conducted
generating 40,000 cells giving a simple 3D lattice structure illustrating the spatial
intratumoral heterogeneity for three different mutation frequencies (Fig. 4a). Note
that only the fractions of cells harboring a certain genetic alteration is of impor-
tance in this model and not any absolute numbers. The goal is not to correctly
simulate tumor growth but to obtain a random mixture of entities to be demixed
using DEVOLUTION. The mutation frequency chosen, 10/40,000, 50/40,000, and
100/40,000, is not biologically accurate but chosen such that a certain number of
mutations will appear during the simulation, resulting in segment files resembling
the MCF-distributions seen in the patient cases.

Virtual biopsies were drawn from the set of simulated entities while varying the
number of biopsies from 1 to 10. The biopsies were drawn randomly from different
parts of the simulated entities. Values for x, y, and the z coordinates were randomly
chosen while fulfilling

xe [xmimxmuxLy € [ymin’ymax]‘rz € [Zminﬁzmax] (5)

VE+y 22 e [me oy ] €R (6)

where

r _ Xmax + Xmin + Ymax + Ymin + Zmax + Zmin (7)
mean 6

Based on the position chosen, the entities within a radius of 2 units were
extracted and the fraction of cells harboring each of the alterations found was
calculated. The data from each cell can be used to create artificial bulk sampling
with MCFs as well as single cell data. Hence, the segment files can be analyzed
while having the true subclones at hand for comparison. DEVOLUTION was
evaluated using 1-10 biopsies for the three tumors.

Computation of the mutated clone fraction (MCF). For each tumor, clustering
was made with MAGOS. Since the clusters obtained are not subclones but merely
collections of mutations with similar VAF, manual nesting was subsequently
performed. For analyses with DEVOLUTION, MCF values were computed. The
mean sample fraction for each mutation was computed as

VAF ( (N pgant + CNyiayge ) X TCF +2(1 = TCF))
M

MSF = (®)

where CN, iy is the copy number of the mutant allele, CN 4,y is the copy
number of the wildtype allele, M is the number of mutated alleles, TCF is the tumor
cell fraction, and the VAF is the variant allele frequency of the mutation. For the
data set, the TCF was determined by computing the maximum closest to VAF 0.5
for the density plot of the VAF. Multiplying this by 2 gives the TCF. Subsequently,
the MCF was computed as

MCF = —— 9)

A segment file for each tumor was constructed which was used as an input to
DEVOLUTION. The MCF computations were also performed for all events that
passed quality control i.e., also the private mutations excluded in the MAGOS
analysis. Phylogenetic trees were thus reconstructed based on the MAGOS cluster
nesting, the DEVOLUTION output using the mutations feasible to cluster with
MAGOS as well as the DEVOLUTION output on all mutations that passed QC
(Supplementary Figs. 14-17).

Statistics and reproducibility. For phylogenetic tree characteristics, significance
was tested using the Mann-Whitney U-test (two-tailed). The stem lengths, total
branch lengths, and number of branches between individual patients are assumed
to be independent of each other and not normal distributed. In the violin plots in
Figs. 3a-c, 4e, and 5n, o and Supplementary Fig. 13 box plots illustrate the
interquartile range and the red dot the median value.

All simulation points were repeated at least three times and the standard
deviation are illustrated with bars in Fig. 4c, d.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data generated or analyzed during this study are included in this article as Supplementary
Data 1-6. The neuroblastoma, Wilms tumor, and rhabdomyosarcoma data are also part of a
previous study!”. WES data from the TRACERx tumors were extracted from cBioPortal:
http://www.cbioportal.org/study/summary?id=nsclc_tracerx_2017 copy number summaries
were available in the supplementary tables of the corresponding study>!.

Code availability

The code is freely available and relies on R 4.0.2 or later. Setup instructions and
dependencies can be found on github. https://github.com/NatalieKAndersson/
DEVOLUTION.
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