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Abstract

Breast density is an important risk factor for breast cancer that also affects the specificity and 

sensitivity of screening mammography. Current federal legislation mandates reporting of breast 

density for all women undergoing breast cancer screening. Clinically, breast density is assessed 

visually using the American College of Radiology Breast Imaging Reporting And Data System 

(BI-RADS) scale. Here, we introduce an artificial intelligence (AI) method to estimate breast 

density from digital mammograms. Our method leverages deep learning using two convolutional 

neural network architectures to accurately segment the breast area. An AI algorithm combining 

superpixel generation and radiomic machine learning is then applied to differentiate dense from 

non-dense tissue regions within the breast, from which breast density is estimated. Our method 

was trained and validated on a multi-racial, multi-institutional dataset of 15,661 images (4,437 

women), and then tested on an independent matched case-control dataset of 6,368 Breast Cancer 

risk digital mammograms (414 cases; 1,178 controls) for both breast density estimation and case­

control discrimination. On the independent dataset, breast percent density (PD) estimates from 
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Deep-LIBRA and an expert reader were strongly correlated (Spearman correlation coefficient = 

0.90). Moreover, in a model adjusted for age and BMI, Deep-LIBRA yielded a higher case-control 

discrimination performance (area under the ROC curve, AUC = 0.612 [95% confidence interval 

(CI): 0.584, 0.640]) compared to four other widely-used research and commercial breast density 

assessment methods (AUCs = 0.528 to 0.599). Our results suggest a strong agreement of breast 

density estimates between Deep-LIBRA and gold-standard assessment by an expert reader, as well 

as improved performance in breast cancer risk assessment over state-of-the-art open-source and 

commercial methods.
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Keywords

Breast Cancer risk; Digital Mammography; Breast Density; Artificial Intelligence; Deep Learning

1. Introduction

Studies have shown that breast density, the extent of fibroglandular tissue within the breast, 

not only limits the sensitivity of screening mammography but is also an independent breast 

cancer risk factor Engmann et al. (2017); Freer (2015); Brentnall et al. (2018). Breast 

density can be estimated from full-field digital mammography (FFDM) images and is most 

commonly assessed in the clinic by visual grading into one of the four categories defined 

by the American College of Radiology BI-RADS Dorsi et al. (2003). However, BI-RADS 

density assessment is highly subjective and does not provide a quantitative, continuous 

measure of breast density, which would allow for more refined risk stratification and 

assessment of breast density changes Irshad et al. (2016); Sprague et al. (2016).

Automated quantitative measurement of breast density from FFDM can be performed 

through commercially available software Hartman et al. (2008); Regini et al. (2014) and 

research-based tools Keller et al. (2012); Mustra et al. (2016); Li et al. (2013); Shi 

et al. (2018); Anitha et al. (2017); Ferrari et al. (2004); Kwok et al. (2004); Mustra 

and Grgic (2013); Nagi et al. (2010); Taghanaki et al. (2017); Rampun et al. (2017); 

Czaplicka and Włodarczyk (2011); Dembrower et al. (2020). Although these tools are 

useful, important limitations persist. Most commercially available packages, such as Quantra 

and Volpara Hartman et al. (2008); Regini et al. (2014) calculate breast density based 
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on x-ray beam interaction models. These packages make assumptions based on specific 

metadata to simplify various estimates, including identifying the fatty tissue. Therefore, 

these assumptions can lead to inaccurate estimates, especially when the required metadata 

is missing. Moreover, commercial tools do not provide the corresponding spatial maps of 

dense tissue segmentation, while they are also costly, and therefore inaccessible for general 

use. On the other hand, with a few exceptions, such as the publicly available LIBRA 

software Keller et al. (2012); Gastounioti et al. (2020), research-based methods are not 

freely available, making it challenging to adopt such tools broadly and rigorously compare 

their performances. Most research-based tools have also been developed using small, single­

institution datasets, and lack independent validation Keller et al. (2012); Li et al. (2013); Shi 

et al. (2018); Anitha et al. (2017).

In general, the key computational steps for automated breast density quantification 

from FFDM are image background removal; identification of the pectoralis muscle; and 

segmentation of the dense tissue areas within the breast region. Background removal 

consists of identifying the air and extraneous objects (paddles, markers, rings, etc.) 

to accurately delineate the breast region and remove extraneous objects from density 

calculations. Similarly, the pectoralis muscle must be removed from the area to be 

processed, which can be challenging due to anatomic variation of the pectoralis muscle 

and the extension of dense glandular tissue which often superimposes over the pectoralis 

muscle in the axillary tail. To simplify its delineation, the pectoralis muscle has typically 

been modeled as a straight line Keller et al. (2012); Mustra et al. (2016); Kwok et al. (2004); 

Ferrari et al. (2004) or a curve Mustra and Grgic (2013)), which can lead to inaccurate breast 

density estimation. Most crucial to breast density evaluation is the segmentation of dense 

versus non-dense tissue. Most methods for this task to date Keller et al. (2012); Zhou et al. 

(2001); Anitha et al. (2017) are relatively simplistic, leading to over- or underestimating the 

amount of dense tissue.

Artificial intelligence (AI), including deep learning, has shown great potential in breast 

imaging applications, substantially improving image segmentation, risk assessment and 

cancer detection Rodríguez-Ruiz et al. (2018); Kontos and Conant (2019); Kooi et al. 

(2017); Wang et al. (2016); Becker et al. (2017); Lehman et al. (2018); Yala et al. (2019); 

Mohamed et al. (2018); Hamidinekoo et al. (2018); Ronneberger et al. (2015); Mortazi 

and Bagci (2018); Kaul et al. (2019); Murugesan et al. (2019). Combining conventional 

image processing methods and machine learning with deep learning techniques can further 

boost the performance of AI methods in mammographic tasks Kooi et al. (2017). Here, 

we introduce Deep-LIBRA, an AI method for breast density estimation, which combines 

the U-Net deep learning architecture with image processing and radiomic machine learning 

techniques to estimate breast density from FFDM. Like LIBRA, but unlike other techniques, 

Deep-LIBRA employs radiomic machine learning in densetissue segmentation, but, unlike 

the earlier tool, incorporates this information into an AI approach. Moreover, Deep-LIBRA 

was developed using a large racially diverse, multi-institutional train-validation set totaling 

15,661 FFDM images from 4,437 women. Further, it was independently evaluated on 6,478 

case-control FFDM images from 1,702 women to assess its accuracy both in breast density 

estimation and in breast cancer risk assessment. Deep-LIBRA has been implemented as 
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open-source software using Python packages and has been made publicly available through 

GitHub (files will be moved to GitHub upon publication).

2. Methods

Deep-LIBRA is a pipeline of AI modules sequentially performing all three key 

computational steps involved in automated breast density quantification from FFDM. 

Through these steps, Deep-LIBRA provides estimates of the total dense tissue area (DA), as 

well as the relative amount of dense tissue within the breast, also known as breast percent 

density (PD). This section describes the study datasets and the experiments used to develop 

and evaluate each AI module of Deep-LIBRA (Table 1, Figure 1 and Supplementary Figure 

1).

2.1. Study datasets

A total of six non-overlapping datasets were compiled from retrospectively collected 

negative FFDM screening exams acquired in two large breast cancer screening practices: 

the Hospital of the University of Pennsylvania (HUP), Philadelphia, PA, and the Mayo 

Clinic (MC), Rochester, MN (Table 1). For all datasets, our study used raw (i.e., “FOR 

PROCESSING”) FFDM images acquired with Selenia or Selenia DimensionsTM units 

(Hologic Inc, Bedford, MA, USA).

2.1.1. Training and validation datasets

• Dataset to develop the background removal module (ds1): This dataset 

consisted of 11,200 bilateral images from 2,200 women randomly selected 

from the HUP screening cohort. The images were evenly split among left and 

right breast lateralities, and craniocaudal (CC) and mediolateral oblique (MLO) 

breast views, and represented the racially diverse screening population at HUP 

McCarthy et al. (2016).

• Dataset to develop the pectoralis muscle removal module (ds2): Since the 

pectoralis muscle is almost always visible only in the MLO view, the MLO-view 

images of ds1 were used as the basis of this dataset. Due to the time required 

for manual delineation of the pectoralis muscle (5 to 10 minutes per image), 

1,100 MLO-view images were randomly selected from ds1, maintaining the 

corresponding racial and breast laterality distributions.

• Dataset to develop the breast density estimation module (ds3): One portion of 

this dataset (ds3-a) was used to guide the development of this module in terms 

of accuracy in breast density estimation, and another (ds3-b) to account for the 

performance of breast density in breast cancer risk assessment.

1. Dataset to train and validate the breast density estimation module 

(ds3-a): This subset consisted of 3,314 bilateral CC-view images from 

1,662 women from the MC dataset, for which “gold-standard” human­

rater Cumulus PD values were available by a single reader with over 

twenty years of experience estimating density with Cumulus (FFW). 

Automated density scores extracted with LIBRA were also available for 

Maghsoudi et al. Page 4

Med Image Anal. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



these images. This dataset has been previously published Brandt et al. 

(2016); Gastounioti et al. (2020).

2. Case-control dataset to evaluate the breast density estimation module 

in breast cancer risk-assessment (ds3b): We used 1,147 bilateral 

MLO-view images from 115 women who developed breast cancer 

at least one year later and 460 age- and ethnicity-matched controls, 

acquired at HUP. Clinical BI-RADS density assessments, as well as 

automated density scores extracted with LIBRA and Quantra, were 

also ascertained for these images. This case-control dataset has been 

previously published Gastounioti et al. (2018) and is described in detail 

in Supplementary Table 1.

2.1.2. Independent test datasets—The following two datasets were used to 

independently evaluate Deep-LIBRA after development was complete. There was no overlap 

with images nor women used in training and validation.

• Dataset to evaluate breast segmentation performance (ds4): This dataset 

consisted of 110 MLO-view images from 110 women randomly selected from 

the HUP screening cohort, with a racial distribution representative of the diverse 

screening population at HUP McCarthy et al. (2016).

• Dataset to evaluate breast cancer risk assessment performance (ds5): This 

dataset consisted of 6,368 bilateral CC and MLO images from 414 women who 

developed breast cancer an average of 4.7 years [interquartile range (IQR): 4.1, 

5.1] later and 1,178 matched controls, acquired at MC. Approximately three 

controls without prior breast cancer were matched to each case on age (5-year 

caliper matching), race, state of residence, FFDM screening exam date, and 

FFDM machine. Automated breast density scores extracted with LIBRA and 

Volpara, as well as semi-automated Cumulus breast density scores and clinical 

BI-RADS density assessments, were also ascertained for these images. This 

dataset is described in detail in Supplementary Table 2.

2.2. Algorithm operation

The core of Deep-LIBRA are three AI modules for (1) removal of the FFDM image 

background, (2) removal of the pectoralis muscle, and (3) segmentation of the dense versus 

fatty tissue and subsequent breast density estimation (Figure 2). The first two modules of 

Deep-LIBRA are based on deep learning; radiomic machine learning forms the basis of the 

third module. Before applying these modules, standard pre-processing steps for raw FFDM 

images are applied Keller et al. (2012), in which image intensity is logtransformed, inverted, 

and squared, and image orientation is standardized.

2.2.1. Background removal—This module performed binary segmentation of the 

background versus non-background image regions, where the background consisted of 

both air and extraneous objects. This module was implemented as a binary segmentation 

convolutional neural network (CNN) based on the widely used U-Net architecture, slightly 

modified by replacing the simple convolutional layers of the encoder with ResNet encoder 
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modules to extract more in-depth information Szegedy et al. (2017); Maghsoudi et al. 

(2020). The U-Net was developed using the dataset ds1 and a 90%10% split-sample 

approach for training and validation. To further improve the U-Net performance, data 

augmentation Ronneberger et al. (2015) was applied: for each training epoch, each image 

was randomly altered by combinations of rotation (−22.5 to +22.5 degrees); horizontal shift 

(−20% to +20% of image width); vertical shift (−20% to +20% of image height); zoom 

(−20% to +20%); and horizontal flip. The background region segmented by the U-Net was 

further refined by removing any regions not connected to any of the four image boundaries. 

Figure 2 (c) shows the outcome from this step.

Reference background segmentation masks were generated using the publicly available 

LIBRA software Keller et al. (2012) and were further reviewed and manually corrected 

using the ImageJ software Rueden et al. (2017) by a research scientist (OHM, two years 

of experience) under the guidance of a fellowship-trained, board-certified, breast imaging 

radiologist (EFC, more than 25 years of experience). The loss function for training was 

the inverse weighted Dice measure, calculated as 1 - weighted dice Chang et al. (2009), to 

reduce the effect of unbalanced regions in training (definition available in the Supplementary 

Material).

2.2.2. Pectoralis muscle removal—This module segmented the breast from the image 

remaining after background removal (Figure 2 (c, d)). As with the background removal 

module, this module was implemented as a binary segmentation CNN based on the U-Net 

architecture. Training used the ds2 dataset, again using a 90%10% split-sample approach 

for training and validation, and the inverse weighted dice measure as the loss function. Data 

augmentation was applied, with alterations of rotation (−22.5 to +22.5 degrees); horizontal 

shift (−15% to +15% of image width); vertical shift (−15% to +15% of image height); 

and zoom (−15% to +15%). The zoom and shift ranges were bounded at 15%, rather than 

20% used in background removal because the pectoralis muscle occupies an appreciably 

smaller portion of an image than the background. Any abdominal tissue remaining in the 

image was removed. The paddle compression effect, a bump of abdominal tissue below 

the breast caused by paddle compression, was also removed, based on the gradient of the 

breast contour coordinates (see also Supplementary Material). Reference delineations of the 

pectoralis muscle were manually obtained using the ImageJ software by OHM under the 

guidance of EFC.

2.2.3. Dense tissue segmentation and breast density calculation—The breast 

density calculation module involved three major steps: 1) Partitioning the breast into 

superpixels using image intensity information. 2) Calculating global and superpixel-wise 

radiomic features. 3) Using these radiomic features as inputs to machine learning models 

to classify superpixels as either dense or non-dense, and calculate breast density (Figure 2 

(e)-(h)).

A superpixel is a contiguous subregion of the breast image. By defining superpixels using 

gray-level intensity values and spatial information, we can generate meaningful localized 

clusters Achanta et al. (2012). To aggregate neighboring pixels into superpixels, we used 

simple linear iterative clustering (SLIC), a spatially localized version of k-means clustering, 
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which is fast, adheres to local boundaries, and generates superpixels of similar sizes (making 

the superpixels suitable for representation of scale-variant features such as texture features) 

Achanta et al. (2012). Based on the image size, we partitioned each image into 512 

superpixels.

Then, we generated a reference classification of each superpixel as dense versus non-dense, 

using the image-wise “gold-standard” PD scores available for ds3-a. Specifically, an average 

intensity was calculated for each superpixel. For a given intensity cutoff, an overall 

(across all images) PD score was calculated. Similarly, the “gold-standard” PD values were 

combined into an overall PD. The intensity cutoff that minimized the difference between 

the overall PD and the “gold-standard” PD values was selected and was used to assign each 

superpixel a reference value of dense versus non-dense region.

For each image, the module then computed a total of 101 radiomic features from the entire 

image, and an additional 50 radiomic features on each superpixel (Supplementary List 1). 

Radiomic features were extracted using the PyRadiomics library Van Griethuysen et al. 

(2017) and additional Python packages (a detailed list of packages can be found on GitHub).

To reduce feature dimensionality, two steps were applied. First, for highly-correlated 

groups of radiomic features (i.e., absolute Pearson’s correlation r > 0.95), a single feature 

from each group was retained (100 features remained from the total of 151 features) 

which had a maximum interquartile range. Second, a random-forest classifier was applied 

to all superpixels with the remaining radiomic features as predictors and the reference 

dense versus non-dense classification as the supervised classification labels. This two-step 

procedure determined the 80 most-predictive features to retain.

In this module’s final step, we trained a support vector machine (SVM) on ds3-a, classifying 

superpixels as dense versus non-dense with the retained texture features as predictors. 

Three-fold cross-validation was used, resulting in three trained SVM models. To reduce 

the effect of data partitioning in the SVM performance (Table 2) and to alleviate potential 

overfitting, an ensemble model based on the majority vote of the three SVMs was used as 

the final model assigning dense versus non-dense labels to superpixels (Figure 3), based on 

which Deep-LIBRA provided estimates of DA and PD.

2.3. Algorithm evaluation

2.3.1. Evaluation on development datasets

• Background and pectoralis muscle removal: Images in the ds1 and ds2 

datasets were used to train and validate the CNNs for background and pectoralis 

muscle removal, respectively. The segmentation performance of the trained 

CNNs was measured using four parameters: 1) dice Chang et al. (2009), 2) 

weighted dice, 3) sensitivity Chang et al. (2009), and 4) weighted sensitivity. 

Detailed definitions of the performance evaluation measures are available in the 

Supplementary Material.

• Breast density estimation: Deep-LIBRA training resulted in three SVMs, each 

trained on two of three folds of ds3-a. For unbiased evaluation of its performance 
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in breast density estimation, we measured each SVM’s performance separately 

on the corresponding held-out fold via Spearman correlation coefficients 

and absolute differences between Deep-LIBRA and gold-standard Cumulus 

PD values. We also compared the performance of Deep-LIBRA with the 

performance of the LIBRA software on the images of each fold.

• Breast cancer risk assessment based on breast density: Using ds3-b, we 

evaluated the case-control discriminatory ability of Deep-LIBRA PD and DA 

measures, while also comparing with LIBRA PD and DA, Quantra area-based 

(A-Quantra) and volumetric (V-Quantra) density measures, and clinical BI­

RADS density assessments. For each breast density measure, the case-control 

status was modeled as the outcome in each of two conditional logistic regression 

models Breslow et al. (1978): an unadjusted model consisting of the breast 

density measure alone, and an adjusted model including also age and body-mass 

index (BMI). Case-control discriminatory ability was assessed via the mean area 

under curve (AUC) of the receiver operation curve (ROC) across 100 bootstrap 

samples where case-control matching was maintained, with confidence intervals 

(CIs) derived from those 100 repetitions. Additionally, we examined differences 

in breast density distributions between cases and controls using the Wilcoxon 

rank sum test.

2.3.2. Evaluation on independent testing datasets

• • Breast segmentation: The images of the ds4 dataset were used to 

independently evaluate the total segmented breast area by Deep-LIBRA. 

The Dice, weighted Dice, sensitivity and weighted sensitivity were used as 

the evaluation measures, while also comparing with the breast segmentation 

performance of LIBRA via two-sided t-tests.

• • Breast cancer risk assessment based on breast density: A blinded evaluation 

of the associations of Deep-LIBRA PD and DA with breast cancer was 

independently performed by an analyst at MC on the dataset ds5, with the 

Deep-LIBRA developing team being blinded to the case-control status of the 

images. LIBRA density measures, area-based and volumetric Volpara density 

metrics, gold-standard Cumulus density metrics, and clinical BI-RADS density 

assessments were also analyzed for comparison purposes. Unadjusted and 

adjusted conditional logistic regression analysis was performed for each density 

measure with case-control status as the outcome. Model discriminatory ability 

was assessed via AUCs, and effect sizes as odds ratios (ORs) per one standard 

deviation of breast density. P-values, for both AUCs and ORs, versus the null 

hypothesis of no difference from the AUC or OR derived from Deep-LIBRA, 

were estimated from testing across 1,000 bootstrap samples where case-control 

matching was maintained.

Moreover, we investigated the effect of simultaneously using Deep-LIBRA density 

measures with measures from other breast density estimation approaches in case-control 

discrimination performance. To this end, we evaluated Deep-LIBRA density measures in 
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combination with density measures from LIBRA, Volpara, and Cumulus, as well as with 

clinical BI-RADS density assessments.

Last, for each density measure, we tested for breast density distribution differences between 

cases and controls using Wilcoxon rank sum tests. We also evaluated the correlations 

of different breast density measures using the Spearman correlation coefficient. SAS 

version 9.4 (Cary, NC) was used for all statistical analyses, and p-values were considered 

statistically significant at the 0.05 cutoff.

3. Results

3.1. Evaluation on development datasets

3.1.1. Background and pectoralis muscle removal—The evaluation curves in the 

development phase of Deep-LIBRA show sufficient training and high performance in breast 

segmentation (Figure 4). The highest weighted dice score achieved by the background 

removal module on the validation set was 99.4% after 35 epochs, with a value of 99.5% 

on the training set at the same epoch (Figure 4 (a)). The pectoralis muscle removal module 

achieved the highest weighted dice of 95.0% on the validation set after 158 epochs, with a 

value of 96.3% on the training set at the same epoch (Figure 4 (b)).

3.1.2. Breast density estimation—Deep-LIBRA breast density evaluation on ds3­

a showed high agreement with “gold-standard” Cumulus values. Mean PD differences 

between Deep-LIBRA and Cumulus, measured with each of the three Deep-LIBRA SVMs 

on the corresponding held-out fold, were 4.91 [95% CI: 4.48, 5.34], 4.64 [95% CI: 4.31, 

4.99], and 4.22 [95% CI: 3.95, 4.49]; mean PD differences between LIBRA and Cumulus 

on the same folds were 5.28 [95% CI: 4.95, 5.60], 5.24 [95% CI: 4.96, 5.52], and 5.39 

[95% CI: 5.08, 5.70]. For two of the three folds, PD differences between Deep-LIBRA 

and Cumulus were significantly lower than those between LIBRA and Cumulus (paired 

two-sided t-test p-values: 0.179, 0.008 and 0.001, respectively). The correlations between 

Deep-LIBRA and Cumulus PD (0.80, 0.79, and 0.84) were also higher than those between 

LIBRA and Cumulus (0.70, 0.70, and 0.69) for all three folds.

3.1.3. Breast cancer risk assessment based on breast density—Using the 

dataset ds3-b and unadjusted logistic regression models, PD values generated by the three 

Deep-LIBRA SVMs yielded mean AUCs of 0.532, 0.594, and 0.561 on the corresponding 

held-out folds (Table 2). Similar performance was observed for Quantra and clinical BI­

RADS density measures.

The PD generated by the ensemble SVM model gave a mean AUC of 0.578 and 0.582 in 

the unadjusted and adjusted logistic regression models, respectively (Table 2). In both cases, 

the performance of Deep-LIBRA PD was comparable to volumetric PD evaluation with 

Quantra, and substantially improved compared to LIBRA PD and clinical BI-RADS density 

assessments.
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3.2. Evaluation on independent testing datasets

3.2.1. Breast segmentation—Using the images of ds4, Deep-LIBRA gave a mean 

dice score of 92.5% for breast segmentation, which was also statistically significantly lower 

(p<0.001) than LIBRA (mean dice 83.4%) (Supplementary Table 3 and Supplementary 

Figure 2).

3.2.2. Breast cancer risk assessment based on breast density—Deep-LIBRA 

PD and DA measures were positively associated with breast cancer regardless of the breast 

views considered in density calculations (Table 3 and Supplementary Tables 4–6). The ORs 

for Deep-LIBRA PD ranged from 1.33 to 1.40 in unadjusted models (Supplementary Table 

4) and from 1.46 to 1.61 for models adjusted for age and BMI (Table 3). Similarly, the 

ORs for Deep-LIBRA DA ranged from 1.46 to 1.58 in unadjusted models (Supplementary 

Table 6) and from 1.50 to 1.64 for models adjusted for age and BMI (Supplementary Table 

5). Best case-control discriminatory performance for Deep-LIBRA was achieved for PD 

(AUC = 0.612 [95% CI: 0.583, 0.640]) and DA (AUC = 0.642 [95% CI: 0.615, 0.669]) 

estimates averaged over the four breast views (i.e. left and right CC and MLO views). The 

performance of Deep-LIBRA was comparable to Cumulus and volumetric Volpara density 

measures, and significantly improved compared to area-based LIBRA and Volpara density 

metrics (Table 3).

When Deep-LIBRA PD averaged over the four breast views was evaluated in combination 

with other density measures, Deep-LIBRA PD was the only PD measure that maintained 

significant associations with breast cancer (Supplenentary Table 8). Moreover, the AUC was 

only minimally modified by the addition of other density measures to Deep-LIBRA PD. 

Similar observations were found for Deep-LIBRA DA when evaluated in combination with 

absolute density measures from other density estimation approaches (Supplenentary Table 

9). However, besides Deep-LIBRA DA, Cumulus DA and absolute volumetric density by 

Volpara also maintained significant associations with breast cancer.

Deep-LIBRA PD averaged over the four breast views was significantly lower in controls 

(median PD = 11.5% [IQR: 5.7, 19.9]) compared to cases (median PD = 14.1% [IQR: 7.7, 

23.9]) (Table 4). Significant differences between cases and controls were also found for 

other breast density estimation approaches, with slightly narrower PD ranges for LIBRA and 

volumetric Volpara density metrics (Table 4). Deep-LIBRA PD was also strongly correlated 

with Cumulus PD (r = 0.90), as well as with LIBRA (r = 0.76) and Volpara (r = 0.89) 

PD measures and clinical BI-RADS density assessments (r = 0.80) (Supplementary Figure 

3). However, moderate to strong correlations were found between Deep-LIBRA DA and 

Cumulus (r = 0.79), LIBRA (r = 0.44), Volpara (r = 0.52–0.71), and clinical BI-RADS 

density assessments (r = 0.71) (Supplementary Figure 4).

4. Discussion

This study introduced Deep-LIBRA, an open-source AI tool for fully automated breast 

density evaluation from raw FFDM images. Deep-LIBRA’s promising performance in 

breast density estimation and density-based risk assessment suggests the effectiveness 

of combining deep learning with conventional radiomic machine learning methodologies 
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towards developing a useful computational tool for accurately estimating mammographic 

density, a critical imaging biomarker in breast cancer screening.

We acknowledge that AI could be used for direct risk prediction from FFDM images 

Dembrower et al. (2020); Yala et al. (2019). However, accurate estimation of breast density 

is of utmost importance for several reasons. First, breast density measurements have been 

shown to be useful in several tasks beyond predicting a womans risk for breast cancer, from 

evaluating the risk of decreased mammographic sensitivity due to masking of tumors by 

dense breast tissue Mandelson et al. (2000); Boyd et al. (2007) to assessing effects of aspirin 

use and bariatric surgery on breast parenchymal patterns Williams et al. (2017); Wood 

et al. (2017). Second, spatial dense tissue segmentation maps such as the ones provided 

by Deep-LIBRA can provide valuable insights about breast regions associated with tumor 

masking, potentially also driving breast cancer risk. Most importantly, in 2019, federal 

legislation mandated that women be notified of their breast density in all 50 states and 

US Territories as part of routine breast cancer screening letters Are-You-Dense-Advocacy 

(2019). Therefore, an automated tool that can accurately evaluate a womans actual breast 

density value can have a substantial clinical impact.

To segment the breast region, Deep-LIBRA employs two binary segmentation U-Nets, one 

for background and one for pectoral muscle removal instead of a single multi-class network. 

We found that this design could better address intensity variations in the input images as 

well as remove unpredictable artifacts, such as paddles and rings, that can substantially 

affect breast segmentation. To segment the dense tissue area within the breast, Deep-LIBRA 

is based on a ensemble of radiomic machine learning models. This design was motivated 

by the observed effect of data partitioning in the performance of machine learning models. 

To alleviate this effect, an ensemble model based on the majority vote of the three SVMs 

is used as the final model assigning dense versus non-dense labels to superpixels, based on 

which Deep-LIBRA provides estimates of breast density measures.

Deep-LIBRA was trained and validated on a unique multi-racial dataset of 15,661 

FFDM images (4,437 women) from two different clinical sites, and then tested on an 

independent matched case-control dataset of 6,368 digital mammograms for both breast 

density estimation and case-control discrimination. Our results suggest a strong agreement 

of breast density estimates between Deep-LIBRA and gold-standard assessment by an expert 

reader, as well as improved performance in breast cancer risk assessment over state-of-the­

art open-source and commercial methods. Interestingly, Deep-LIBRA DA had a stronger 

association with breast cancer risk than Deep-LIBRA PD, while adjusting for BMI increased 

the strength of associations for both density measures. While an interplay between breast 

density, BMI, and race has been found in previous studies McCarthy et al. (2016), our 

results potentially indicate the need to better understand the associations of absolute versus 

percent density measures with breast cancer risk, especially across different BMI levels and 

in diverse populations.

The limitations of our study must also be noted. At this point, Deep-LIBRA has only been 

trained on “FOR PROCESSING” FFDM images from a single manufacturer (Hologic). 

Motivated by the promising Deep-LIBRA performance reported in this study, our immediate 
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next step will be training and reevaluating Deep-LIBRA for “FOR PRESENTATION” 

vendor-processed FFDM images, while utilizing multi-vendor datasets. As such, we will 

also be able to compare and potentially integrate Deep-LIBRA density measures with 

other AI methods for BI-RADS density estimation and risk assessment which have been 

developed for vendor-processed FFDM images Dembrower et al. (2020); Lehman et al. 

(2018); Yala et al. (2019). Moreover, we trained Deep-LIBRA for breast density estimation 

using semi-automated PD scores as a reference. In reality, actual ground-truth density 

estimations could be obtained only via breast excisions. To overcome this limitation, and 

acknowledging the inter-reader variation in semi-automated breast density scores, we used 

“gold standard” Cumulus PD estimates by a single reader with over twenty years of 

experience estimating density with Cumulus (F.F.W.). In our future work, we will explore 

the use of reference PD estimates from multiple readers and their effect of Deep-LIBRA 

training.

Moreover, we realize that evaluating Deep-LIBRA density measures in predicting breast 

cancer masking will be another important step to help determine its value in precision 

breast cancer screening. Although our study had limited power for this analysis due to the 

small number of interval cancers in our case-control datasets (15%), we anticipate that this 

study will provide instrumental evidence for Deep-LIBRA to facilitate larger, multi-site 

studies to validate Deep-LIBRA density measures in predicting risk of masking. With 

Deep-LIBRA being an open-source software, we aim to encourage a widespread utilization 

of Deep-LIBRA in various studies of mammographic breast density and risk towards an 

extensive validation of Deep-LIBRA in multi-site and multi-racial populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mammographic breast density is a well-established breast cancer risk factor

• Deep-LIBRA Our results on a large multi-ethnic population from two 

different sites demonstrate high accuracy

• It improved density-based discrimination of breast cancer over state-of-the art 

research and commercial methods

• Deep-LIBRA provides researchers across the world a reliable, reproducible 

and robust breast density measure with spatial segmentation maps for various 

studies

• Deep-LIBRA is an important advancement towards personalized breast 

cancer risk calculations in the clinical setting
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Fig. 1: 
Development and evaluation experiments. White boxes: workflow of the Deep-LIBRA 

algorithm. Green, blue, yellow, and red boxes: training, validation, independent testing, and 

blinded independent testing, respectively. HUP: Hospital of the University of Pennsylvania; 

MC: Mayo Clinic.
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Fig. 2: 
Detailed illustration of the Deep-LIBRA algorithm operation. Panel (a) shows the original 

FFDM image in 16-bit resolution, and panel (b) is the zero-padded image in an 8-bit 

intensity resolution. The zero-padded image is used by the background segmentation U-Net, 

which generates the image shown in panel (c). Panel (d) is the output of the module of 

pectoralis muscle removal using the second U-Net resulting to the final breast segmentation 

shown in panel (e). The image from panel (e) is used to generate superpixels as shown in 

panel (f) and perform radiomic feature analysis. Finally, the SVM classifies the superpixels 

based on the extracted features, resulting in dense tissue segmentation, as shown in panel 

(g). The panel (h) shows the final dense tissue segmentation overlaid on the original image. 

Note: The image sizes are different in this figure because the panels (a), (e)-(h) show images 

in the original image resolution, while the panels (b)-(d) are downsampled images of size 

512 × 512 pixels used in U-Net segmentation.
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Fig. 3: 
The majority voting approach. The majority voting approach uses the outcome of three SVM 

models, each trained on two folds of ds3-a, to make the final dense tissue segmentation. The 

majority voting scheme assigns the dense or non-dense label to each superpixel based on at 

least two SVM models agreeing on the label.
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Fig. 4: 
Deep-LIBRA evaluation curves in the development phase. Panels (a) and (b) show the 

training and validation (noted as as “val_”) results for background and pectoral muscle 

segmentation CNNs, respectively. As the panel (b) shows, there is no sign of overfitting for 

pectoralis muscle segmentation while panel (a) indicates some possible signs of overfitting 

after epoch 40 shown by a wider fluctuation on the validation set.
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Table 1:

General characteristics of the six study datasets. For each dataset, this table shows the institution where 

images were collected, the number of images and individual women, the range of screening dates, the racial 

distribution, and information about the dataset usage in this study. The case-control datasets (ds3-b and ds5) 

include any available cancer case from the HUP and MC screening cohorts as long as a negative FFDM exam 

acquired prior to breast cancer diagnosis was available for analysis.

ds 1 ds 2 ds 3-a ds 3-b ds 4 ds 5

Institution HUP HUP MC HUP HUP MC

Number of Images 11,200 1,100 3,314 1,147 110 6,368

Number of Women 2,200 1,100 1,662 575 110 1,592

Screening start date 2010 2010 2008 2010 2010 2013

Screening end date 2012 2012 2012 2014 2012 2015

Caucasian/White(%) 45 45 98 47 45 97

African American/Black (%) 45 45 _ 53 45 _

Other (%) 10 10 2 - 10 3

Used in development Yes Yes Yes Yes No No

Cross-validation or Bootstrap No No Yes Yes No Yes

Training (%) 90 90 67 67 - _

Validation (%) 10 10 33 33 - _

Testing (%) - - - - 100 100

Accuracy in breast density assessment No No Yes No No Yes

Case-control classification based on breast density No No No Yes No Yes
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Table 2:

Case-control discrimination performance on the dataset ds3-b for breast percent density (PD) values generated 

by Deep-LIBRA and LIBRA, area-based (A Quantra) and volumetric (V Quantra) PD values by Quantra, and 

clinical BI-RADS density assessments. Results correspond to mean AUCs and 95% CIs in parentheses. Folds 

1, 2 and 3 are the held-out folds used for the evaluation of the corresponding Deep-LIBRA SVM. Unadj. and 

adj. indicate unadjusted logistic regression models and logistic regression models adjusted for age and BMI, 

respectively.

1 LIBRA V_Quantra A_Quantra BI-RADS Deep_LIBRA

Fold l unadj. 0.469 (0.465, 0.472) 0.578 (0.578, 0.579) 0.560 (0.559, 0.560) 0.541 (0.540, 0.541) 0.532 (0.528, 0.536)

Fold 2 unadj. 0.460 (0.455, 0.465) 0.579 (0.578, 0.579) 0.560 (0.559, 0.560) 0.541 (0.540, 0.541) 0.594 (0.593, 0.594)

Fold 3 unadj. 0.467 (0.463, 0.471) 0.578 (0.578, 0.579) 0.561 (0.559, 0.561) 0.541 (0.541,0.541) 0.561 (0.560,0.561)

All unadj. 0.467 (0.464, 0.471) 0.579 (0.579, 0.580) 0.561 (0.560, 0.561) 0.540 (0.539, 0.542) 0.578 (0.577, 0.578)

All adj. 0.498 (0.494, 0.502) 0.586 (0.584, 0.587) 0.568 (0.567, 0.570) 0.550 (0.548, 0.552) 0.582 (0.581,0.583)
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Table 3:

Associations of percent density (PD) measures with breast cancer and case-control discriminatory 

performance on ds5, using logistic regression models adjusted for age and BMI. P-values for both AUCs 

and ORs were obtained from 1,000 bootstrap samples to test for the null hypothesis of no difference from the 

AUC or OR derived from Deep-LIBRA using the same breast views.

Density score OR (95% CI) p-value AUC (95% CI) p-value

Deep-LIBRA PD (4 views) 1.61 (1.37,1.88) - 0.612 (0.584, 0.640) -

Deep-LIBRA PD (CC) 1.64(1.40,1.91) - 0.611 (0.583, 0.639) -

Deep-LIBRA PD (MLO) 1.46(1.26,1.69) - 0.596 (0.568, 0.624) -

Cumulus PD (CC) 1.64(1.39,1.93) 0.99 0.619 (0.592, 0.647) 0.85

LIBRA PD (4 views) 1.26(1.09,1.46) <.001 0.564 (0.535, 0.592) 0.01

LIBRA PD (CC) 1.19 (1.04,1.36) <.001 0.557 (0.528, 0.585) 0.01

LIBRA PD (MLO) 1.26(1.10,1.46) 0.07 0.561 (0.533, 0.589) 0.04

Volumetric Volpara PD (4 views) 1.55 (1.31,1.82) 0.43 0.599 (0.572, 0.627) 0.37

Volumetric Volpara PD (CC) 1.45 (1.24,1.71) 0.02 0.588 (0.559, 0.616) 0.09

Volumetric Volpara PD (MLO) 1.62(1.37,1.92) 0.10 0.598 (0.570, 0.626) 0.88

Area Volpara PD (4 views) 1.48 (1.25,1.74) 0.10 0.578 (0.551, 0.607) 0.04

Area Volpara PD (CC) 1.38 (1.18,1.61) <.001 0.567 (0.539, 0.596) 0.01

Area Volpara PD (MLO) 1.62(1.28,1.79) 0.53 0.591 (0.563, 0.619) 0.49

BI-RADS density 1.54(1.30,1.81) 0.45 0.596 (0.568, 0.624) 0.35
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Table 4:

Breast density distributions on ds5. Except for BI-RADS density, data corresponds to median and interquartile 

range in parentheses. For BI-RADS density, data corresponds to number of women and percentage in 

parentheses. *P-values from Wilcoxon Rank-sum tests for continuous density measures and from Pearson 

chi-squared test for BI-RADS density.

Breast density measure Controls (N=1178) Cases (N=414) *p-Value

Deep-LIBRA PD (4 views) 11.5 (5.7, 19.9) 14.1 (7.7,23.9) <.001

Deep-LIBRA PD (CC) 12.0(6.6, 20.6) 15.7 (8.6,25.7) <.001

Deep-LIBRA PD (MLO) 10.3 (4.4, 19.8) 13.4 (6.1,22.1) <.001

Cumulus Proc PD (CC) 12.4 (6.6, 21.6) 15.5 (8.8,25.3) <.001

LIBRA PD (4 views) 10.8 (7.6, 16.0) 11.2(7.6, 16.9) 0.004

LIBRA PD (CC) 10.5 (7.1, 15.6) 11.5 (7.6, 18.7) 0.006

LIBRA PD (MLO) 11.2 (7.6, 16.9) 12.3 (8.0, 19.4) 0.005

Volumetric Volpara PD (4 views) 6.0 (4.4, 10.0) 6.7 (4.6, 12.0) <.001

Volumetric Volpara PD (CC) 6.0 (4.4, 9.9) 6.7 (4.6, 11.7) <.001

Volumetric Volpara PD (MLO) 5.9 (4.3, 9.7) 6.8 (4.7, 12.7) <.001

Area Volpara PD (4 views) 48 (28.9,68.3) 53.8(32.9,76.7) <.001

BI-RADS density, n (%) <.001

A 255 (22%) 61 (15%)

B 487 (41%) 149 (36%)

C 364 (31%) 170 (41%)

D 71 (6%) 34 (8%)

Med Image Anal. Author manuscript; available in PMC 2022 October 01.


	Abstract
	Graphical Abstract
	Introduction
	Methods
	Study datasets
	Training and validation datasets
	Independent test datasets

	Algorithm operation
	Background removal
	Pectoralis muscle removal
	Dense tissue segmentation and breast density calculation

	Algorithm evaluation
	Evaluation on development datasets
	Evaluation on independent testing datasets


	Results
	Evaluation on development datasets
	Background and pectoralis muscle removal
	Breast density estimation
	Breast cancer risk assessment based on breast density

	Evaluation on independent testing datasets
	Breast segmentation
	Breast cancer risk assessment based on breast density


	Discussion
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Fig. 4:
	Table 1:
	Table 2:
	Table 3:
	Table 4:

