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Abstract

Recent developments in neuroimaging allow us to investigate the structural and functional 

connectivity between brain regions in vivo. Mounting evidence suggests that hub nodes play a 

central role in brain communication and neural integration. Such high centrality, however, makes 

hub nodes particularly susceptible to pathological network alterations and the identification of 

hub nodes from brain networks has attracted much attention in neuroimaging. Current popular 

hub identification methods often work in a univariate manner, i.e., selecting the hub nodes one 

after another based on either heuristic of the connectivity profile at each node or predefined 

settings of network modules. Since the topological information of the entire network (such as 

network modules) is not fully utilized, current methods have limited power to identify hubs that 

link multiple modules (connector hubs) and are biased toward identifying hubs having many 

connections within the same module (provincial hubs). To address this challenge, we propose a 

novel multivariate hub identification method. Our method identifies connector hubs as those that 
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partition the network into disconnected components when they are removed from the network. 

Furthermore, we extend our hub identification method to find the population-based hub nodes 

from a group of network data. We have compared our hub identification method with existing 

methods on both simulated and human brain network data. Our proposed method achieves 

more accurate and replicable discovery of hub nodes and exhibits enhanced statistical power in 

identifying network alterations related to neurological disorders such as Alzheimer’s disease and 

obsessive-compulsive disorder.
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1. Introduction

Recent developments in network science allow us to investigate brain function via the 

patterns of shared anatomical or functional relationships in the context of large-scale brain 

networks (Bullmore and Sporns, 2012; van den Heuvel and Sporns, 2013). Like many 

other real-world networks, such as social (Halu et al., 2013), economic (DeFord and Pauls, 

2017), and transportation networks (De Domenico et al., 2015), brain networks derived from 

neuroimaging data exhibit small-world organization and a heavy-tailed degree distribution. 

These properties suggest that there are a small number of critical nodes in the network 

with a high centrality that are essential for network function and dysfunction (these nodes 

are commonly referred to as hubs) (Achard et al., 2006; Fornito et al., 2015; Hagmann 

et al., 2007; Sporns and Zwi, 2004). Mounting evidence has shown that hub regions 

participate widely across a diverse set of cognitive functions and thus hold great potential 

for understanding network alterations associated with neurological diseases (Achard et al., 

2012; Afshari and Jalili, 2017; Alexander-Bloch et al., 2012; Beucke et al., 2013; Buckner 

et al., 2009; Crossley et al., 2014; Drzezga et al., 2011; Power et al., 2013; van den Heuvel 

et al., 2008). For example, amyloid-β is one of the important neuropathological biomarkers 

found in Alzheimer’s disease (AD). Interestingly, network analysis in (Afshari and Jalili, 

2017; Buckner et al., 2009; Drzezga et al., 2011) found high concentrations of amyloid-β 
deposition specifically at those regions of the brain network that are identified as critical 

network hubs. Also, alterations to the hub nodes are found to be more correlated to clinical 

measurements in other conditions such as schizophrenia (Alexander-Bloch et al., 2012), 

obsessive-compulsive disorder (OCD) (Beucke et al., 2013), and coma (Achard et al., 2012).
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Although general studies of brain network and studies focusing on the importance of 

network hubs are greatly expanding our understanding of normal and abnormal brain 

function, brain network hubs have not yet been found to be an effective clinical biomarker. 

Ideally the analysis of brain network hubs in individual patients would be useful for 

diagnosis, prognosis, and/or personalizing treatment plans for a range of neurological and 

psychiatric disorders. However, the accuracy and reliability of hubs are not at the level that 

is needed for clinical application (Hohenfeld et al., 2018; Sporns, 2018; Uddin et al., 2017) 

Therefore, it is essential that we continue to develop methods with the goal of achieving 

accuracy and reliability that are sufficient to advance the biomarker into the clinic.

In the network science community, there is a wide consensus that hub nodes are located 

at the central positions of the network (van den Heuvel and Sporns, 2013), exhibiting a 

much higher degree of connectivity than other nodes. Based on the identification of network 

modules, hub nodes can be generally categorized into provincial hubs and connector hubs 

(Fornito et al., 2015; Guimerà and Nunes Amaral, 2005; van den Heuvel and Sporns, 2013). 

Specifically, provincial hubs are high-degree nodes that primarily connect to nodes in the 

same module. On the contrary, connector hubs are high-degree nodes that show a diverse 

connectivity profile by linking several different modules in the network (van den Heuvel 

and Sporns, 2013). Consistent with the hypothesis that connector hubs serve as fundamental 

network integrators, several studies have shown that damage to a connector hub results in 

more global disruption to the network as compared to the eradication of a high degree 

provincial hub (Gratton et al., 2012; Warren et al., 2014). This hypothesis is also supported 

by the evidence that significant network alterations have been observed at connector hub 

regions (Bullmore and Sporns, 2012; Warren et al., 2014). Hence, identification of connector 

hub nodes in brain networks is essential to quantify network differences among individuals 

and network changes in a single individual across time.

It is worth noting that identifying network differences is the most common problem in 

network neuroscience. For instance, Bayesian inference approaches have been developed 

(Venkataraman et al., 2015; Venkataraman et al., 2013) for the detection of network 

differences between two populations, which are only designed to locate regions of the 

network (i.e. disease foci) that differ between a specific disease and non-disease state. 

However, current state-of-the-art network analysis methods are often limited to the network 

scale. In this regard, a complementary solution would be to detect well-defined regions of 

the network that are most critical to the network’s global architecture (i.e. connector hubs). 

Thus, we can substantially alleviate the computational burden by focusing on a small portion 

of the networks.

Current hub identification methods can be grouped into two general categories. The first 

category is a simple sorting-based method, which simply selects hubs based on the heuristics 

of nodal centrality (van den Heuvel and Sporns, 2013). Most of the current approaches 

sequentially select a set of hub nodes by ranking a nodal centrality measurement such 

as degree (Nijhuis et al., 2013), clustering coefficient (Onnela et al., 2005), vulnerability 

(Kaiser and Hilgetag, 2004), betweenness (Freeman, 1977; Zalesky et al., 2010), eigenvector 

centrality (Lohmann et al., 2010), and so on (van den Heuvel and Sporns, 2013). Although 

these variables capture complex topological characteristics, the sorting method relies on a 
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node-by-node selection process. Given all the interdependencies in complex networks it is 

likely that there is a system of critical hubs that need to be identified simultaneously rather 

than sequentially. Lacking global heuristics for quantifying the topological importance of 

hub nodes in the entire network provincial hubs over connector hubs (Power et al., 2013). 

As the toy example in Fig. 1 illustrates, node #3, #5, #8 have the same number of links. 

Conventional sorting-based hub identification methods often regard all of these nodes as 

comparable hub nodes. However, node #3 is located at a more critical place in the network 

since node #3 connects two network communities (modules). Improved hub identification 

results have been also been reported in (Jiao et al., 2018; Rubinov and Sporns, 2010; Sporns 

et al., 2007) by combining multiple nodal centrality metrics, but these methods still use a 

sequential, univariate method for hub selection.

The second category (functional cartography) uses module-based methods that identify hub 

nodes based on the network modularity (Guimerà and Nunes Amaral, 2005; van den Heuvel 

and Sporns, 2013). Functional cartography is able to distinguish provincial hubs from 

connector hubs (Guimerà and Nunes Amaral, 2005). Mounting evidence suggests that the 

human brain is a hierarchically organized system consisting of specialized network modules 

(Bassett et al., 2008; Bullmore and Sporns, 2012; Park and Friston, 2013; van den Heuvel 

et al., 2010). Once an optimal module partition has been identified, it is straightforward to 

determine connector hub nodes based on the diversity of connections related to the module 

partition (Guimerà and Nunes Amaral, 2005; Tijms et al., 2013). Although this method 

initially considers global network properties, the final hub distinction uses a sorting-based 

method. In addition, detecting network modules is made difficult by the complexity of the 

brain network and no optimal method has been devised (Fortunato, 2010; Newman, 2006).

All the univariate methods that use sequential selection ignore the interdependencies of the 

hub nodes and complex topology of the entire network. These methods are susceptible to 

identifying a redundant set of hub nodes. For instance, consider the toy example shown in 

Fig. 1(a) where the network consists of two modules (in pink and blue respectively). Nodes 

#3, #5, and #8 all conform to the general definition of a hub, as they all exhibit a high 

degree of connectivity. Current univariate hub identification approaches often sequentially 

select node #3, #5, #8 since their connectivity degrees are the same. However, only node #3 

can be defined as a connector hub since the removal of this node separates the network into 

two subnetworks (shown in Fig. 1(a)). In contrast, removal of either node #5 or #8 leaves 

the remaining network fully connected (shown in Fig. 1(a)). At worse, it is highly redundant 

to select all these three nodes since they are closely connected. Hence, it is important 

to consider the multivariate topological dependency in a multivariate manner, instead of 

selecting each node separately.

We propose a novel, multivariate hub identification method to jointly find a set of critical 

nodes in the network such that the removal of these identified nodes would break down the 

network into the largest number of connected components. As is shown by the example in 

Fig. 1, our proposed method utilizes information corresponding to the network organization 

to identify critical nodes. Since intra-module connectivity are often much denser than inter­

module connectivity in brain networks (van den Heuvel and Sporns, 2013), the removal 
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of provincial hubs is less likely to separate the network into disconnected-subgraphs. As a 

result, our method is more likely to identify connector hubs, rather than provincial hubs.

Specifically, our method is built upon the spectral property of the Laplacian matrix that 

describes the network topology. Since the number of connected components in the graph 

is equal to the multiplicity of the zero eigenvalues of the underlying Laplacian matrix (Nie 

et al., 2014), we cast the identification of hub nodes into a combinatorial optimization 

problem where the optimal set of hub nodes should be able to render the largest number 

of zero eigenvalues after removing them from the network. As shown in Fig. 1(b), we 

effectively detach the identified hub nodes from the original network by zeroing their 

associated connections. Thus, the output of our method is a compact set of hub nodes 

that maximally fragment the network. While an exhaustive search can be performed when 

the scale of the network is small, the combinatorial optimization becomes intractable for 

networks consisting of hundreds of nodes. To alleviate this issue, we further present an 

efficient convex optimization framework to minimize the total variation of the eigenvalues 

(the curve shown in Fig. 1(c)) with a manner of multivariate optimization to jointly identify 

a set of hub nodes.

Many brain network analysis studies for either group comparisons or biomarker discovery 

require normalization of hub nodes across networks from individual participants. In our 

previous work (Yang et al., 2019), we follow the common practice to (1) identify the 

hub nodes in each network and (2) vote for the most representative hub nodes across 

individuals. Such a two-step approach, however, is not robust to network diversity among 

individual graphs, especially when the sample size is small. To address this limitation, 

we further extend our individual-based hub identification method (Yang et al., 2019) to a 

population-wise scenario, i.e., jointly identifying the most representative hub nodes, while 

simultaneously optimizing for consensus across individual networks.

We first present our joint hub identification method and the optimization steps in Section II. 

The performance of our proposed method for hub detection is tested in Section III, on both 

simulated and human brain network data corresponding to both structural and functional 

networks. We show that we achieve more accurate and replicable results compared to current 

state-of-the-art hub detection methods. Finally, we conclude our method in Section IV.

2. Method

2.1 Graph Theory in Brain Network Analysis

A brain network can be mathematically described as a graph G = (V , E, W ), where the set 

of N network nodes V denote brain regions or neuronal elements and the set of edges 

E represent their interactions (Bullmore and Sporns, 2009). In addition, the whole brain 

connectively can be encoded in a N × N adjacency matrix W = wij i, j = 1
N , where each 

element wij measures the connectivity strength between network nodes Vi and Vj. In 

neuroscience, it is common to assume W is non-negative and symmetric. Suppose D is 

a diagonal matrix where each diagonal element is equal to the corresponding row-wise 

summation in W:
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dii i = 1
N = ∑j = 1

N wij i = 1
N

. (1)

Thus, we can obtain the Laplacian matrix as follows:

L = D − W . (2)

When W is non-negative, several of the most important properties of the Laplacian matrix L 
are as follows (Merris, 1994; Nie et al., 2014):

Theorem 1.—The Laplacian matrix L is symmetric and positive semi-definite; for every 

column vector f ∈ ℝN, it has fTLf = 1
2 ∑i, j = 1

N wij fi − fj
2; the Laplacian matrix L has N 

non-negative and real valued eigenvalues 0 = ≤ θ1 ≤ θ2 ≤ ⋯ ≤ θN.

Theorem 2.—The number of the eigenvalues of the Laplacian matrix, L, that are equal to 

zero is equal to the number of connected components in the graph G.

2.2 Framework of Joint Hub Nodes Identification

Given Theorem 2, maximizing the number of connected components upon K nodes removal 

becomes a problem of minimizing the summation of the Laplacian eigenvalues as shown 

in Fig.1(c). Here, we effectively detach the connector hub nodes from the other nodes in 

the original network by zeroing out the corresponding rows and columns in the adjacency 

matrix. Without loss of generality, we use a N × N diagonal matrix S = diag(s) = diag[s1, s2, 

… , sN] (the hub selection matrix) to represent the selection of connector hub nodes where 

si = 0 indicates node Vi is a connector hub node, and si = 1 indicates Vi is not a hub node. 

As shown in Fig. 1(b), STWS results in a fully disconnected network after the connector 

hub nodes (indexed in S) are removed. Thus, hub identification can be converted into a 

multivariate-based optimization problem with respect to S. After removing of the hub nodes 

from the network, the corresponding Laplacian matrix is updated as follows:

Ls = Ds − STW S . (3)

where the ith diagonal element in Ds equals to ∑j = 1
N siwijsj. It is worth noting that we are 

just zeroing the corresponding rows and columns of L, instead of taking the underlying 

nodes out the network. Thus, Ls is a N × N matrix, where N is the number of nodes in the 

original network under investigation.

Theorem 2 suggests that we can optimize the setting of S such that we maximize the number 

of remaining connected components. However, directly optimizing towards the number of 

zero eigenvalues is NP-hard combinatory optimization problem. To that end, we relax the 

combinatory optimization to a continuous energy function as follows. Suppose σk(LS) is the 

kth eigenvalue of the Laplacian matrix Ls and the Eigen values are sorted in an increasing 

order. Then, the optimal setting of hub nodes S can be realized by optimizing the following 

energy function:
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argminS∑k = 1
N σk LS . (4)

Since the number of hub nodes is pre-defined based on the domain knowledge of network 

neuroscience, our following optimization is free of the trivial solution of si = 0 (∀i = 1, .. , 

N).

There is a two-fold benefit of the approximation from optimizing the number of zero 

eigenvalues to minimizing the sum of eigenvalues. First, such an approximation allows us to 

cast the objective function from an NP-hard combinatory problem to a convex optimization 

scenario. Second, since there are often multiple links between two nodes in the brain 

network, it is not common to break down the entire network into disconnected components 

by removing the single node. In this regard, the new objective function (i.e., the sum of 

eigenvalues) is more informative and reliable than the counting of zero eigenvalues which 

only works for brain networks with relatively simple topology. In Fig. 1(c), we demonstrate 

that the characteristic of the new objective function (sum of eigenvalues) is equivalent to the 

original one (number of zero eigenvalues), when both objective functions points to the local 

local optima when node #3 is removed from the network.

Since each σk(LS) is no less than zero, minimizing the summation of all eigenvalues of LS in 

Eq. (4) makes the original network (where all nodes are connected) fragment into the largest 

number of disconnected sub-networks. While optimization of Eq. (4) is NP-hard, according 

to the Ky Fan’s theorem (Fan, 1949), we have:

argminF, S∑k = 1
N σk LS = argminF, Str F TLSF . (5)

where F ∈ ℝN × Kn and FT F = I. tr(.) denotes for the trace norm of matrix. Hence, the 

energy function in Eq. (4) is further equivalent to:

argminF, Str F T DS − STW S F . (6)

It is apparent that our method jointly determines a set of hub nodes, as specified in the 

hub selection matrix S. Since the ith row fi in F is often considered as the low dimensional 

descriptor for the corresponding network node Vi, our method iteratively optimizes the 

network modules (characterized by F) and finds of hub nodes that pay the greatest role 

in preventing network fragmentation. Hence compared to contemporary univariate methods 

(Guimerà and Nunes Amaral, 2005; van den Heuvel and Sporns, 2013), our proposed 

method utilizes the power of graph spectrum theory to simultaneously identify the set of 

connector hubs that reflect the underlying network topology.

2.3 Optimization

Although Eq. (6) is not a convex function if jointly considering F and S, we can 

progressively minimize the energy function in an alternative manner as follows (Ghadimi 

et al., 2015; Shi et al., 2014).
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2.3.1 Optimizing network modules under the current setting of hub nodes—
By fixing S, the minimization of Eq. (6) is converted to a conventional spectral clustering 

problem with respect to F, as the follows:

argminFtr F TLSF s . t . F TF = I . (7)

It has the closed form solution which is formed by the Eigen vectors of LS corresponding to 

the first Kn smallest Eigen values (Nie et al., 2014).

2.3.2 Identifying hub nodes based on network modular information—By fixing 

F, the energy function of Eq. (6) regarding S becomes:

argminStr F T DS − STW S F . (8)

Since Ds is coupled with hub selection matrix S, it is difficult to find the closed-form 

solution for S from Eq. (8). According to the theorem (1) and Eq. (3), Eq. (8) can be 

reformulated as:

FT Ds − STW S F = ∑i = 1
N fi

2∑j = 1
N siwijsj − ∑i = 1

N ∑j = 1
N siwijfifjsj

= 1
2 ∑i = 1

N ∑j = 1
N SiSjwij‖fi − fj‖2

2 = 1
2sTAs

(9)

where A = aij i, j = 1
N  is a N × N matrix with each element aij = wij‖fi − fj‖2

2. Thus, 

according Eq. (9), the energy function of Eq. (8) can be converted as follows:

argminstr sTAs . (10)

Since S = diag(s) is an index matrix (si is either 0 or 1), it is hard to directly optimize s as 

a combinatorial optimization problem. Instead, we introduce an auxiliary matrix p, which is 

a continuous diagonal matrix with each diagonal element pi ranges from 0 to 1. Thus, the 

optimization of Eq. (10) can be approximated to:

argmins, ptr sTAp , s . t . p = s . (11)

Then, we use Augmented Lagrange Multiplier (ALM) (Ghadimi et al., 2015; Shi et al., 

2014) to optimize s and p as:

argmins, p, λtr sTAp + λT(s − p) + μ
2 ‖s − p‖2

2 . (12)

where λ ∈ ℝN is a column vector consisting of N Lagrangian multipliers, μ is a large 

positive scalar to enforce the constraint s = p. Then, we introduce a new term in Eq. (12) as 

the follows:
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argmins, p, λ tr sTAp + λT(s − p) + μ
2 s − p

2

2
+ λ

μ 2

2
− λ

μ 2

2
(13)

Furthermore, Eq. (13) can be rewritten as follows:

argmins, p, λtr sTAp + μ
2 s − p + λ

μ 2

2
− μ

2
λ
μ 2

2
(14)

To solve Eq. (14), we present the following alternative solutions by using the Alternating 

Direction Method of Multipliers (ADMM) (Ghadimi et al., 2015; Shi et al., 2014):

argmins, ptr sTAp + μ
2 s − p + λ

μ 2

2

λ = λ + μ(s − p)
μ = ρ ⋅ μ

(15)

where ρ is a stripe to adjust the value of μ. By letting the derivative of Eq. (15) w.r.t. p go to 

zero, we can obtain the solution for p as follows:

p = s + 1
μλ − 1

μATs . (16)

To solve the binary vector s in Eq. (15), it is equivalent to minimize:

argminstr sTh , h = Ap + μ
2 1 − μ p − 1

μλ . (17)

1 ∈ ℝN denotes a column all-ones vector. It is clear that h = [h1, h2, …, hN]T is also a vector. 

Thus, as the same problem addressed in reference (Nie et al., 2017), we use greedy search 

to optimize each si by: (1) calculating h based on the current estimation of p, λ, and μ; (2) 

sorting the elements of h; (3) setting si = 0 (i.e., Vi is hub node) if the corresponding hi is 

ranked among the top K largest values; otherwise, si = 1. The whole optimization framework 

is briefly summarized in Table I.

Convergence.: On the top of our optimization schema, the alterative optimization of F and 

S converges to a local minimum since S and F are independent and both energy functions 

are convex. Since each diagonal element in S is a binary selection result, it is difficult to 

directly solve S = diag(s) as a computationally hard combinatory optimization problem. 

Thus, we further relax this difficult optimization by introducing another continuous variable 

p, which becomes another two-step alterative optimization schema. Since we can optimize 

p using gradient descent approach, the optimization of p converges given F and S. In order 

to avoid the trivial solution in optimizing S, we resort to a greedy search strategy, which 

has been widely used in the machine learning field (Nie et al., 2017). Although it is hard to 

show the proof of convergence in a general sense, it is reasonable to assume that our method 

can converge to the same subset of hub nodes since the greedy optimization S is constrained 
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by the number of hub nodes K and hub nodes are characterized by distinctive connectivity 

profiles compared to other nodes in the brain network.

2.4 Extension to identify population-wise setting of hub nodes

It is rather straightforward to extend this hub identification scheme from the individual 

network setting to the scenario of population-wise setting. Such a population hub 

identification discovers a set of the most representative hub nodes S from a population of M 

individual networks W m m = 1
M . To do so, we convert the individual-based energy function 

in Eq. (4) to the objective function of population-based hub identification as:

argmin Fm , str ∑m = 1
M Fm

T Ds
m − STW mS Fm , (18)

where each Fm denotes the low dimensional descriptor derived from the Laplacian matrix of 

mth network, and Fm
TFm = I . Ds

m = diag di
m  is the diagonal matrix with di

m = ∑j = 1
N siwij

(m)sj

(i = 1, …, N). It is clear that we allow each individual network to have its own network 

organization (characterized by Fm), but they share a common setting of hub nodes S.

Similarly, we alternatively optimize {Fm} and S = diag(s) in Eq. (18). Since it is reasonable 

to assume that each Fm is independent to all others, we estimate Fm for each network 

separately by minimizing the energy function in Eq. (7). By fixing {Fm}, the common hub 

identification matrix s can be optimized by:

argminstr sTAs . (19)

where A = ∑m = 1
M Am and each element aijm in the matrix Am can be calculated by 

aijm = wijm fi
m − fj

m
2
2
 (i, j = 1, … , N). We apply the optimization steps summarized in Table 

I to solve S = diag(s), where si = 0 indicates the node Vi is the representative hub for the 

whole network population.

3. Experiments

We evaluate the performance of our joint hub identification method on both simulated 

and real network data, including a well-known social network and both structural and 

functional brain networks. We compared our method with respect to two current popular 

hub identification methods: (1) a sorting-based method which finds a set of hub nodes 

based on the centrality of betweenness (Tijms et al., 2013; Zhu et al., 2012), and (2) a 

module-based method, which first detects network modules, and then selects hub nodes 

based on participation coefficients (Guimerà and Nunes Amaral, 2005), and a higher-order­

connectivity-based method (Andjelković et al., 2020), which detects a set of hub nodes 

based on the structure of simplicial complexes of different orders that each node participates 

in a complex network.
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3.1 Evaluation on Synthesized Network Data

3.1.1 Data Preparation—A series of synthesized network data is generated by the 

following steps: (1) we first generate a set of densely connected connectivity matrices 

(considered as modules) where each element is a random number from 0 to 1; (2) we stack 

these matrices along the diagonal line and form a new bigger matrix where there is no 

inter-module connection; (3) we specify a set of connector hub nodes with random links 

(considered as inter-module connectivity with a value from 0 to 1) between all the rest of 

nodes in the network. Since the ground truth is known for these synthesized networks, we 

are able to evaluate the performance on hub identification in terms of the location and the 

number of connector hub nodes.

3.1.2 Accuracy of Hub Identification—Two synthesized network datasets are 

generated as described above, each consisting of two modules (indicated by red and blue 

respectively), and at least one connector hub (indicated by hollow circle(s)) connecting the 

two modules in Fig. 2(a)–(b). Furthermore, the Zachary’s karate club network (Zachary, 

1977) is also used to test the performance of our algorithm, as shown in Fig. 2(c), in which 

nodes 1 and 34 represent the administrator (hub) and instructor (hub) respectively.

First, we investigate the convergence of our proposed hub identification method. The 

convergence profiles of the decreasing cost function with respect to the increasing number of 

iterations for three networks are shown in the right side of Fig. 2(a)–(c). It is apparent that 

our proposed optimization schema can quickly converge after a few iterations.

Second, we evaluate the accuracy of the hub identification results, where the identified hub 

nodes are marked by the red box, obtained via the sorting-based method Fig. 3(a), the 

module-based method Fig. 3(b), higher-order-connectivity-based method Fig. 3(c), and the 

method proposed here Fig. 3(d). As is evident by visual inspection, our hub identification 

and the higher-order-connectivity-based method outperforms the conventional sorting-based 

and the module-based methods on both the simulated data and the Zachary’s karate club 

network in terms of identifying the location.

3.1.3 Robustness of Hub Identification on Network Topology—The accuracy 

of hub identification can be quantified by calculating the Jaccard Index (Ce ∩ Cg)/Ce ∪ 
Cg, where Ce is the set of identified hub nodes and Cg represent the set of ground truth 

nodes in a synthetic network. First, we synthesize a series of networks with an increasing 

total number of nodes. Then, the accuracy curves varied with the increase of network scale 

by sorting-based (blue), module-based (orange), higher-order-connectivity-based method 

(green), and our proposed joint hub identification methods (red) are shown in Fig. 4(b). 

Since the module information and the connector hubs are known in the simulated network 

data, we evaluate the percentile of the ground truth hub nodes within the total identified hub 

nodes by sorting-based, module-based, higher-order-connectivity-based, and our proposed 

joint hub identification methods are shown in Fig. 4 (b), and displayed in blue, orange, 

green, and red curves, respectively. It is apparent that our joint hub identification method 

consistently had higher accuracy of detecting connector hubs than all of the conventional 

methods.
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3.1.4 Univariate-based vs Multivariate-based Hub Identification—In this 

subsection, we specifically evaluate the advantage of multivariate (joint) hub identification 

over the univariate manner (using the same selection criteria but sequentially selecting 

hub one after another). Two simulations based on the network #2 (shown in Fig. 2(b)) 

and network #4 (shown in Fig. 5(a)) were conducted to investigate the performance of 

univariate-based and the multivariate-based hub identification approaches. In the framework 

of the univariate-based approach, hub nodes were sequentially identified one after another 

(based on the break-down effect quantified in Eq. 4) until reaching the predefined hub 

number, as shown in Fig. 5(b). In contrast, our multivariate-based approach jointly identifies 

a set of hub nodes by optimizing Eq. 4. The identified hub nodes by the multivariate-based 

approach are shown in Fig. 5(c). It is clear that the multivariate approach outperforms the 

univariate approach as the network topology becomes more and more complex. Note, the 

reason for the univariate approach’s failure in network #4 is that the separation of the two 

modules is not distinct until we consider removing four hub nodes jointly.

3.2 Evaluation on Structural Network Data

A total of 128 subjects from the ADNI database (as shown in Table. II) are selected, 

in which each subject has longitudinal scans of T1-weighted MRI and DWI images. 

For each scan, we first segment T1-weighted MR images into white matter, gray matter, 

and cerebrospinal fluid using FreeSurfer (Fischl, 2012). Based on the tissue segmentation 

result, we construct the cortical surface and then calculate the cortical thickness. Next, we 

parcellate the cortical surface into 148 cortical regions and then apply surface seed based 

probabilistic fiber tractography, thus producing a 148 × 148 anatomical connectivity matrix 

(Destrieux et al., 2010). The weight of the anatomical connectivity of pair-wise regions 

is measured by the number of fibers between the regions. In the following experiments, 

we first evaluate our proposed population-based hub identification method by testing for 

consistency in those hubs detected among different sub-samples from a common larger 

cohort of network data. Then, we evaluate the replicability of hub identification results 

obtained by our proposed individual-based hub identification method. Finally, as mounting 

evidence shows decreased cortical thickness in AD (Lerch et al., 2008), we use permutation 

tests to study the differences in cortical thickness among normal control (NC), mild 

cognitive impairment (MCI), and Alzheimer’s disease (AD) cohorts at the identified hub 

nodes. Again, we compare our results to sorting-based (Tijms et al., 2013) and module­

based (Guimerà and Nunes Amaral, 2005) hub identification methods.

Since there is no ground truth for us to know how many connector hubs exist within the 

human brain network, we calculate the network properties of small-world and scale-free 

as in (van den Heuvel and Sporns, 2013) to estimate the number of hub nodes K in 

the following real-data experiments. Specifically, we examine the distribution of nodal 

connectivity centrality in the whole population (NC+MCI+AD). To make the estimation 

more robust, we show the average of connectivity degree (blue), betweenness (orange), and 

clustering coefficient (green), across individual networks, in Fig. 6(a), where we sort the 

centrality degree in decreasing order. Furthermore, we also plot the ratio between the overall 

top-ranked nodes’ centrality and their nodal number, as shown in Fig. 6(b). Based on Fig. 
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6, we empirically use K = 8 for all hub identification methods in the following experiments 

since there is a relatively larger drop of nodal measurements after K = 8.

In the following, we first compare the population-wise hub identification result using a 

voting strategy and our integrated strategy illustrated in Section 2.4. Next, we evaluate 

the replicability using the individual-based hub identification method on the test/re-test 

data. In the evaluation of statistical power for group comparison and diagnostic value for 

classification, we apply the population-based hub identification method since all individual 

networks are required to have a common set of hub nodes

3.2.1 Comparison between voting-based and our integrated method in 
population hub identification—Given a group of networks, conventional methods 

attempt to find a set of population-wise hub nodes by first detecting hub nodes in each 

network separately, and then applying a voting scheme to determine the most representative 

hubs. In contrast, our population-based hub identification method offers an integrated 

solution (Eq. (19)) to optimize the common set of hub nodes for all individual networks 

simultaneously. Due to a lack of ground-truth in the real brain network data, we evaluate the 

performance of the population-wise hub identification based on the consistency across the 

different number of hub nodes and based on the consistency across each resampling test.

A total of 128 networks were used to test the consistency of the hub node locations as 

the number of hubs was increased. According to the Fig. 6, we set K=6 as the baseline 

hub number and investigated the consistency of our integrated population-based hub 

identification method when increasing the number of hub nodes from 6 to 11. The results 

are shown in Fig. 7. Blue circles represent the location of nodes that were not identified 

when at the baseline case of hub number of K=8. Red circles represent the added hub nodes 

that were identified when increasing the number of hub nodes. There were no identified hub 

nodes at the baseline that were lost when increasing the hub number. These results show that 

our integrated population-based hub identification is consistent as the number of hub nodes 

is increased. Thus, in the following experiments, we only show the result obtained by the 

number of fixing K= 8.

Second, we evaluate the performance of the population-wise hub identification based on the 

consistency across each resampling test. We randomly draw a subset of individual networks 

from the dataset and then identify the population-wise hub nodes for the sampled subset. 

By repeating this process for a sufficient number of times (100 resampling tests here), we 

can obtain the frequency histogram of each node being selected as a hub node across all 

resampling tests. Next, we calculate the entropy of frequency histogram for each method, 

where smaller values suggest a higher consistency in the resampling tests. Note, to reduce 

the influence of the diagnosis label, we divide the whole dataset into three groups: NC, 

MCI, and AD. Here, there are 45 NC, 57 MCI, and 26 AD subjects. Fig. 8 shows the curve 

of entropy with respect to the number of samples drawn in each resampling test, where 

the conventional sorting-based+voting, module-based+voting, and our integrated method are 

displayed in green, red, and yellow, respectively. To specifically evaluate the contribution 

of the integrated strategy proposed in our method, we show the consistency performance 

of our individual-based hub identification+voting in blue. Notably, our population-based 
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hub identification method produces more consistent results compared to the other methods, 

particularly when the population sample size is small.

3.2.2 Consistent Hub Identification of Structural Networks Facilitates 
Longitudinal Brain Studies—Here, we select 128 pairs of consecutive longitudinal 

scans where the time interval between two scans in each pair is less than twelve months 

and there is no change of diagnostic label. Thus, it is reasonable to assume that the hub 

nodes do not change significantly between the two longitudinal scans. Then, we deploy each 

hub identification method to each scan separately and examine the common hubs identified 

within each pair. The percentages of hub nodes being selected in both time points over the 

total number of the identified hub nodes are 66%, 55%, and 67% by sorting-based, module­

based, and our proposed individual hub identification method, respectively. Furthermore, we 

show the count histogram of each network node being both identified in each longitudinal 

pair in the left panel of Fig. 9(a)–(c), and the count histogram of common hub nodes being 

identified in each longitudinal pair in the bottom panel of Fig. 9(a)–(c). We calculate the 

entropy value (shown in Fig. 9) based on the count histogram of each network node being 

both identified in each longitudinal pair. Our method achieves the smallest entropy value, 

indicating better replicability over the other two conventional methods. Especially, there are 

more pairs of consecutive longitudinal scans being identified with a relatively high common 

hub number). Also, we display the identified hub node in Fig. 9, where a larger node size 

denotes the higher frequency with which the hub node was detected in both consecutive 

scans.

3.2.3 Evaluation of the Statistical Power of Identified Hub Nodes—In this 

experiment, a total of 128 subjects (45 NC, 57 MCI, and 26 AD) are selected. Here, we 

first identify/vote the eight most representative hub nodes from the hub identification results 

of each scan. Then we examine the statistical power at the identified hub nodes by applying 

a two-sample significant permutation test (p<0.05) of cortical thickness. Here, we randomly 

permute the subject diagnoses (NC vs MCI, NC vs AD, MCI vs AD) 5000 times and then 

obtain the empirical p-value to report the significance of the identified hub nodes on cortical 

thickness. In Fig. 10 (a), we display the 16 nodes that were identified by at least one of the 

three hub identification methods. Both left (#13) and right (#14) Precuneus gyrus, shown in 

Fig. 10 (b)–(d), are selected by all three hub identification methods. In Fig. 10 (b)–(d), we 

show the statistical tables for sorting-based+voting, module-based+voting, and our proposed 

population-based hub identification method, respectively. In each table, the first and second 

columns show the location and the voting consensus of each representative hub node. ‘√’ and 

‘×’ denote significance and non-significance after two-sample permutation tests. The hub 

nodes identified by our method (5 regions for NC vs AD, and 6 regions for MCI vs AD) 

have greater ability to statistically distinguish the patient populations compared to the other 

two hub detection methods (Sorting-based+Voting: 4 regions for NC vs AD, and 5 regions 

for MCI vs AD; Module-based+Voting: 5 regions for NC vs AD, and 5 regions for MCI vs 

AD).

3.2.4 Evaluation of the Diagnostic Value of Identified Hub Nodes—To 

demonstrate the diagnostic value of identified hub nodes, one application is to use features 
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extracted from these nodes in the network to classify AD. For clarity, we only show the 

classification between NC and AD cohorts by using the nodal cortical thickness at the 

identified hubs. Here, a total of 71 subjects (45 NC and 26 AD) are divided into a training 

dataset of 57 subjects (36 NC and 21 AD) and test dataset of 14 subjects (9 NC and 5 

AD). Then we use a 10-fold cross-validation based SVM to train the classifier and report 

the classification accuracy, precision, and recall. Here, we use an SVM model with an RBF 

kernel function. To enhance the reliability of our results, we repeat this process five times. 

Note, for each repeat, the test data is different, and eventually, all the subjects have been 

used as the test dataset. Thus, a reliable average result is reported, as shown in Table III. 

Note, we use the same parameters for the SVM, but we use the cortical thickness at different 

hub nodes. In each repeat, the set of hub nodes were identified from the training data. In 

accordance with our single feature comparisons in Fig. 10, the classifier trained using the 

features of cortical thickness extracted at the hub nodes identified by our population-based 

method exhibited enhanced performance over those models trained using more traditional 

hub detection methods (Table III).

3.3 Evaluation on Functional Network Data

In this section, two functional neuroimaging datasets are used to evaluate the accuracy 

and replicability of hub identification results. The first dataset consists of 944 pairs of test/

retest resting-state fMRI scans from HCP (Human Connectome Project) database, where the 

participants are healthy adults (aged 22–35). MRI scanning was done using a customized 

3T Siemens Connectome Skyra with a standard 32-channel Siemens receive head coil and 

a body transmission coil. T1-weighted high resolution structural images acquired using a 

3D MPRAGE sequence with 0.7 mm isotropic resolution (FOV = 224 mm, matrix = 320, 

256 sagittal slices, TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, FA = 8°) were used in 

the HCP minimal preprocessing pipelines to register functional MRI data to a standard brain 

space. Resting state fMRI data were collected using gradient-echo echo-planar imaging 

(EPI) with 2.0 mm isotropic resolution (FOV = 208 × 180 mm, matrix = 104 × 90, 72 

slices, TR = 720 ms, TE = 33.1 ms, FA = 52°, multi-band factor = 8, 1200 frames, ~15 

min/run). The second dataset consists of 124 subjects (63 control subjects and 61 subjects 

identified with obsessive-compulsive disorder), which has been published in (Dong et al., 

2019). The demographic information is shown in Table. IV. Each subject has corresponding 

T1-weighted images (TR = 8 ms, TE = 1.7 ms, flip angle = 20°, resolution = 1.0 × 1.0 × 1.0 

mm3) and resting state fMRI data (TR=2s, TE=60ms, flip angle=90°, resolution = 3.0 × 3.0 

× 4.0 mm3).

All these data were preprocessed by using the Statistical Parametric Mapping toolbox and 

Data Processing Assistant for Resting-State fMRI with the following essential steps: 1) 

slice timing correction; 2) head motion correction; 3) realignment with the corresponding 

T1-volume; 4) nuisance covariate regression; 5) spatial normalization into the stereotactic 

space of the Montreal Neurological Institute and resampling at 3×3×3 mm3; 6) spatial 

smoothing with a 6-mm full-width half-maximum isotropic Gaussian kernel, and band-pass 

filtered (0.01–0.08 Hz). For the HCP dataset, we parcellated each scan into 268 regions 

using a functional atlas (Shen et al., 2013). Note that since we are more interested in the 

default and attention subnetworks (total of 58 regions), and a 58×58 functional connectivity 
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matrix was computed based on the correlation of mean time course of the BOLD (blood 

oxygen level-dependent) signals. For the OCD dataset, we parcellated each brain into 

90 AAL regions (Tzourio-Mazoyer et al., 2002) which results in a 90 × 90 functional 

connectivity matrix for each subject. All functional connectivity matrices were preprocessed 

by using a conventional standard pipeline: (1) setting all negative correlations to zero and (2) 

density-based thresholding (keeping the 40% of the total positive edges).

The following experiments in this section are arranged with a similar design as the above 

section 3.2. We first evaluate the replicability of hub identification obtained by our proposed 

individual-based hub identification method on the test/re-test data from HCP database. Since 

OCD patients showed decreased small-world efficiency (Shin et al., 2014) such as nodal 

efficiency and nodal clustering, we then use the local efficiency and clustering coefficient as 

the nodal feature to evaluate the statistical power of the identified hub nodes, where we use 

the permutation test to carry out a classic statistical population comparison (local efficiency 

and clustering coefficient) between normal control (NC) and obsessive-compulsive disorder 

(OCD) at the identified hub nodes. Note, the total number of hub nodes is set to eight, i.e., 

K = 8, after we examine the distribution of nodal centrality degrees in the population of 

functional networks (please refer to Fig. 6).

3.3.1 Replicability Test of Hub Identification on HCP dataset—Here, we deploy 

each hub identification method to each scan separately and examine the common hubs 

identified within each pair. The replicability was defined as being selected as hub nodes in 

test/retest network data. The sorting-based, module-based, and our joint hub identification 

methods are depicted visually in Fig. 11(a)–(c), respectively. Additionally, we show the 

count histogram of each network node being both identified in each pair of networks in 

the left panel of Fig. 11(a)–(c) and the count histogram of common hub nodes being 

identified in each test-retest pair in the bottom panel of Fig. 11(a)–(c). The quantitative 

results of entropy value based on each network node being both identified in each pair of 

networks are shown in the bottom of Fig. 11, which are 5.78 by sorting-based method, 

5.81 by module-based method, and 5.33 by our method. For the functional networks, our 

method also achieves the smallest entropy value, consistently showing greater replicability 

performance as we demonstrated in Fig. 9 for structural networks. Similarly, we display the 

frequency of being identified as a hub node in the setting of brain surfaces, as shown in 

Fig. 11, where larger node size indicates more consistency of the hub identification results 

between test and re-test fMRI data.

Furthermore, we also evaluate the performance of our proposed hub identification method 

under different population size of brain networks. Here, a bootstrap resampling framework 

was applied. Firstly, we randomly sampled a subset (population size from 100 to 900) from 

the above 944 test/retest pairs. Then, we applied these four methods to find the common 

hub nodes between the test and retest experiments. To obtain a reliable result, we repeat 

the above process 100 times. As shown in the Fig. 12, our proposed individual-based (blue 

curve) and population-based (yellow curve) hub identification methods perform better than 

the conventional sorting-based+voting (green curve) and module-based+voting methods (red 

curve).
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3.3.2 Evaluation of the Statistical Power of the Identified Hub Nodes on OCD 
dataset—To investigate the statistical power of the identified hub nodes by our population­

based hub identification method, a total of 124 subjects, which included 63 NC and 61 

OCD cases, are employed. First, using the functional connectivity matrices from all 124 

subjects we identify the eight most representative hub nodes for the OCD dataset. Then, 

we apply two-sample permutation test (p<0.05) of local efficiency and clustering coefficient 

to examine the power of these identified hubs. Here, we randomly permute the subject 

diagnoses (NC vs OCD) 5000 times and then obtain the empirical p-value to report the 

significance of the identified hub nodes on local efficiency and clustering coefficient. Fig. 

13(a) shows the total of 23 most representative hubs, where each has been identified at 

least one of the three hub identification methods. Fig. 13(b)–(d) show the statistical result 

by sorting-based+voting, module-based+voting, and our proposed population-based hub 

identification method, respectively. In each table, the first and second rows show the location 

and the voting consensus of each representative hub node. ‘√’ and ‘×’ denote statistical 

significance and non-significance after permutation test. Based on the tables in Fig. 13(b)–

(d), the representative hub nodes identified by our method show a more statistical power 

compared with the other two methods (soring-based+voting and module-based+voting). 

Furthermore, the distribution of hub nodes identified by our proposed population-based hub 

identification method best agrees with the previous studies that suggested that the caudate 

(#4), putamen (#17), thalamus (#11, #14), hippocampus (#15), orbitofrontal cortex, anterior 

cingulate cortex (#12), and striatum are the most relevant regions in OCD (Anticevic et al., 

2014; Brennan et al., 2013).

4. Conclusion

Computational studies suggest that, compared to other nodes in the network, damage to 

connector hubs have a more widespread effect on the network dynamics, resulting in 

more pervasive dysfunction of the system (Fornito et al., 2015; Gratton et al., 2012). 

Hence, identification of connector hub nodes from brain networks is a necessary first 

step to understanding human brain function under normal and pathological conditions. To 

identify the connector hub nodes from brain network more accurately, we present a novel 

multivariate hub identification method using graph spectrum theory. We jointly find a set 

of critical nodes in the network, where the removal of these identified candidate hubs 

would break down the network into largest number of connected components. To achieve 

this, we present an augmented Lagrange Multiplier-based approach to covert the NP-hard 

combinatory optimization into a convex optimization framework. We have demonstrated the 

accuracy and the power of our proposed hub identification method using both simulated and 

experimentally obtained graph networks. Comparative analysis using simulated networks 

revealed our proposed hub identification method discovered connector hub nodes with 

higher accuracy and sensitivity than conventional univariate approaches. Furthermore, using 

experimentally obtained structural and functional brain network data we illustrated the value 

and the power of our joint hub identification method in distinguishing network alterations 

related to disorders such as AD and OCD.

Additionally, to make our proposed hub identification method more widely applicable, 

we proposed a population-based hub identification method, which can identify a set of 
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common hub nodes simultaneously from a group of networks across different populations or 

longitudinal time points. Our experimental results confirmed that our proposed population­

based hub identification method yields superior results compared to methods that detect 

hubs separately for each network and then apply a voting scheme.

Both our proposed individual-based and the population-based hub identification methods 

performed better than the current state-of-art methods. In the future, we plan to further 

demonstrate our proposed method’s generalizability by applying it to studies of other 

neurological diseases.
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Highlights

• A novel multivariate hub identification method to jointly find a set of critical 

connector hub nodes in the network.

• An extension of population-wise hub identification was also proposed to 

identify a set of common hubs from a group of networks across different 

populations or longitudinal time points.

• Experiments based on both structural and functional data demonstrated 

the population-wise hub identification has a more power on distinguishing 

network alterations related to disorders such as Alzheimer’s disease and 

obsessive-compulsive disorder.
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Fig. 1. 
Schematic toy example demonstrating our joint hub identification method, which seeks to 

identify the optimal set of hub nodes by examining the damage (measured by the summation 

of eigenvalues from the affected Laplacian matrix (b)) after removing these critical nodes. 

(a) Original network and networks after removing connector hub #3, provincial hub #5, and 

provincial hub #8. (b) Adjacency matrix. (c) The original objective function (number of zero 

eignevalues) and the continuous objective function (sum of the eigenvalues) are displayed in 

brown and blue, where both of them suggest node #3 is the connector hub in the network.
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Fig. 2. 
Networks and the convergence curves of our proposed hub identification method for 

synthetic networks (a)-(b) and a real network - Zachary’ karate club network (c).
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Fig. 3. 
Hub identification results on the simulated networks and Zachary’s karate club network 

by using the conventional sorting-based method (a), the module-based method (b), the 

higher-order-connectivity-based method, and our joint hub identification method (d). Red 

and blue designate the module information. Hollow and solid circles respectively represent 

the ground truth of connector hub and non-connector hub in the synthesized network. The 

automatically identified hub nodes are marked by a red box.
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Fig. 4. 
(a) is the baseline network model, in which the connector hub nodes are fixed. Red and blue 

designate the module information. Hollow and solid circle respectively represent the ground 

truth of connector hub and non-connector hub. (b) Overlap ratio between the estimated 

hub nodes and the ground truth hub nodes by the sorting-based method (blue), the module­

based method (orange), higher-order-connectivity-based method (green), and our joint hub 

identification method (red).
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Fig. 5. 
(a) Networks. (b) Univariate-based framework for hub identification. (c) Multivariate-based 

approach for joint hub identification. The red box marked the identified hub node.

Yang et al. Page 27

Med Image Anal. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
(a) The population average of connectivity degree (blue), betweenness (orange), and 

clustering coefficient (green) at each network node, where the values are sorted in 

decreasing order. (b) Profile of the ratio between the overall top-ranked nodes’ centrality 

and their nodal number. Blue represent the connectivity degree, orange is the betweenness, 

and green show the clustering coefficient.
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Fig. 7. 
Consistency of common hub nodes being identified when sweeping the number of hub 

nodes from 6 to 11 by using the population-based method. Blue circles represent the location 

of nodes that were not identified when using the baseline number of 6. Red circles represent 

the added hub nodes that were identified when increasing the number of hub nodes
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Fig. 8. 
Test and retest in terms of the consensus of common hub nodes being identified between 

different population networks sampled and resampled from the same ADNI structural brain 

network data sets.

Yang et al. Page 30

Med Image Anal. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Replicability test in terms of the consensus of common hub nodes being identified in two 

consecutive longitudinal scans by sorting-based (a), module-based (b), and our method (c).
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Fig. 10. 
The location of representative hub nodes and statistical power comparison at hub nodes 

between NC, MCI, and AD. (a) Spatial distribution of identified hub nodes, where each 

node has been identified by at least one of the three hub identification methods tested. 

Statistical tests for differences in the cortical thickness at hub nodes identified via the 

sorting-based+voting (b), the module-based+voting (c), and our proposed population-based 

hub identification method (d).
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Fig. 11. 
Replicability test in terms of the consensus of common hub nodes being identified in two 

consecutive longitudinal scans by sorting-based (a), module-based (b), and our proposed 

individual-based hub identification method (c).
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Fig. 12. 
The consensus of common hub nodes being identified across different population networks 

sampled and resampled from the test/retest dataset.
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Fig. 13. 
The location of representative hub nodes and statistical power comparison at hub nodes 

between NC and OCD. (a) Spatial distribution of identified hub nodes, where each node 

has been identified by at least one of the three hub identification methods tested. Statistical 

tests for differences in the local efficiency and clustering coefficient at hub nodes identified 

via the sorting-based+voting (b), the module-based+voting (c), and our proposed population­

based hub identification method (d).
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Table I

Algorithm for joint hub identification
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Table II

Demographic information about the ADNI database based on the baseline scan.

Gender Number Range of Age Average Age NC MCI AD

Male 74 55.0~90.3 74.3 20 39 15

Female 54 55.6~87.8 72.8 25 18 11

Total 128 55.0~90.3 73.7 45 57 26

Med Image Anal. Author manuscript; available in PMC 2022 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 38

Table. III

NC/AD classification accuracy by using the cortical thickness as the features at the hub nodes identified by 

sorting-based, module-based, and our method, respectively.

Hub Identification Methods Accuracy Precision Recall

Sorting-based Method 72.86±5.98% 73.96±6.07% 91.11±9.30%

Module-based Method 70.00±11.74% 73.03±7.35% 84.44±12.67%

Population-based Hub Identification 77.14±5.98% 77.26±7.34% 93.33±9.94%
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Table. IV

Demographic information about the OCD database based on the baseline scan.

Gender Number Range of Age Average Age NC OCD

Male 36 13~59 25.4 20 16

Female 88 13~44 23.0 43 45

Total 124 13~59 23.7 63 61

Med Image Anal. Author manuscript; available in PMC 2022 October 01.


	Abstract
	Graphical Abstract
	Introduction
	Method
	Graph Theory in Brain Network Analysis
	Theorem 1.
	Theorem 2.

	Framework of Joint Hub Nodes Identification
	Optimization
	Optimizing network modules under the current setting of hub nodes
	Identifying hub nodes based on network modular information
	Convergence.


	Extension to identify population-wise setting of hub nodes

	Experiments
	Evaluation on Synthesized Network Data
	Data Preparation
	Accuracy of Hub Identification
	Robustness of Hub Identification on Network Topology
	Univariate-based vs Multivariate-based Hub Identification

	Evaluation on Structural Network Data
	Comparison between voting-based and our integrated method in population hub identification
	Consistent Hub Identification of Structural Networks Facilitates Longitudinal Brain Studies
	Evaluation of the Statistical Power of Identified Hub Nodes
	Evaluation of the Diagnostic Value of Identified Hub Nodes

	Evaluation on Functional Network Data
	Replicability Test of Hub Identification on HCP dataset
	Evaluation of the Statistical Power of the Identified Hub Nodes on OCD dataset


	Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12
	Fig. 13
	Table I
	Table II
	Table. III
	Table. IV

