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Abstract

Introduction: The cellular prion protein (PrPC) is well known for its pathogenic roles in prion 

diseases, several other neurodegenerative diseases (such as Alzheimer’s disease), and multiple 

types of cancer, but the beneficial aspects of PrPC and its cleavage products received much less 

attention.

Areas covered: Here the authors will systematically review the literatures on the negative 

as well as protective aspects of PrPC and its derivatives (especially PrP N-terminal N1 peptide 

and shed PrP). The authors will dissect the current findings on N1 and shed PrP, including 

evidence for their neuroprotective effects, the categories of PrPC cleavage, and numerous cleavage 

enzymes involved. The authors will also discuss the protective effects and therapeutic potentials of 

PrPC-rich exosomes. The cited articles were obtained from extensive PubMed searches of recent 

literature, including peer-reviewed original articles and review articles.

Expert Opinion: PrP and its N-terminal fragments have strong neuroprotective activities 

that should be explored for therapeutics and prophylactics development against prion disease, 

Alzheimer’s disease and a few other neurodegenerative diseases. The strategies to develop PrP­

based therapeutics and prophylactics for these neurodegenerative diseases will be discussed in a 

companion article (Part II).
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1. Overview of cellular PrP

The cellular prion protein (PrPC) is known for its essential roles in prion diseases (PrD), 

a group of fatal and transmissible neurodegenerative diseases affecting humans and several 

mammal species1–3. Common PrD includes various forms of Creutzfeldt-Jakob disease 

(CJD) in humans, bovine spongiform encephalopathy in cattle, scrapie in goats and sheep, 

and chronic wasting disease in cervids (deer, elk, moose).

PrPC has been implicated in a large number of biological or pathological processes. Its 

diverse biological roles have been recently reviewed4–5, including neuronal survival6–8, 

stress protection9–14, inhibition of neuronal excitation and copper homeostasis15–19, 

peripheral myelin maintenance20, cellular proliferation and differentiation8, 21–24, immune 

function25–26, iron uptake27, and circadian rhythm28–30; but some of the implied functions 

are questioned4. Pathologically, PrPC is a critical player in several neurodegenerative 

protein-misfolding diseases. It is essential for both prion replication and prion pathogenesis 

in PrD31. It has also been reported to serve as the receptor for cytotoxic amyloid-β (Aβ) 

oligomers in Alzheimer’s disease (AD), toxic soluble aggregates of Tau in AD and a 

few other common neurodegenerative diseases involving Tau32–33 and α-synuclein (αSyn) 

oligomers that are critical in Parkinson’s disease (PD) and other synucleinopathies34–35. 

It is worth noting that a recent article reports no binding of PrPC to αSyn oligomers and 

the absence of PrPC had no effect on the toxicity of αSyn oligomers36, raising questions 

on the role of PrPC in αSyn toxicity. Knocking-out or knocking-down the PrP gene 

expression showed only limited negative effects in mice37–40 or cattle41. Goats naturally 

devoid of PrP also appear largely healthy42. Some modest defects such as progressive 

demyelinating neuropathy of the peripheral nervous system20,43, impaired hippocampus­

dependent spatial-learning and long-term potentiation44, and sensitivity to oxidative stress45 

were later detected in PrP-null goat and/or mice. These factors make PrPC a highly attractive 

target for development of prevention and therapeutics against PrD, AD, PD, and several 

other neurodegenerative diseases.

PrPC is a universally expressed glycoprotein that attaches to the outer layer of the cell 

membrane via a glycosylphosphatidylinositol (GPI) anchor, with highest expressions in 

the nervous system, muscles, and lymphoid tissues46–51 and expression in developing 

embryos52. The mature mouse PrPC is ~210 amino acids long, consisting of a flexible 

unstructured N-terminal domain (residues 23–120), a highly structured globular C-terminal 

domain (residues 121–231) with three α-helices, two β-sheets, a disulfide bond, two Asn­

linked glycans, and a GPI anchor53–55 (Figure 1). PrPC undergoes various cleavages under 

physiological and pathological conditions, some of which are beneficial and protective. 

During de novo prion formation and seeded prion replication, PrPC undergoes a not well 

understood process of conformational changes into the misfolded aggregated prion or 

scrapie form (PrPSc)56–57. One study suggests that intracellular prion conversion occurs 

primarily in the multivesicular bodies58 that derive exosomes. PrPSc in turn leads to 

neural damages and eventually clinical symptoms and death in a progressive process that 

requires cell surface PrPC and involves the cytotoxic oligomeric PrPSc 59, but the detailed 

mechanisms are still unclear3. Recent studies show that prion infectivity and prion toxicity 
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can be separated60 and high-density oligomeric PrPs found in rapidly progressive AD patient 

brains are neurotoxic and may contribute to pathogenesis61.

Here we review the various protective forms of PrPC (including its cleavage and derivative 

products) as well as the enzymes involved in the cleavages, with an emphasis on the 

N-terminal fragment derived from the PrPC α-cleavage, the shed full-length PrP derived 

from PrPC shedding, and PrPC-containing exosomes.

2. Beneficial PrP forms and protective PrP processing

There are three main types of PrPC processing: α-cleavage, β-cleavage, and shedding 

(Figure 1B). The α-cleavage occurs at the 110/111 or 111/112 peptide bond of the 

hydrophobic central region of PrP, resulting in the membrane-attached C-terminal C1 

fragment62 and the N-terminal N1 peptide (88–89 amino acid residues) released to the 

extracellular space. The β-cleavage cuts towards the C-terminal end of the octapeptide 

repeat region, creating the membrane-attached C2 fragment and releasing the N-terminal N2 

fragment62–64. Shedding of PrP is achieved through cleavages near the C-terminus of PrPC 

(residues 228–231) or within the GPI anchor, releasing anchorless full length PrPC from the 

cell surface65–68.

As will be discussed in detail below, α-cleavage and shedding of PrPC and the resulting 

PrP peptides or anchorless PrP protein are beneficial (Figure 2). The β-cleavage of PrPC 

also seems to be cytoprotective. The β-cleavage of PrPC was reported to involve reactive 

oxygen species (ROS), and it is thought to be an early and critical event in protection against 

oxidative stress, since cells expressing PrP mutants incapable of β-cleavage had increased 

sensitivity to oxidative stress when challenged with H2O2 and Cu2+ 69. The C-terminal 

β-cleavage product (C2) does not appear to have significant protective effects, but one recent 

report shows that both N1 and N2 reduce reactive oxygen species and lead to decreased 

growth and differentiation of murine neural stem cells70. Recombinant ADAM8 has also 

been reported to cut within the octapeptide repeat region of recombinant PrP in vitro and this 

cleavage is influenced by Cu2+ and Zn2+ 71, but its biological relevance remains to be seen. 

Wik et al.72 suggested that suppression of β-cleavage may make more PrPC available for the 

protective α-cleavage and shedding processes.

2.1 α-Cleavage of PrP and the cleavage products

The α-cleavage appears to be the most beneficial PrPC processing. It cleaves at the central 

hydrophobic region of PrPC to produce the N-terminal N1 fragment and the C-terminal 

C1 fragment (Figure 1B), leading to reduction of the amount of cell surface PrPC that is 

not only the substrate for prion replication but also a key mediator of toxicity in prion 

diseases, AD, and other neurodegenerative diseases. Of the two fragments produced, N1 

is neuroprotective73–74 (see details in section 2.4) and murine C1 inhibits prion replication 

in a dominant-negative fashion mice75–76. A recent report shows that a highly conserved 

seven residue deletion (Δ190–196) of the bovine C1 fragment leads to spontaneous prions 

from the mutant C1 in the RK13 rabbit kidney cells77, but such spontaneous mutant C1 

prions failed to infect cells expressing wild type PrP77, further confirming the resistance 

of wild type C1 to prion conversion. Nevertheless, the prion convertibility of C1 from 
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humans and other species has not been investigated. C1 also has a negative side: it has 

been reported to upregulate the transcription and activity of p53 and potentiate caspase 3 

activation induced by staurosporin (a proapoptotic molecule) in HEK293 cells78. Consistent 

with these observations, we found that p53 is involved in the primary myopathy in a mouse 

model induced to overexpress wild type PrP and accumulate high levels of C1 in the skeletal 

muscles79–80. Fortunately, the negative activities of C1 may be counteracted by N1 through 

down-regulating p53 expression73. Moreover, transgenic mice overexpressing PrP(Δ23–111) 

that corresponds to GPI-anchored C1 did not appear to exhibit neurological deficits or 

histological lesions75, consistent with the notion that C1 may be pro-apoptotic only under 

apoptotic stimuli and is nontoxic under normal conditions81. The α-cleavage of PrPC also 

has additional biological functions: Bremer et al. reported that the α-cleavage of PrPC is 

essential for myelin maintenance in peripheral nerves after examining four independent 

PrP-knockout mouse strains20.

The α-cleavage of PrP was first discovered as the cleavage of the hydrophobic region 

at the 110/111 or 111/112 peptide bond, resulting in a GPI-anchored C1 fragment62. A 

later study using TSM1 neurons and HEK293 cells overexpressing wild-type (wt) PrPC 

and 3F4-tagged murine PrPC revealed that cellular PrP can be cleaved to release a soluble 

11–12-kDa N-terminal peptide termed N182. This α-cleavage occurs within the hydrophobic 

central domain of PrP (residues 105–120) since its deletion abolishes α-cleavage and partial 

deletion led to reduction in α-cleavage proportional to the size of the deletions83. However, 

the cleavage site itself is unexpectedly tolerant to sequence variations as long as overall 

hydrophobicity is maintained83. The sequence variation tolerance of the α-cleavage site may 

be an evolutionarily advantageous feature, as the α-cleavage of PrPC confers protection to 

neurons and other cell types.

Two studies suggest that the α-cleavage occurs late in the secretory pathway and 

several enzymes may be involved, most notably ADAM9, ADAM10, and ADAM1784–85. 

Inhibition, overexpression, or knock-out of ADAM10 or ADAM17 in cultured cells 

revealed that ADAM10 contributes to constitutive N1 production while ADAM17 (also 

named TACE) mainly participates in regulated N1 formation85. A later report found that 

reducing endogenous ADAM9 expression using antisense cDNA lowered N1 secretion 

and co-expression of ADAM10 and ADAM9 led to enhanced α-cleavage in human PrP­

expressing fibroblasts84. However, transient transfection of ADAM9 into primary fibroblasts 

derived from ADAM10 KO mice failed to increase N1 production, suggesting that ADAM9 

likely indirectly regulates the α-cleavage by modulating ADAM10 activity through shedding 

of the ADAM10 ectodomain. Forced PrP dimerization has also been reported to enhance the 

α-cleavage of mouse PrPC 86, but it is still unclear whether physiological PrP dimers confer 

the same effect.

Some reports cast doubts on the role of ADAM9, ADAM10 or ADAM17 in the α-cleavage 

of PrPC. Taylor et al.68 reported that the overexpression of ADAM9, ADAM10 or ADAM17, 

or the siRNA knockdown of ADAM9 and ADAM10 in murine PrPC expressing HEK cells 

did not alter the amount of C1 fragment relative to full-length PrPC, indicating a lack 

of influence of these three ADAMs on the α-cleavage. This was corroborated by a later 

study from Wik and colleagues72 showing that the addition of σ-phenanthroline (a general 
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ADAM inhibitor) and TAPI-1 (an ADAM17 inhibitor) to bovine PrPC-expressing baby 

hamster kidney-21 (BHK) cells did not reduce α-cleavage by measuring the kinetics of the 

generation of the C1 fragment. It is worth noting these two studies both quantified C1 to 

measure α-cleavage activity. In addition, Altmeppen et al.87 showed that the α-cleavage of 

PrPC as measured by both C1 and N1 levels was not changed in primary neurons derived 

from neuron-specific ADAM10-KO mice and concluded that ADAM10 is not involved in 

the α-cleavage of PrPC. On the other hand, McDonald et al.71 showed that recombinant 

ADAM10 and ADAM17 can both cleave recombinant murine PrP in vitro at the 119/120 

peptide bond (termed α3-cleavage), which is 9–10 residues downstream of the normal 

α-cleavage site, but such α3-cleavage has not been confirmed in cells or animals.

We have reported that ADAM8 is the primary α-cleavage enzyme for PrPC in muscles 

based on in vitro experiments using recombinant PrP and recombinant ADAM8 as well as 

data from cultured muscle cell line (C2C12) and muscle tissues of PrP transgenic mice and 

ADAM8 knockout mice88. We found that ADAM8 protein level positively correlates with 

C1 production in the skeletal muscles of mice and in the C2C12 myoblast cell line, and that 

recombinant ADAM8 directly cleaved recombinant PrP to generate the C1 fragment in vitro. 

ADAM8 also contributes to the α-cleavage of PrPC in the brain, although not as the primary 

α-secretase (Liang and Kong, unpublished data). McDonald et al.71 studied PrP α-cleavage 

with recombinant mouse PrP and recombinant ADAM8, ADAM10 and ADAM17. They 

found that, in addition to cleaving at the previously reported α-cleavage site (109/110) 

(termed α1-cleavage), ADAM8 can also cut within the octapeptide repeats and at 116/117 

(termed α2-cleavage), and the cleavage site preference is influenced by Cu2+ and Zn2+. The 

novel ADAM8 cleavage sites have not been confirmed by studies in cells or animals.

The mechanisms underlying the contradicting results concerning the roles of ADAM9, 

ADAM10 and ADAM17 in α-cleavage of PrPC are unclear. Cissé and colleagues84 

and Vincent and colleagues85 (2001) both concluded that ADAM10 and ADAM17 are 

implicated in the α-cleavage, based on their data using the SAF-32 antibody (recognizing 

PrP amino acids [aa] 79–92) to detect N1. In contrast, Taylor and colleagues68 used the 6H4 

antibody (recognizing PrP aa144–152) to detect C1 and reached the opposite conclusion, 

i.e., ADAM9, ADAM10, and ADAM17 are not involved. On the other hand, Altmeppen 

and colleagues87 used the POM2 antibody (recognizing PrP octarepeat region) to detect N1 

and used the POM1 antibody (recognizing PrP C-terminal aa121–230) to detect C1 and 

concluded that ADAM10 is not involved in α-cleavage. N1 is easily degraded and difficult 

to quantify whereas C1 is much more stable and easier to measure accurately. If the unusual 

α-cleavages by ADAM8, ADAM10 and ADAM17 reported by McDonald et al.71 can be 

confirmed in cell and animal studies, it will establish the roles of ADAM10 and ADAM17 

in the α-cleavage of PrPC and help reconcile the conflicting findings in the other cell and 

animal studies utilizing various monoclonal anti-PrP antibodies. Concurrent measurements 

of both N1 and C1 with appropriate anti-PrP antibodies, or revisiting the N1 measurements 

under stringent conditions, may also help resolve the controversy.

Alternatively, it is conceivable that, when one α-cleavage enzyme (such as ADAM10) is 

knocked down, the very limited impact on overall α-cleavage could be due to compensation 

from another α-cleavage enzyme(s) that cleaves at the same site or a slightly different 
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location in the hydrophobic region. In addition, enhancing the activity of one α-cleavage 

enzyme may fail to augment overall α-cleavage because another α-cleavage enzyme(s) may 

be downregulated concurrently.

In addition, it is entirely possible, even expected, that the enzyme(s) responsible for the 

α-cleavage of PrPC may vary with the cell types and their tissue environment. Further 

investigations that measure both N1 and C1 in different cell types in vitro and in vivo will be 

necessary to fully identify all the enzymes involved in the crucial α-cleavage of PrPC in each 

cell type.

2.2 Shedding of PrP and extracellular full-length PrP

Shedding of PrPC from the cell surface increases extracellular PrP levels with a concurrent 

decrease of cell surface PrPC, both leading to protection against the toxicity of misfolded 

protein oligomers in AD and other diseases. PrPC shedding is the process in which cell 

surface PrPC is cleaved near the GPI anchor by a secretase-like protease enzyme termed 

“sheddase” or at the GPI anchor by phospholipases, releasing an anchorless full-length 

PrPC molecule into the extracellular space87. Mass spectrometric analysis shows that this 

shedding cleavage takes place just three amino acids away from the GPI anchor, between 

residues 228/22987. Several studies suggest that ADAM9 and ADAM10 are involved in PrP 

shedding68,71,87,89.

Using recombinant mouse PrP and recombinant ADAM8, ADAM10 and ADAM17, 

McDonald et al.71 demonstrated that ADAM10 can cleave PrP near its C-terminal end in test 

tubes, but ADAM8 and ADAM17 showed no shedding activities. Through overexpression 

and siRNA knockdown experiments in HEK cells, Taylor and colleagues68 found that 

ADAM9 and ADAM10, but not ADAM17, are implicated in PrP shedding. Overexpression 

of ADAM10 alone led to a significant increase in the amount of shed PrP in the conditioned 

cell culture medium, and co-overexpression of ADAM9 and ADAM10 led to even more 

shed PrP, while overexpression of ADAM17 had no significant effect on PrP shedding. 

Moreover, siRNA knockdown of endogenous ADAM enzymes found that the knockdown of 

either ADAM9 or ADAM10 reduced the amount of shed PrP in the conditioned medium. In 

contrast, when ADAM10 is knocked down, ADAM9 overexpression did not affect shedding 

of PrP, indicating that the effect of ADAM9 on PrP shedding is achieved through modulating 

the activity of ADAM10. In addition, Altmeppen and colleagues87 found that there was 

a 77% decrease of shed PrPC in the culture medium of primary neurons derived from 

neuron-specific ADAM10 KO mice when compared to the littermate controls. Expression of 

ADAM10 from a plasmid in the ADAM10-KO neurons restored PrPC shedding. Together 

these findings confirm that ADAM10 is the primary sheddase for PrPC and ADAM9 affects 

PrPC shedding through modulating ADAM10.

2.3 Full length PrP

2.3.1 Protective effects of full length PrP—Full length PrPC has been reported to 

possess protective effects in vitro and in vivo. Cell surface PrPC enhances neuronal survival 

through activation of the cAMP-dependent PKA pathway6–8. Cell surface PrPC serves as a 

trophic receptor that activates cAMP/protein kinase A (PKA) to protect against anisomycin­
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induced cell death in cell cultures of retinal explants6 and staurosporine-induced cell death 

in primary hippocampal slices8. The protective effect of PrPC is also corroborated by Chen 

and colleagues7, who observed increased apoptosis of primary cerebellar neurons from 

PrP-null mice compared to primary cerebellar neurons from wt mice. PrPC was also reported 

to be necessary for recombinant stress-inducible protein 1 (STI1)-induced neuritogenesis 

through activating the MAPK pathway in primary hippocampal slices8.

Full length PrPC has also been observed to be protective under cellular stress. PrPC levels 

were found to be elevated in neuronal soma in the gray matter in ischemic or hypoxic human 

or mouse brains and the absence of PrPC led to bigger infarct in ischemic mouse brains10. 

An independent study confirmed this report and found that these protective effects required 

the N-terminal octarepeat region of PrPC 11. In addition, PrPC has been reported to enhance 

the cell viability through Fyn kinase activation in immortalized hippocampal neuronal cells 

exposed to hydrogen peroxide12 and in neuronal cells (SH-SY5Y and N2a) treated with 

kainite (an excitotoxin)13.

Axonal PrPC that can undergo α-cleavage appears to play an important role in 

peripheral myelin maintenance, since axon morphometry analysis demonstrated that 

all four independent PrPC-deficient mouse strains experience chronic demyelinating 

polyneuropathy20. In addition, α-cleavage of PrPC was found to be elevated in ScN2a 

neuroblastoma cells treated with soluble αSyn aggregates, which may have contributed to 

the observed enhanced clearance of the toxic αSyn aggregates90.

PrPC monomers can also form dimers13,91 under physiological conditions, through 

interactions of the hydrophobic central domain86,92. PrP dimerization seems to be beneficial 

through promoting PrPC α-cleavage86, mediating stress protective effects13, and inhibiting 

prion replication in a dominant-negative manner93.

Transgenic expression of a dimeric PrP-immunoglobulin Fcγ fusion protein was also 

shown to delay PrPSc accumulation and disease onset in wildtype mice intracerebrally or 

intraperitoneally inoculated with prions94.

2.3.2 The negative roles of full-length PrPC—Given the protective effects of PrPC, 

it is tempting to adopt overexpression of full-length PrPC as a therapeutic approach. 

However, this strategy carries multiple risks, since PrPC plays a negative role in several 

neurodegenerative diseases (such as PrD and AD) as well as in several types of cancer and 

other diseases.

PrPC has been reported to be a critical toxicity mediator for Aβ aggregates in AD. PrPC 

binds to synthetic or AD brain-derived Aβ and shows the highest affinity for its oligomeric 

form over monomers and fibrils95–97. The crucial sites for PrPC-Aβ interaction in solutions 

in vitro have been determined as the N-terminal residues 23–27 and the ~92–110 region of 

PrPC 98. To mediate Aβ toxicity, PrPC binds to metabotropic glutamate receptor 5 (mGluR5) 

on the cell surface to form co-receptors for Aβ oligomers99 and mediate Aβ toxicity100. 

The PrPC-mGluR5 co-receptor triggers toxic signaling pathways upon binding with Aβ 
oligomers, activating the Fyn kinase (a member of the Src family kinases)99,101, which in 
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turn causes activation of NMDAR through phosphorylation of its NR2B subunit, leading to 

calcium influx and cell death101.

Moreover, Aβ-induced lactate dehydrogenase (LDH) release and dendritic spine loss 

also require the PrPC-Aβ oligomer-mGluR5 complex in mouse hippocampal neuronal 

cultures99, 101. In addition, PrPC is implicated in Aβ-induced impairment of long-term 

potentiation (LTP)35,95, but this is disputed by other reports that found no significant 

effect of PrPC levels on Aβ-induced LTP inhibition in PrP null mice102 or cells ablated 

or overexpressing PrP103. The reasons for this discrepancy are unclear, but could be due to 

differences in the models (cell types, mouse strains) and reagents (Aβ preparations) used.

PrPC also seems to mediate αSyn oligomer toxicity through the same pathway as that for 

Aβ oligomers104. Cell surface PrPC was reported to preferentially bind to soluble aggregates 

or shorter fibrils of αSyn over their monomeric and large fibrillary forms35,90 and αSyn 

oligomer binding is dependent on similar PrP regions (aa23–31 and aa92–110)35 implicated 

in Aβ oligomer binding. PrPC has also been implicated in the internalization of recombinant 

αSyn fibrils by cultured N2a cells and mouse primary hippocampal neurons. The rate of 

αSyn uptake was significantly lower in PrP-null cells90,105,106 and in PrP-null mice90, and 

there was less αSyn aggregation, astroglial activation and loss of dopaminergic neurons in 

the brains of PrP-null mice after intracerebral inoculation with recombinant αSyn fibrils90. 

In addition, PrP-null mice did not exhibit αSyn-induced LTP inhibition and treatment with 

an anti-PrP antibody reversed the αSyn-induced LTP defect in hippocampal slices from 

a transgenic mouse model of PD104. These observations further validate the role of cell 

surface PrPC as a critical mediator of αSyn toxicity.

Cell surface PrPC seems to play a similar role in Tau aggregate-induced toxicity that 

requires the same N-terminal PrP regions (aa23–31 and aa92–110) used by Aβ and 

αSyn oligomers35,107–108. Recombinant PrP is reported to show a higher affinity for 

soluble recombinant Tau aggregates than for Tau monomers or end-stage fibrils in vitro35. 

Again, PrPC seems to mediate the internalization and toxicity of Tau aggregates, but 

the mechanisms are less well understood. The uptake of recombinant Tau K18 amyloids 

was reported to be greatly reduced in N2a cells ablated for PrPC 108, and soluble Tau 

aggregates-induced neurotoxicity is abolished when PrP gene is ablated, knocked-down, 

or when neurons are pre-treated with anti-PrP blocking antibodies in mouse primary 

neurons35. PrPC is also involved in toxicity induced by soluble Tau aggregates in vivo109. 

Intracerebroventricular administration of anti-PrP antibody 6D11 (epitope aa95–105) prior 

to intrahippocampal injection with recombinant Tau aggregates or human AD brain-derived 

Tau abrogated the inhibition of LTP in male rats109.

Elevated PrPC levels are associated with several cancers110–114. For instance, Pan and 

colleagues110 reported that high levels of PrPC found in gastric cancer tissues enhanced 

invasion and metastasis, probably via the PrPC N-terminal region-mediated activation of 

MMP11 through the MEK/ERK pathway. Furthermore, the increased PrPC expression in 

cancer cells seems to be directly correlated with shorter survival for pancreatic cancer 

patients112.
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Elevated PrPC levels will also increase the susceptibility and sensitivity to prions 

since PrPC is the essential substrate for prion replication and necessary for prion 

pathogenesis. Moreover, too much PrPC may worsen AD, PD and other neurodegenerative 

diseases because PrPC is a key receptor for the toxic Aβ, Tau, and αSyn 

oligomers34–35,95, 97,100–101,107–109,115–116.

In addition, overexpression of wild type full-length PrP alone can cause diseases. Transgenic 

mice overexpressing wt PrP from hamster or mice exhibited spontaneous degeneration 

of muscles and peripheral and central nervous systems117. Similarly, transgenic mice 

overexpressing wt mouse PrPC ten-fold developed a progressive neurological illness with 

tremor, paralysis of the hind limbs, and abnormal posture, accompanied by accumulation 

of non-transmissible but neurotoxic PrP aggregates, and significant granule neuron 

degeneration and synaptic terminal enlargement118. We also found that muscle-specific 

overexpression of wild type PrPC led to a primary myopathy that is associated with muscular 

accumulation of the C1 fragment80 and involves the p53 pro-apoptotic pathway81. Moreover, 

TSM1 neuronal cells and HEK293 kidney cells overexpressing full-length PrPC were found 

to be more prone to apoptosis after treatment with proapoptotic agents119.

In summary, overexpression of full-length PrPC has many serious caveats, which makes it a 

very risky therapeutic strategy.

2.4 N1 peptide

2.4.1 Protective effects of N1 peptide—The extracellular N1 peptide, one of the 

α-cleavage products of PrPC, has been shown to be broadly protective to cells from 

toxic molecules, including reactive oxygen species and multiple toxic protein oligomers 

implicated in AD, PD and other diseases, and might ultimately enhance neuronal viability.

In 2009, Guillot-Sestier and colleagues73 first demonstrated that recombinant N1 fragment, 

but not the N2 fragment, shows cytoprotective function. They found that the N1 peptide 

show antiapoptotic effect through lowering caspase 3 activation in a dose-dependent fashion 

in mouse primary cortical neurons treated with staurosporin, and it protects against apoptosis 

through lowering p53 activity, as seen by a 46% reduction in mRNA transcription in 

HEK293 cells and 91% reduction in rat retinal cells under pressure-induced ischemia.

Recombinant N1 also protects primary cultured neurons against toxicity and cell death 

triggered by Aβ oligomers in conditioned medium from HEK293 cells overexpressing 

mutant APPs associated with familial AD or extracts from AD brain tissues120. A later 

report found that recombinant N1 binds to Aβ oligomers with high affinity and inhibits 

fibrillization of Aβ monomers and the association between recombinant N1 and Aβ 
oligomers is dependent on two positively charged regions (aa23–31 and aa95–105) of N1 

and the intervening region (aa32–94)121.

The mechanism of N1 neutralization of Aβ toxicity has been studied. Béland and 

colleagues122 reported that coincubation of recombinant N1 and Aβ oligomers secreted 

by CHO-7PA2 cells causes a conformational change in Aβ oligomers that turns Aβ 
oligomers into insoluble, amorphous Aβ aggregates that cannot assemble with other 
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Aβ, thereby removing Aβ oligomers from the normal fibrillization pathway. N1 also co­

immunoprecipitated with Aβ in the guanidine-extractable fraction from postmortem AD 

brain tissues, suggesting that N1 may coaggregate with Aβ in vivo as well122. By measuring 

the ratio of deglycosylated full length PrPC and C1 in postmortem AD patient brains, 

Béland and colleagues122 also observed an increase in α-cleavage of PrPC, supporting the 

idea that the PrPC α-cleavage is an endogenous neuroprotective mechanism against AD. 

Recombinant full-length PrP and N1 may also inhibit Aβ oligomerization and neutralize 

the toxicity of pre-existing Aβ oligomers, possibly by blocking Aβ oligomers from 

binding with cell surface PrPC in hippocampal slices and neurons from wt and PrP-null 

mice123. Preincubation of these recombinant PrP forms with preformed Aβ oligomers 

before treating rat hippocampal slices was shown to decrease LDH release and restore 

LTP, further suggesting a protective effect of recombinant full-length PrP and N1 against 

Aβ123. Furthermore, preincubation of recombinant N1 with Aβ oligomers reduced the loss 

of synaptic markers in primary neurons and rescued Aβ oligomer–induced behavior deficits 

in C57/BL6 mice after intracerebroventricular injection123.

In a very recent study, recombinant N1 induced secretion of the Cxcl10 cytokine and 

enhanced the metabolism and morphology of microglia that required direct cell-to-cell 

contact in a neuron-microglia co-culture system, suggesting that N1 may also improve 

neuronal cell viability124.

2.4.2 Potential caveats of N1 peptide—There are seemingly significant yet 

misinformed concerns on the safety of using N1 as a therapeutic agent. There are a few 

reports suggesting that the N-terminal region of PrP is toxic. Sonati et al.125 reported that 

the anti-prion antibodies induce toxicity in mice and in cerebellar organotypic cultured 

slices where the N-terminal flexible tail of cell-surface PrPC plays an important role. The 

same group subsequently showed that transgenic mice expressing an internally truncated 

PrP protein (Δ141–225), in which the N-terminal region (aa 1–140) and the GPI-anchor 

signal peptide (aa 232–254) are retained, developed a progressive, inexorably lethal 

neurodegeneration morphologically and biochemically similar to that triggered by antibodies 

against the PrP globular domain126. In this case, the toxic PrP is a GPI-anchored cell 

surface protein that contains the flexible N-terminal tail (aa23–128) and part of the 1st 

α-helix of PrPC. In addition, when the PrP N-terminal tail (aa23–109) is expressed as 

a GPI-anchored GFP fusion protein (aa1-109-GFP-GPI anchor), it is toxic by inducing 

ionic currents127. Moreover, antibodies targeting epitopes in the C-terminal domain of 

PrPC induce ionic currents and cause degeneration of dendrites on murine hippocampal 

neurons that are dependent on the presence of the N-terminal tail of PrPC, and there is 

intramolecular docking between N- and C-terminal domains of PrPC 127. These data support 

an intramolecular auto-inhibitory mechanism for PrP toxicity, but all the evidences for the 

toxicity of PrP N-terminal fragments are based on GPI-anchored PrP forms located on the 

cell surface. This cell surface PrP location allows for ionic currents or other toxic signaling 

to damage the host cells. There is no evidence suggesting that PrP N1 and similar N-terminal 

fragments are toxic when they exist as free molecules in the extracellular space, such as 

after α-cleavage of PrPC, expressed as a secreted peptide, or administered as a recombinant 

peptide.
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The significance of the reported p53 suppression by N173 needs to be investigated. It is 

interesting to note that p53 binds directly to the promoter region of the PrP gene to activate 

its transcription128. We have reported the association of enhanced muscular p53 activity 

in a primary myopathy associated with dramatic overexpression of PrP and elevated PrP 

α-cleavage in the muscles of an inducible mouse model79–80.

3. PrP shedding, shed PrP, and extracellular full-length PrP

The nearly full-length shed anchorless PrP is believed to be protective as well129, but no 

study has directly investigated the effect of shed PrP. There are several reports implying 

that the process of PrP shedding itself is beneficial since it reduces cell surface PrPC 

levels87,130, thereby decreasing levels of the essential substrate for prion replication and a 

critical receptor for several toxic protein aggregates as described above.

3.1 Beneficial effects of shed PrP

Several studies using recombinant full-length PrP have demonstrated its protective effect, 

and the potential benefits of shed PrP have been reviewed in depth129. Recombinant full­

length PrP has been reported to induce neuritogenesis. Incubation of full-length recombinant 

hamster or mouse PrP with embryonic rat hippocampal neurons was reported to increase the 

development of synapses and length of neuronal networks131. Likewise, in a hippocampal 

slice culture system, soluble full-length recombinant mouse PrP induced a concentration­

dependent neurite outgrowth and rapid growth cone turning towards the source of PrP, both 

requiring the presence of cell surface GPI-anchored PrPC 132. Recombinant full-length PrP 

also inhibits both fibrillization of Aβ1–42 monomers and Aβ aggregate toxicity in cultured 

neurons133 and neutralizes Aβ oligomer toxicity in cultured slices of AD mouse brains121.

Recombinant full-length PrP has also been reported to bind to toxic Tau oligomers and aSyn 

oligomers35. Although experimental evidence is still lacking, it is very likely recombinant 

full-length PrP will also neutralize the toxicity of Tau oligomers and αSyn oligomers. It is 

worth noting that recombinant full-length PrP is not an ideal substitute for shed PrPC since 

recombinant PrP generated from bacteria does not have the O-linked glycans that shed PrPC 

possesses.

Enhanced shedding of cell surface PrPC has been implicated in protection against prions. 

Heiseke et al.130 reported that, in cultured murine N2a neuronal cells, overexpression of 

a sorting nexin (SNX33) increased shedding of PrPC, reduced the cell surface PrPC level, 

and lowered PrPSc formation by ~60% in persistently scrapie infected cells and inhibited 

scrapie infection in naïve cells. Transgenic overexpression of ADAM10, the primary 

PrPC sheddase, led to reduced full-length PrPC levels and prolonged survival after prion 

infection in mice134, and neuron-specific knockout of ADAM10 led to elevated PrPC levels, 

increased PrPSc accumulation and reduced incubation time following prion infection135. 

However, there is one report arguing that enhanced shedding of PrPC may not reduce prion 

replication in cultured scrapie-infected cells68. In persistently scrapie-infected ScN2a mouse 

neuroblastoma cells, suppressing ADAM10 with an inhibitor did not change the amount 

of protease-resistant PrPSc. Moreover, overexpression of ADAM10 from a plasmid failed 

to alter the percentage of protease-resistant PrPSc-positive cells, and the cell surface PrPC 
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levels were not found to be altered in these cells68. Further investigation is needed to clarify 

this issue.

The mechanism of PrPSc accumulation inhibition by PrPC shedding is not well understood, 

but cell surface PrP levels, which can be reduced by enhanced PrP shedding, are known to 

be inversely correlated with incubation times after prion infection in mouse models135–137. 

Reduction of cell surface PrPC levels through PrP shedding in peripheral tissues may also 

slow neuroinvasion. PrPC expression in the follicular dendritic cells of the spleen has been 

shown to be critical for neuroinvasion after peripheral prion inoculations138–139. In addition, 

transgenic mice expressing only GPI-anchorless PrP in an endogenous PrP-null background 

exhibited slow and infrequent CNS neuroinvasion after peripheral prion inoculations140, 

which is consistent with a potential protective effect of increased PrP shedding.

3.2 Potential caveats of shed PrP

Shed PrP exists in extracellular space, which should mimic transgenically expressed 

anchorless PrP or administered recombinant full-length PrP to confer protection against 

toxic oligomeric aggregates of amyloidogenic proteins by sequestering these toxic molecules 

in the extracellular space. However, enhancing PrPC shedding may also lead to negative 

biological activities in several ways.

First, shed PrP may serve as a good substrate for prion replication. Mice co-expressing 

anchorless PrPC and GPI-anchored PrPC have been reported to show accelerated prion 

disease141 after prion inoculation. Extensive prion spread142–143 and very high levels of 

infectious prions144–145 were also found in transgenic mice expressing anchorless PrP 

after prion inoculation. Second, ADAM10 is the sheddase for several important cell 

surface proteins146, so enhancing ADAM10 activity may have negative consequences for 

cancer147–150, Fragile X Syndrome151, and Huntington’s Disease152. Third, treatment with 

recombinant full-length PrP, and by extension, enhancement of PrPC shedding, may risk 

inducing inflammation in the CNS. Full-length recombinant human PrP induced the release 

of inflammatory mediators IL-6 and CCL2 in primary human astrocytes153 and of CCL2, 

CXCL-12, and IL-8 in both uninfected and HIV-infected human primary monocytes154. 

CCL2 and TNF-α were shown to enhance the activity of ADAM10 (the PrPC sheddase) in 

human astrocytes infected with HIV154, and soluble PrPC levels were elevated in the CSF of 

HIV-infected people with cognitive impairment153. These data suggest a positive feedback 

loop whereby extracellular PrP induces the release of cytokines, which augments ADAM10 

activity that leads to elevated extracellular PrP levels through enhanced shedding of PrPC.

4. Exosomal PrP

4.1 Protective effects of exosomal PrP

PrPC on exosomes has also been shown to be protective against Aβ toxicity155–158. 

Exosomal PrP isolated from N2a cells was found to bind preferentially to smaller synthetic 

Aβ42 aggregates in a PrPC-dependent manner in vitro158. Moreover, exosomal surface PrPC 

derived from hippocampal cells and injected intracerebroventricularly into the brain of rats 

was reported to bind to Aβ-derived diffusible ligands (ADDLs) prepared from synthetic 
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Aβ1–42 in vivo157. The mechanism through which exosomal PrPC binds to Aβ has not 

been reported, but it likely depends on the same PrP regions (aa23–31 and aa95–105) that 

are crucial for recombinant N1 binding to Aβ121. Exosomal PrPC has also been reported 

to protect against Aβ-related toxicity. First, preincubation of synthetic Aβ42 with PrP­

containing exosomes accelerated Aβ42 aggregation into its fibrillar form, reduced synthetic 

Aβ uptake, and abolished Aβ42-induced apoptosis158. It is possible that, like extracellular 

recombinant PrP and N1, exosomal PrPC may also inhibit the formation of toxic oligomeric 

Aβ and promote the formation of fibrillary Aβ. Second, intracerebroventricular injection 

of PrPC-containing exosomes rescued the LTP inhibition induced by ADDLs or AD 

brain extracts in the rat brains157. Third, exosomes isolated from murine N2a cells or 

mouse primary cortical neurons expressing PrPC enhanced the clearance of endogenous 

Aβ aggregates after intrahippocampal injection in an APP transgenic model, likely through 

exosome binding with the aggregates that upregulate internalization and degradation of 

the aggregates by microglia155–156. Continuous intraventricular administration of N2a cell­

derived exosomes also ameliorated synaptic dysfunction in an APP transgenic mouse model, 

as seen by higher synaptophysin immunoreactivities compared to vehicle-treated mice155.

Since full-length recombinant and neuronal PrPs have also been shown to bind to Tau 

and αSyn oligomers35, exosomal PrPs can be expected to confer protection similarly by 

sequestering the toxic Tau/αSyn oligomers in the extracellular space, thereby hindering the 

toxic signaling through preventing Tau/αSyn oligomers from binding with cell surface PrPC 

in the CNS of patients suffering from various tauopathies and synucleinopathies.

4.2 Potential caveats of exosomal PrP

Exosomes may be a powerful vehicle to harness and deliver the protective powers of 

PrPC, but using exosomal PrPC for therapeutic purposes may carry the same risks as using 

shed PrP or recombinant full-length PrP, such as facilitating the replication and spread of 

prions. Exosomes have been shown to associate with PrPSc in the culture media of prion 

infected cells159. Exosomes derived from prion-infected neuronal cell lines were reported 

to initiate prion propagation in uninfected non-neuronal cells and induce PrD when injected 

into mice160, and blood-derived exosomes from prion-infected mice were infectious when 

injected into the Tga20 mice that overexpress mouse PrPC 161. Although there is no direct 

study yet, exosomal PrPC might also induce CNS inflammation in a positive feedback 

loop involving ADAM10, as has been shown for recombinant full-length PrP. More work 

needs to be done to examine other biological activities that exosomal PrPC may possess. In 

addition, exosomes contain many other molecules on its surface and its internal space, and 

some of them may induce toxic signaling or alter the recipient cell functions after being 

internalized162–165.

5. Conclusion

In summary, extracellular forms of PrP, including shed full-length PrP, exosomal 

full-length PrP, the N1 peptide released by PrPC α-cleavage from cell surface, 

or externally administered recombinant full-length PrP or N1 peptide, have shown 

protective effect against certain stresses and several toxic molecules that are critical 

Dexter and Kong Page 13

Expert Rev Neurother. Author manuscript; available in PMC 2022 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in various neurodegenerative diseases, including PrD, AD, PD, and other tauopathies 

(such as progressive supranuclear palsy and frontotemporal lobar degeneration) and 

synucleinopathies (such as dementia with Lewy bodies, multiple system atrophy, and Lewy 

body variant of AD). These observations suggest that extracellular forms of PrP have 

great prophylactic and therapeutic potentials (Figure 2). We hypothesize that elevating 

the extracellular levels of one or more of these protective PrP forms is a promising broad­

spectrum strategy against these devastating neurodegenerative diseases. A companion article 

(Part II) explores and evaluates this strategy for prophylactic and therapeutic purposes.

6. Expert opinion

The cellular PrP has been confirmed or implicated in many biological and pathological 

processes. On the one hand, it is suggested to play critical biological roles such as in 

development, myelin maintenance and cellular protection. On the other hand, it promotes 

cancer, is essential for prion replication and pathogenesis, and seems to be a mediator 

for toxicity through serving as a key receptor for several toxic oligomers of misfolded 

proteins (Aβ, Tau, and αSyn) in common neurodegenerative diseases, such as AD and other 

tauopathies as well as PD and other synucleinopathies. Cellular PrP is also subject to several 

types of regulated cleavage processing, including α-cleavage, β-cleavage and shedding, all 

appear to be protective at varying degrees. Unfortunately, PrP is still generally perceived as a 

“bad” protein by most and the positive side of PrP is often ignored.

Here we highlight the positive aspects and beneficial forms of PrP through reviewing the 

extensive literature on posttranslational PrP cleavages and the PrP cleavage products as 

well as the biological and pathological effects of cellular PrP and its cleavage products 

when localized on the cell surface or in the extracellular space. It is clear that most of the 

pathological effects of PrP are associated with cell surface full-length PrP and several PrP 

forms are protective when presented in the extracellular space. These protective PrP forms 

include the N1 peptide (the N-terminal PrP fragment derived from α-cleavage of cell surface 

PrP), the shed PrP (derived from shedding of cell surface PrP, primarily by ADAM10 in the 

brain), and exosomal PrP, all of which exist in the extracellular space. These extracellular 

beneficial PrP forms protect against the toxicity of misfolded proteins through sequestering 

the toxic oligomeric forms in the extracellular space and prevent the initiation of toxic 

signaling cascades that ultimately lead to cytotoxicity and neurodegeneration. In the case 

of N1, it can also directly reduce the toxic Aβ oligomers by inhibiting its formation and 

promoting its further aggregation into large fibrils that are much less toxic. The potential 

caveats of these beneficial PrP forms are also discussed, which mostly involve the risks 

of activating inflammation and facilitating the replication and spread of prions (and other 

misfolded protein aggregates in the case of exosomes). The N1 peptide and possibly other 

PrP N-terminal peptides do not have these drawbacks, making it a prime candidate for broad 

spectrum PrP-based therapeutics and prophylactics against PrD, AD, PD and other related 

neurodegenerative diseases.

The α-cleavage of PrP appears to be the most beneficial PrP processing since the two 

products (N1 and C1) are both protective and the negative effect of C1 is counteracted by 

N1, and the cleavage process itself reduces the level of cell surface PrP that is a substrate 
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for prion replication and a critical mediator of toxicity in PrD, AD and several other 

neurodegenerative diseases. Therefore, enhancing PrP α-cleavage is a promising strategy 

to develop treatments against these diseases. Given the essential roles of cell surface PrP 

in prion replication and pathogenesis, the RNA interference strategy targeting cellular 

PrP mRNAs has been tried with great success in treating prion diseases in mouse and 

cell models166–170. Since cellular PrP also mediates the toxicity of Aβ, Tau, and αSyn 

oligomers, it is reasonable to expect similar success through knocking down cellular PrP 

expression. Taking it one step further, simultaneous elevation of a PrP N-terminal peptide 

and knocking-down of the cellular PrP should be an even better strategy to develop safe 

and effective treatments and prevention for these neurodegenerative diseases. The various 

PrP-based strategies to develop broad spectrum treatments and prevention of PrD, AD, PD 

and a few other neurodegenerative diseases are covered in depth in the companion paper 

(Part II).
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Article highlights

• The full length cellular prion protein (PrPC) has diverse biological roles 

such as neuronal survival, stress protection, neuronal excitation, peripheral 

myelin maintenance, and cellular proliferation and differentiation, yet PrP­

null animals are largely normal.

• PrPC is essential for prion diseases and serves as a key common receptor for 

a few toxic protein oligomers in Alzheimer’s disease (AD) and a few other 

common neurodegenerative diseases involving Tau or α-synuclein (αSyn).

• PrPC can undergo various cleavages under physiological and pathological 

conditions, some of which have been shown to be protective, most notably 

α-cleavage and shedding.

• Extracellular forms of PrP such as shed full-length PrP, exosomal full-length 

PrP, the N1 peptide released by PrPC α-cleavage from cell surface (PrP-N), 

or recombinant PrP forms have been shown to be protective against toxic 

stressors.

• The N1 peptide derived from α-cleavage of cell surface PrP and recombinant 

N1 can protect against the toxicity of Aβ oligomers by inhibiting Aβ 
oligomer formation, hindering toxic signaling, and promoting oligomer 

aggregation into larger fibrils that are less toxic.

• Knocking down PrPC expression while elevating the extracellular level of the 

PrP N-terminal peptide should have excellent prophylactic and therapeutic 

potential against several neurodegenerative diseases including PrD and AD, 

which will be explored in depth in the companion paper (Dexter and Kong, 

2021).
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Figure 1. Diagrams of the structure and cleavages of cellular PrP.
A. 3D model of human PrP structure55. The segments of different secondary structures are 

color coded: α-helices (blue), β-sheets (orange), loops (gray), and unstructured (red). B. 
Schematic diagram of PrP cleavage sites (modified from Figure 1 in ref 81). The mature 

PrPC is ~210 amino acids long, consisting of a flexible unstructured N-terminal domain 

(residues 23–120) and a highly structured globular C-terminal domain (residues 121–231) 

composed of three α-helices, two β-sheets, a disulfide bond, two Asn-linked glycans, 

and a C-terminal glycosylphosphatidylinositol (GPI) anchor. PrP can undergo cleavages at 

different positions: within the hydrophobic region (residues 109–120) (α-cleavage), within 

or at the end of the octapeptide repeats region (residues 51–91) (β-cleavage), and at or near 

the GPI anchor [within residues 228–231 or possibly within the GPI anchor (not depicted)] 

(shedding). The suspected or confirmed enzymes or molecules involved in these cleavages 

are marked. The β-cleavage of PrPC produces the N2 and C2 fragments that both appear to 

be neutral.
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Figure 2. Protective activities of PrP and its N-terminal fragment released from cell surface by 
α-cleavage or shedding.
The N1 peptide, the N-terminal fragment of PrP released to the extracellular space by 

α-cleavage of PrPC, can prevent Aβ fibrillization, neutralize Aβ and Tau toxicity through 

binding to the neurotoxic Aβ or Tau oligomers, and prevent stress-induced apoptosis. 

Shed PrP is shown (or expected to show) similar protective activities. Both N1 and 

shed PrP can associate with other toxic oligomeric misfolded proteins such as αSyn in 

Parkinson’s disease (not depicted). C1, the C-terminal fragment from α-cleavage of PrPC, is 

reported to inhibit prion replication and seems to be proapoptotic, although transgenic mice 

overexpressing C1 appear normal.
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