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Abstract

Motivation: With the reduction in price of next-generation sequencing technologies, gene expression profiling using
RNA-seq has increased the scope of sequencing experiments to include more complex designs, such as designs
involving repeated measures. In such designs, RNA samples are extracted from each experimental unit at multiple
time points. The read counts that result from RNA sequencing of the samples extracted from the same experimental
unit tend to be temporally correlated. Although there are many methods for RNA-seq differential expression ana-
lysis, existing methods do not properly account for within-unit correlations that arise in repeated-measures designs.

Results: We address this shortcoming by using normalized log-transformed counts and associated precision
weights in a general linear model pipeline with continuous autoregressive structure to account for the correlation
among observations within each experimental unit. We then utilize parametric bootstrap to conduct differential ex-
pression inference. Simulation studies show the advantages of our method over alternatives that do not account for
the correlation among observations within experimental units.

Availability and implementation: We provide an R package rmRNAseq implementing our proposed method (func-
tion TC_CAR1) at https://cran.r-project.org/web/packages/rmRNAseq/index.html. Reproducible R codes for data ana-
lysis and simulation are available at https://github.com/ntyet/rmRNAseq/tree/master/simulation.

Contact: ynguyen@odu.edu

1 Introduction

One of the goals of transcriptomics data analysis is to identify genes
whose mean transcript abundance levels differ across the levels of
one or more categorical factors of interest. Such genes are typically
referred to as differentially expressed (DE). Genes that are not DE
are referred to as equivalently expressed (EE). Over the past decade,
RNA sequencing (RNA-seq) technologies have emerged as powerful
and increasingly popular tools for expression profiling and differen-
tial expression analysis (Oshlack et al., 2010). In a typical RNA-seq
experiment, messenger RNA (mRNA) is extracted from each bio-
logical sample of interest. Molecules of mRNA are converted to
complementary DNA (cDNA) fragments that are sequenced with
high-throughput sequencing technology. This process generates mil-
lions of short reads from one or both ends of cDNA fragments.
These short reads are mapped to the reference genome, and the num-
ber of mapped short reads for a gene represents a measurement of
the transcript abundance level of that gene in a given sample.

With the decreasing price and increasing use of next-generation
sequencing technologies, RNA-seq experimental designs have be-
come more complex. As a motivating example, we consider an
RNA-seq experiment conducted on eight pigs, four from a high

residual feed intake line (HRFI) and four from a low residual feed
intake line (LRFI). Researchers wanted to evaluate how pigs from
different lines respond to a treatment (lipopolysaccharide, LPS)
designed to stimulate the immune system, and how the responses
change over time at the molecular genetic level. They used RNA-seq
technology to measure transcript abundances in blood samples from
each pig at four times after treatment: 0, 2, 6 and 24 h. The experi-
ment is explained in greater detail in Section 3 of this article. A stat-
istical model for these data should consider the within-unit
correlation expected because of repeated measurements on each pig.

Many general purpose RNA-seq differential expression analysis
methods have been developed, such as edgeR (Robinson et al.,
2010), QuasiSeq (Lund et al., 2012), DESeq and DESeq2 (Anders
and Huber, 2010; Love et al., 2014) among many others. These
methods use negative binomial generalized linear models to analyze
RNA-seq data and are appropriate for designs providing uncorre-
lated measurements within each gene. Furthermore, several methods
have been developed for time-course designs, such as NextmaSigPro
(Nueda et al., 2014), DyNB (Äijö et al., 2014), TRAP (Jo et al.,
2014), SMARTS (Wise and Bar-Joseph, 2015) and EBSeq-HMM
(Leng et al., 2015), which were collectively reviewed by Spies and
Ciaudo (2015). A recent comparative analysis of differential

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 4432

Bioinformatics, 36(16), 2020, 4432–4439

doi: 10.1093/bioinformatics/btaa525

Advance Access Publication Date: 25 May 2020

Original Paper

https://cran.r-project.org/web/packages/rmRNAseq/index.html
https://github.com/ntyet/rmRNAseq/tree/master/simulation
https://academic.oup.com/


expression tools for RNA-seq time-course data (Spies et al., 2019)
pointed out that ImpulseDE2 (Fischer et al., 2018) and splineTimeR
(Michna et al., 2016) are the top performing methods for time-
course RNA-seq data. These two methods model the gene expres-
sion levels as continuous function of time through an impulse func-
tion (Fischer et al., 2018) or a natural cubic splines (Michna et al.,
2016). However, these methods, as well as many other methods
reviewed in Spies et al. (2019), do not take within-unit correlation
of transcript abundance measurements into account, which may re-
sult in many false discoveries or failure to distinguish EE and DE
genes.

Theoretically, a generalized linear mixed model (GLMM) ap-
proach can be used to account for random effects and general correl-
ation structure, but the approach often suffers from convergence
issues for many genes because RNA-seq experiments usually have a
small sample size and many zero counts for many genes (Cui et al.,
2016). In the context of large-sample-size microbiome studies with
hundreds of observations per taxa, Zhang et al. (2017) proposed a
negative binomial GLMM for microbiome data to detect significant
taxa with respect to a factor of interest while accounting for correl-
ation among samples through random effects. In principle, a similar
approach could be used for RNA-seq data. However, the model con-
sidered by Zhang et al. (2017) involves independent, constant vari-
ance random effects that imply compound symmetric within-subjects
correlation structures. Such structures imply equal correlation for all
pairs of observations from the same subject and are not well suited
for repeated-measures experiments, where correlations are expected
to vary across pairs of time points as detailed in Section 2.3.

Given the limitations of existing approaches, a new statistical
method that is stable numerically under small sample size circumstan-
ces and, at the same time, controls false discovery rate (FDR) well is
desirable. One approach that addresses numerical instability when
analyzing repeated-measures RNA-seq data is to use normal-error lin-
ear modeling for log-transformed counts instead of using discrete
probability distributions, such as the negative binomial distribution.

Law et al. (2014) proposed the voom approach for analyzing
log-transformed RNA-seq data with linear models that explicitly
accounts for heteroscedasticity by the use of precision weights. They
showed that correctly capturing the mean–variance relationship in
the transformed data is more important than assuming a probability
model that acknowledges the discrete characteristics of the original
counts. In particular, by estimating precision weights for observa-
tions of transformed counts and including them in a general linear
model framework, Law et al. (2014) showed that the log-
transformed-based linear model approach performs better than
methods based on negative binomial models. Furthermore, the
voom approach facilitates more complex analyses, such as the vari-
ance component score test for gene set testing in longitudinal RNA-
seq data recently proposed by Agniel and Hejblum (2017).

In our article, we will take advantage of the voom approach to-
gether with a parametric bootstrap method to detect DE genes with
repeated-measures RNA-seq data. For each gene, we model the cor-
relation among observations taken at unequally spaced time points
by a continuous autoregressive correlation structure in a general lin-
ear model framework. Parameters are estimated by residual max-
imum likelihood (REML) using the gls function in the nlme R
package (Pinheiro et al., 2017). We conduct hypothesis testing using
a parametric bootstrap method. Simulation studies show the advan-
tages of our method over alternatives that do not account for the
correlation among observations within each gene in terms of FDR
control and the ability to distinguish EE and DE genes. Although we
focus on repeated-measures analysis in this article, it is straightfor-
ward to extend our method to other complex designs for which
modeling dependence among observations within each gene is
warranted.

The remainder of the article is organized as follows. We formally
define our proposed method in Section 2, first by revisiting the
voom procedure and then specifying the bootstrap strategy for infer-
ence. In Section 3, we apply the proposed method as well as other al-
ternative methods to analyze the repeated-measures RNA-seq

dataset that motivates our work. We compare the performance of
our method with that of alternative methods by a simulation study
in Section 4. The article concludes with a discussion in Section 5.

2 Methods

2.1 Notations and preliminaries
Consider the analysis of G genes using RNA-seq read count data
from S subjects and T time points. For g ¼ 1; . . . ;G; s ¼ 1; . . . ; S,
and t ¼ 1; . . . ;T, let cgst be the read count for gene g from subject s
at time t. Let xst ¼ ðx0st1; . . . ; x0stkÞ

0 be a vector encoding information
on k explanatory variables for subject s at time t. The k explanatory
variables may include multilevel factors of primary scientific interest
and other continuous or multilevel categorical covariates. If the jth
of k variables is a continuous covariate or a factor with two levels
that can be coded by a single indicator variable, then xstj is a one-
dimensional vector. If the jth variable is a factor with more than two
levels, xstj has dimension one less than the number of levels of the jth
variable to accommodate an indicator variable for all but one of its
levels. Let X ¼ ðx11; . . . ;x1T ; . . . ; xS1; . . . ; xSTÞ0 and (without loss of
generality) suppose that X has full-column rank with rankðXÞ ¼ r.
Law et al. (2014) defined the following transformation to obtain the
log-counts per million (log-cpm) for each count

ygst ¼ log 2
cgst þ 0:5

Cst þ 1
� 106

� �
; (1)

where Cst ¼
PG
g¼1

cgst is the sum of read counts computed for subject s

at time t. In general, fCstg can be any normalization factors that ac-
count for technical differences in read count distributions across the
RNA-seq samples. Many normalization procedures have been pro-
posed in the literature (see, e.g. Anders and Huber, 2010; Bullard
et al., 2010; Marioni et al., 2008; Mortazavi et al., 2008; Risso
et al., 2014a, b; Robinson and Oshlack, 2010 and references there-
in). Throughout this article, we set Cst to be the 0.75 quantile of
RNA-seq sample read counts from subject s at time t according to
the recommendation of Bullard et al. (2010). With this choice for
the normalization factor, the ygst values are no longer ‘counts per
million mapped reads’ on the log scale, but this interpretation is ir-
relevant for the differential expression analysis that is the focus of
our work. Henceforth, we use yg to represent the response vector

ðyg11; . . . ; yg1T ; . . . ; ygS1; . . . ; ygSTÞ0 for gene g.

2.2 The voom procedure
The voom procedure (Law et al., 2014) estimates the mean–variance
relationship of the log-transformed counts and generates a precision
weight for each observation according to the following algorithm:

1. For each gene g, initially assume the linear model

ygst ¼ x0stbg þ egst;

where EðegstÞ ¼ 0 and VarðegstÞ ¼ r2
g for all

g ¼ 1; . . . ;G; s ¼ 1; . . . ; S; t ¼ 1; . . . ;T

2. Let ~bg ¼ ðX0XÞ�1X 0yg and

~rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyg � X~bgÞ0ðyg � X~bgÞ=d;

q
where d � ST � r.

3. Let ~cg ¼ 1
ST

PS
s¼1

PT
t¼1

ygst þ 1
ST log 2

� QS
s¼1

QT
t¼1

ðCst þ 1Þ
�
� log 2ð106Þ

be the mean log-count value for gene g.

4. Let loð�Þ be the predictor obtained by fitting a LOWESS regres-

sion (Cleveland, 1979) of ~r1=2
g on ~cg. The voom precision weight

for ygst is calculated by

wgst ¼ ½lo
�

x0st
~bg þ log 2ðCst þ 1Þ � log 2ð106Þ

�
��4:
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2.3 Modeling for repeated-measure RNA-seq data
To account for the correlation among observations for each gene g,
we assume the Gaussian general linear model

yg ¼ Xbg þ eg; eg � Nð0;r2
gVgÞ; Vg ¼W�1=2

g AgW�1=2
g ; (2)

where

Wg ¼ ½

wg11 0 . . . 0
0 wg12 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . wgST

�

is the matrix of precision weights and Ag is an ST � ST block-
diagonal correlation matrix consisting of S identical blocks of di-
mension T�T that model correlations among the T observations
for each subject. We use Rg to represent the T�T block for gene g.

In the most general case, Rg has
T
2

� �
gene-specific correlation

parameters. However, unless the number of subjects S is large, reli-

able estimates for
T
2

� �
parameters may not be readily available. As

in a typical repeated-measures experiment with a single response
variable, we consider a structured block correlation matrix to reduce
the number of parameters and achieve more stable parameter esti-
mation as a potential alternative to unstructured estimation of Rg.

While many structures could be considered, we focus on the con-
tinuous autoregressive structure of order one (CAR1) referred to as
corCAR1 in nlme::gls, the gls function of the nlme R package
(Pinheiro et al., 2017). The CAR1 structure is given by

Rg ¼ ½

1 qjs1�s2 j
g . . . qjs1�sT j

g

qjs2�s1 j
g 1 . . . qjs2�sT j

g

..

. ..
. . .

. ..
.

qjsT�s1 j
g qjsT�s2 j

g . . . 1

�; (3)

where s1; . . . ; sT 2 R and qg 2 ½0; 1Þ is a gene-specific correlation
parameter. Typically, s1; . . . ; sT are set equal to the T observation
times so that observations taken closer together in time are modeled
as more strongly correlated than observations taken farther apart in
time. For instance, in our motivating dataset, mRNA samples from
each subject are measured at times 0, 2, 6 and 24 h after treatment
with LPS, so it would be customary to set s1 ¼ 0; s2 ¼ 2; s3 ¼ 6,
and s4 ¼ 24, implying that observations taken at 0 and 2 h would be
most correlated while observations taken at 0 and 24 h would be
least correlated. However, mRNA levels may display circadian
effects, which could lead to higher rather than lower correlation for
observations taken exactly 24 h apart. Thus, rather than allowing
measurement times to dictate s1; . . . ; sT , we use our data observed
for thousands of genes to find values for s1; . . . ; sT that make the
CAR1 structure in (3) a useful approximation to the within-subjects
correlation block for each gene.

2.3.1 Parameter estimation for the CAR1 correlation structure

Our idea for estimating s1; . . . ; sT in (3) is to arrange s1; . . . ; sT on
the real line so as to maximize the average REML log-likelihood for
model (2) with Rg as in (3), where the average is taken over all
genes. Without loss of generality, we place s1; . . . ; sT in the interval
½0;1�, with the pair of time points that tends to be most weakly cor-
related at the endpoints of the interval. More formally, our estima-
tion strategy is as follows.

• For each gene g, fit model (2) by initially assuming Rg is an un-

structured T � T correlation matrix. Obtain REML estimates of

the TðT � 1Þ=2 correlation parameters for each gene.
• Identify the pair of time points fi; jg � f1; . . . ;Tg with the small-

est median REML correlation estimate, where the median is

taken across all genes. Let T 01 be the set of s ¼ ðs1; . . . ; sTÞ0 vec-

tors with ith element 0, jth element 1, and all other elements dis-

tinct values in (0, 1).
• For each gene g ¼ 1; . . . ;G and any s 2 T 01, let ‘gðr2

g ;qgjsÞ be

the REML log-likelihood for model (2) with Rg as in (3). Let

r̂2
gðsÞ and q̂gðsÞ be the maximizers of ‘gðr2

g ;qgjsÞ. Estimate s by

ŝ � argmax
s2T 01

XG

g¼1

lgðr̂2
gðsÞ; q̂gðsÞjsÞ:

Given ŝ, we apply nlme::gls with the CAR1 correlation struc-

ture to the data from each gene to obtain the REML estimators r̂2
g �

r̂2
gðŝÞ and q̂g � q̂gðŝÞ of r2

g and qg, respectively, as well as the plug-

in estimator V̂ g ¼W�1=2
g ÂgW�1=2

g of Vg, where s and qg in Rg (Ag)

are replaced by ŝ and q̂g, respectively, to obtain R̂g (Âg). The gener-

alized least squares estimator of bg is then given by

b̂g � ðX 0V̂
�1

g XÞ�1X 0V̂
�1

g yg.

2.3.2 Parameter estimation for unstructured correlation blocks

By assuming that Rg follows the CAR1 structure in (3), the total
number of correlation parameters is reduced to GþT, which can be

a substantial reduction relative to the G
T
2

� �
parameters needed

when Rg is unstructured. Although reducing the number of parame-
ters leads to lower-variability estimators, estimation bias can be-
come a problem if the true correlation structure for many genes
deviates sufficiently from CAR1. In such cases, or when the number

of subjects S is large enough to permit reliable estimation of G
T
2

� �
parameters, model (2) with unstructured Rg may be preferred.
Furthermore, the unstructured estimator plays an important role in
our parametric bootstrap approach to inference, as described in
Section 2.5.

To obtain an unstructured estimator of Rg and the corresponding
REML estimator of r2

g for g ¼ 1; . . . ;G, we apply nlme::gls with
the unstructured correlation to the data from each gene. For
g ¼ 1; . . . ;G, the unstructured estimator of Rg is used as in the
CAR1 case to obtain the generalized least squares estimator of bg

for each gene g ¼ 1; . . . ;G. We use R�g; V�g; r^
2

g , and bg to denote
estimators of Rg; Vg; r2

g , and bg when Rg is assumed to be unstruc-
tured. Whether Rg is estimated under the CAR1 restriction or
allowed to be unstructured, the corresponding REML estimator of
r2

g is improved by borrowing information from all genes using the
approach described in Section 2.4.

2.4 Shrinkage estimators of error variances
In microarray analysis, Smyth (2004) showed that shrinking esti-
mated error variances toward a pooled estimate can stabilize infer-
ence when the number of arrays is small. We follow the same
procedure to obtain the shrinkage estimator of the error variance r2

g

for each gene. In this section, we describe how r̂2
g (the estimator of

error variance under the CAR1 model) can be improved via shrink-
age to obtain a new error variance estimator denoted as ŝ2

g . The
same arguments apply for improving r^

2

g (the estimator of error vari-
ance under the unstructured model) via shrinkage to obtain a new
error variance estimator denoted as s

^ 2

g .
For shrinkage of r̂2

g , we assume that

r̂2
g jr2

g � r2
g

v2
d

d
(4)

and, for some parameters r2
0 and d0,
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d0r2
0

r2
g

� v2
d0
;

which together with (4) implies an inverse-gamma conditional distri-
bution for r2

g specified by

1

r2
g

jr̂2
g � Gamma

d þ d0

2
;
dr̂2

g þ d0r2
0

2ðd þ d0Þ

 !
:

A shrinkage estimator of r2
g is given by

ŝ2
g ¼ Ê

�1ðr�2
g jr̂2

gÞ ¼
dr̂2

g þ d̂0r̂
2
0

d þ d̂0

; (5)

where d̂0 and r̂2
0 are the estimators of the hyper-parameters d0 and

r2
0 obtained from the theoretical marginal distribution of r̂2

g using a
method of moments approach (Smyth, 2004). The shrinkage estima-
tors ŝ2

g and s
^ 2

g will be used through subsequent steps of our analysis
instead of the unshrunken REML estimators r̂2

g and r^
2

g .

2.5 General hypothesis testing of regression

coefficients using moderated F-Statistics
Suppose for each gene g we are interested in testing a null hypothesis
of the form

H0g : Cbg ¼ 0 vs: Hag : Cbg 6¼ 0;

where C is a matrix whose l rows are linearly independent elements
of the row space of X. An extension of the moderated F-statistic of
Smyth (2004) for gene g is defined as

Fg ¼ ðCb̂g � 0Þ0ðCðX 0V̂�1

g XÞ�1C0Þ�1ðC
b̂g � 0Þ

lŝ2
g

: (6)

In general, Cb̂g is a non-linear function of yg with an exact null
distribution that is unknown even when model (2) holds exactly.
Because RNA-seq experiments often have small sample size, we can-
not rely on asymptotic approximations of the null distribution of Fg.
Traditional F approximations to the distribution of Fg would not ac-
count for variation due to estimation of Vg or uncertainty intro-
duced by the process of determining observation-specific weights
with voom. Thus, we approximate the null distribution of Fg using a
parametric bootstrap approach (Efron and Tibshirani, 1993). For all
g ¼ 1; . . . ;G, we carry out the following steps:

1. Generate e	g � Nð0; s
^ 2

gV gÞ and calculate y	g ¼ Xbg þe	g.

2. Calculate c	gst using y	gst according to (1), i.e.

c	gst ¼ maxf2y	gst � ðCst þ 1Þ=106 � 0:5;0g:

3. Apply the voom procedure described in Section 2.2, fit the CAR1

model as described in Section 2.3.1, and shrink the resulting esti-

mates of error variance as described in Section 2.4 to obtain

q̂	g; V̂
	
g; b̂	g, and ŝ2	

g from fc	gstg and X just as q̂g; V̂ g; b̂g, and ŝ2
g

were obtained from fcgstg and X.

4. Compute

F	g ¼ ðCb̂	g �CbgÞ0ðCðX 0V̂
	�1

g XÞ�1C0Þ�1ðCb̂	g � C
bgÞ
lŝ2	

g

:

5. Repeat steps 1 through 4 a total of B times to obtain null statistics

F	g1; . . . ; F	gB.

Note that we use estimates from the unstructured model when creating
our bootstrap data in step 1 but then fit the CAR1 model to the boot-
strapped data in step 3. This provides our approach with robustness to
departures from the CAR1 model because we are able to approximate
the distribution of our CAR1-based test statistic when data come from
a more complex unstructured model. When computing F	g in step 4,
Cbg is used in place of the hypothesized value 0 that appears in the test

statistic in (6). Thus, F	g can be viewed as a statistic for testing the null
hypothesis Cbg ¼ Cbg, which is a true null due to the mechanism used
for generating the bootstrap data in step 1. In this way, F	g serves as a
draw from the approximate null distribution of Fg.

Taking advantage of the parallel structure in which the same
model is fitted for each of many gene, we combine the bootstrap
null statistics for all genes to calculate a p-value for each gene.
Numerically, the P-value for gene g is calculated by the proportion
of all bootstrap null statistics fF	g1; . . . ; F	gB : g ¼ 1; . . . ;Gg that
match or exceed the observed statistic Fg, i.e.

pg ¼
1

GBþ 1

�
1þ

XG
g¼1

XB

b¼1

1ðF	gb 
 FgÞ
�
; (7)

where 1 is an indicator function. The constant 1 is added to both nu-
merator and denominator as recommended in Davison and Hinkley
(1997) and Phipson and Smyth (2010). These P-values are converted to
q-values (Storey, 2002). To approximately control FDR at any desired
level a, a null hypothesis is rejected if and only if its q-value is less than
or equal to a. When calculating q-values by the method of Storey
(2002), we need an estimate of G0, the number of true null hypotheses
among all G null hypotheses tested. In this article, G0 is estimated by
the histogram-based method of Nettleton et al. (2006). Theoretical
properties of a closely related histogram-based approach were estab-
lished by Liang and Nettleton (2012). The approach of pooling as in
(7) is used by Storey et al. (2005) in a time-course microarray analysis.

3 Analysis of an LPS RNA-Seq dataset

In this section, we apply our proposed method, rmRNAseq, and
three other methods—DESeq2 (Love et al., 2014), voom-limma
(Law et al., 2014) and edgeR (Robinson et al., 2010; Lun et al.,
2016)—to analyze an RNA-seq dataset from a study of the inflam-
matory response in pigs triggered by LPS at the transcription level
(Liu, 2017, Chapter 2). The experiment design is described as fol-
lows. Four pigs of each residual feed intake line, HRFI and LRFI,
were injected LPS from Escherichia coli 05:B5 bacteria. Blood sam-
ples were collected from the eight pigs immediately before the injec-
tion (time point 0 in the following) and 2, 6 and 24 h after the
injection. An RNA sample was extracted and sequenced from each
blood sample. In total, there were 4 (pigs) � 2 (lines) � 4 (time
points) ¼ 32 RNA-seq samples. We focus on identifying genes DE
between lines (Line) and genes DE across time points (Time).

This is an example of a repeated-measures design, where RNA
samples were extracted from each pig at four different unequally
spaced time points. The RNA-seq dataset consists of read counts for
11 911 genes for each of 32 RNA samples. Following standard prac-
tice, this dataset excludes genes with mostly low read counts because
such genes contain little information about differential expression.
In particular, the 11 911 genes analyzed in this study each have aver-
age read counts of at least 8 and no more than 28 zero counts across
32 RNA samples. The same threshold for gene inclusion was used
throughout the simulation studies described in Section 4.

A special characteristic of this experiment is the potential for cir-
cadian rhythm effects that may induce correlation between observa-
tions taken at the same time of day. Thus, although times 0 and 24
are farthest apart when time is considered to unfold on a linear axis,
the correlation between the time 0 and 24 observations may be large
because these observations are taken at the same time of day. To
evaluate this possibility, we conducted a preliminary analysis of the
LPS RNA-seq dataset by applying the voom procedure and model
(2) as in Section 2.3, where Rg is a T�T correlation matrix with
blocks of the unstructured form

Rg ¼ ½

1 qg1 qg2 qg3

qg1 1 qg4 qg5

qg2 qg4 1 qg6

qg3 qg5 qg6 1

�; 0 � qg1; . . . ; qg6 � 1;

instead of the CAR1 form described in Section 2.3. The mean struc-
ture of the data is modeled by Xbg, where the design matrix X is
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constructed so that there are eight different means, one for each
combination of Time and Line. Figure 1 shows boxplots of correla-
tions across all 11 911 genes for each pair of time points. Both the
average and median correlations increase across the time pair se-
quence (6, 24), (0, 6), (2, 6), (2, 24), (0, 2), (0, 24). This empirical
evidence suggests that the circadian rhythm effects on correlations
may be relevant. In particular, the estimated correlation between
time 6 and time 24 tends to be smallest, and the estimated correl-
ation between time 0 and time 24 tends to be largest. The estimate
of s obtained by our method proposed in Section 2.3.1 is
s ¼ ð0:26; 0:52; 1; 0Þ0.

Now we apply our proposed method, rmRNAseq, the popular
RNA-seq analysis methods—voom-limma, edgeR and DESeq2—and
the top performing methods for time-course RNA-seq—splineTimeR,
ImpulseDE2—which ignore correlation among observations. For
illustration purposes, we present results for the Line main effect test
(a between-subjects comparison) and for the Time main effects test (a
within-subjects comparison). Figure 2 summarizes the analysis results
of these methods when FDR is nominally controlled at 5%. Recall
that both DESeq2 and edgeR utilize negative binomial generalized lin-
ear models. DESeq2 uses shrinkage estimation for dispersion parame-
ters and fold changes to improve the stability and interpretability of
estimates, while edgeR employs its own version of shrinkage estima-
tion for dispersion parameters and does not shrink log fold change
estimates. Analyses conducted with voom-limma, edgeR use default
settings with 75th quartile normalization, while for DESeq2,
splineTimeR and ImpulseDE2, we use their default settings and nor-
malization method. To conduct inference about the contrasts of inter-
est, we use the likelihood ratio test in DESeq2, ImpulseDE2, the
moderated F-test in splineTimeR and the quasi-likelihood F-test in
edgeR. The result based on splineTimeR is only available for the Line
main effect test because the Time main effects test is not currently

implemented in the available R package. It is clear from Figure 2 that
our proposed method detects the fewest DE genes for the Line main
effect test and detects the largest number of DE genes for Time main
effects test.

The differences between our proposed method and the others
arise because voom-limma, edgeR, DESeq2, splineTimeR and
ImpulseDE2 ignore the correlation among observations induced by
the repeated measures. When within-subjects correlations are con-
strained to be zero, the 32 observations for any gene are treated as if
they come from 32 independent experimental units rather than just
the 8 experimental units used in our example experiment. The vari-
ance of the difference between line effect estimators is then underes-
timated because of the over-optimistic view of the experimental
design that results when within-subjects correlations are constrained
to zero, which in turn results in liberal inferences for line main
effects. In contrast, within-subjects inferences about time effects be-
come conservative when the positive correlation between observa-
tions on a single subject taken at two time points is ignored because
the variance of a difference between estimators decreases as the cor-
relation between estimators increases.

4 Simulation study

We consider two simulation scenarios described in detail in Sections
4.1 and 4.2, respectively. In each scenario, rmRNAseq, voom-
limma, edgeR, DESeq2, Symm (general linear model with unstruc-
tured correlation), CAR1 (general linear model with CAR1 correl-
ation), ImpulseDE2, splineTimeR and splineTimeRvoom (which is
splineTimeR method using log-transformed counts and voom preci-
sion weights) are compared in terms of their ability to identify DE
genes while controlling FDR. Such comparisons require simulated
datasets to contain both EE and DE genes with respect to contrasts
of interest. Within each scenario, we consider two contrasts: (1)
Line: the main effect of the factor Line and (2) Time: the main ef-
fect of the factor Time. For each scenario and contrast, we simulate
50 datasets. Each dataset includes read counts for eight pigs at four
time points and 5000 genes. The read counts are simulated based on
(1) and (2) by first generating the log-transformed count for each
gene as a sum of linear combination of fixed-effects plus random
noise as described in (2), which in turn is inversely transformed to a
count as shown in (1).

All compared methods use a full-column rank design matrix for-
mulated to allow for additive effects of two factors Line and Time.
Analyses conducted with edgeR, voom-limma and
splineTimeRvoom use default settings with 75th quartile normaliza-
tion; for ImpulseDE2 and DESeq2, we use their default normaliza-
tion method, which is the median ratio method described in Anders
and Huber (2010). To obtain P-values, Symm and CAR1 use, as a
reference distribution, F-distribution with 24 denominator degrees
of freedom and 1 numerator degrees of freedom for Line and 3 nu-
merator degrees of freedom for Time; voom-limma (Law et al.,
2014), splineTimeR (Michna et al., 2016) and splineTimeRvoom
use moderated F-statistics; edgeR (Lund et al., 2012) uses quasi-
likelihood F-tests, DESeq2 (Love et al., 2014) and ImpulseDE2
(Fischer et al., 2018) use likelihood ratio tests. The approaches
based on splineTimeR and splineTimeRvoom are only available for
the contrast Line because the Time main effect contrasts are not
currently implemented in the available R package. ImpulseDE2 is
implemented for both Line and Time tests.

We emphasize that our simulation study considers two contrasts
of interest. This is different from most simulation studies where only
two-group comparisons are considered to evaluate the performance
of a differential expression analysis method. Our simulation setting
allows us to fully investigate effects of within-unit correlation on the
inference of within-subjects and between-subjects contrasts.

4.1 Simulation scenario 1: CAR1 correlation structure
The first simulation scenario provides a favorable case for our pro-
posed method in which the read counts are simulated from the
working model assumptions (1) and (2) with Rg following the CAR1

Fig. 1. Estimated correlations across all 11 911 genes for each pair of time points

using the procedure in Section 2.3.2 applied to the log-transformed LPS RNA-seq

data

Fig. 2. Bar diagrams showing numbers of DE genes (FDR is nominally controlled at

0.05) with respect to Line and Time main effects when analyzing the LPS RNA-seq

dataset using our method (rmRNAseq), voom-limma, edgeR, DESeq2, splineTimeR

and ImpulseDE2

4436 Y.Nguyen and D.Nettleton



correlation structure. As true parameter values for simulating new
data, we use the fCstg normalization factors, the estimates of the
precision weight matrix Wg, the correlation parameter q̂g, the vari-
ance parameter ŝ2

g and the regression coefficients b̂g obtained using
our proposed method applied to the LPS RNA-seq dataset, except
that we set partial regression coefficients corresponding to the con-
trast of interest to zero for a subset of genes to permit simulation of
EE genes with respect to the contrast of interest. More specifically,
the 5955 least significant partial regression coefficients for the con-
trast of interest are set to zero. This strategy yields a parameter set
(consisting of the fCstg normalization factors, the precision weight
matrices Wg, the correlation parameters q̂g, the error variance
parameters ŝ2

g and the regression coefficients based on b̂g) for each
of 5955 EE genes, and 11911� 5955 ¼ 5956 DE genes for a given
contrast. To simulate any particular dataset for a given contrast of
interest, we randomly sample 4000 parameter sets from the EE
genes and 1000 parameter sets from the DE genes. The selected par-
ameter sets and the design matrix X (constructed so that there are
eight different means, one for each combination of Time and Line)
for 32 samples are used to simulate a 5000�32 dataset of read
counts by first simulating log-transformed data using (2), and then
converting the log-transformed data back to read counts using (1).
Random selection of parameter sets and generation of data is inde-
pendently repeated 50 times to obtain 50 datasets for each one of
the two contrasts of interest (Line and Time).

4.2 Simulation scenario 2: unstructured correlation
The second simulation scenario is designed to evaluate our proposed
method when, contrary to our working model assumptions, the read
counts are generated as described in Section 4.1 but with unstruc-
tured Rg. This scenario violates our working model assumptions be-
cause the CAR1 correlation structure used in computation of our
test statistics is misspecified. As true parameter values for simulating
new data, we use the fCstg normalization factors, the estimated pre-
cision weight matrices W g, the estimated correlation block R�g, the
estimated error variance parameters s

^ 2

g and the estimated regression
coefficients bg described in Section 2.3.2 and obtained by analyzing
the LPS RNA-seq dataset, except that (as in Scenario 1) we set par-
tial regression coefficients corresponding to the contrast of interest
to zero for a subset of genes to permit simulation of EE genes with
respect to the contrast of interest.

4.3 Simulation results
For rmRNAseq, voom, edgeR and DESeq2, Symm, CAR1,
splineTimeR, splineTimeRvoom, ImpulseDE2, the P-value for test-
ing the significance of the partial regression coefficients on the con-
trast of interest is calculated for each gene. These P-values are
converted to q-values as described in Section 2.5, and genes with q-
values no larger than 0.05 are declared to be DE. Using these P-val-
ues and q-values, we evaluate each method’s performance based on
two criteria: the incurred FDR when FDR is nominally controlled at
5%, the partial area under the receiver operating characteristic curve
(PAUC) corresponding to false positive rates less than or equal to
0.05, and the number of true positives (NTP) corresponding to the
number of true DE genes when FDR is nominally controlled at 5%.
These performance criteria assess each method’s ability to control
FDR, and to distinguish EE and DE genes from one another, as well
as each method’s power in detecting DE genes.

The simulation results in terms of FDR control are summarized
in Figure 3. rmRNAseq controls FDR well in all cases. In simulation
scenario 1, all other methods fail to control FDR for Line with ex-
tremely high incurred FDR. For the Time test, voom-limma,
ImpulseDE2 and edgeR are able to control FDR, while DESeq2
shows slightly inflated FDR compared to the nominal 0.05 level. In
simulation scenario 2, voom, edgeR and DESeq2 all fail to control
FDR except voom, which is able to control FDR for the Time test.
In all simulation scenarios, among the three methods voom, edgeR
and DESeq2, DESeq2 gave the most liberal incurred FDR.

The simulation results in terms of PAUC, the ability to distin-
guish DE and EE genes from one another, are presented in Figure 4.
For all contrasts, rmRNAseq outperformed all alternatives.

Our proposed method performs well in all cases and even in
Scenario 2 when the correlation structure does not match our CAR1
structure. An explanation for this performance is that in our pro-
posed method, the bootstrap samples are generated from a general
linear model with unstructured correlation. This bootstrap sample
generation strategy provides robustness against departures from the
CAR1 assumption. That said, our proposed method is not guaran-
teed to work well when the true data generating mechanism is far
from our working model.

Fig. 3. Boxplots of the incurred FDR when FDR is nominally controlled at 0.05 for

all methods and all contrasts in two simulation scenarios. Each boxplot has 50 data

points representing 50 simulated datasets

Fig. 4. Boxplots of the PAUC when false positive rate is less than or equal to 0.05

for all methods and all contrasts in two simulation scenarios. Each boxplot has 50

data points representing 50 simulated datasets
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Figure 5 shows that among methods that control FDR,
rmRNAseq detects highest NTP. For instance, in Scenario 2, Time
main effect, the average NTPs over 50 replications of rmRNAseq,
voom-limma and ImpulseDE2 are 912, 893 and 774, respectively
(out of 1000 true positives). This shows that even though our method
is conservative, it still attains good power in detecting true DE genes.

5 Discussion

Time-course RNA-seq experiments that collect expression profiles
over time for multiple conditions are becoming increasingly popular.
Time-course RNA-seq experiments are often cross-sectional, where
mRNA samples are collected from different subjects at different
time points. Another type of time-course experiment is longitudinal,
or repeated measures, where mRNA samples at different times are
extracted from the same subjects. The expression levels of a gene
measured at different time points within any subject are expected to
be correlated in a longitudinal or repeated-measures experiment,
while within-gene correlation across time is not necessarily expected
in a cross-sectional study.

Our proposed method provides a practical tool for identifying
DE genes using RNA-seq data from repeated-measures designs. The
idea is to use normalized log-transformed counts and their associ-
ated precision weights in a general linear model pipeline for estima-
tion, and then employ a parametric bootstrap procedure for
hypothesis testing. Correlation among observations within each
gene is accounted for using unstructured estimates of within-
subjects correlation and a continuous autoregressive correlation
structure CAR1 with a data-driven choice of time points. The para-
metric bootstrap inference approach proposed in our paper can be
easily extended to other RNA-seq designs that may contain factors
whose effects are best modeled as random thanks to the simple and
straightforward application of linear model using normalized log-
transformed counts data.

When within-gene correlations exist due to repeated measures,
our simulation studies show the advantages of our method com-
pared to the most popular alternative methods for identifying DE
genes. In particular, our method outperforms the alternatives (that
do not consider within-gene correlation among observations from a
single subject) in terms of FDR control and the ability to distinguish
EE and DE genes from one another. One of the main points of our
paper is that using popular approaches designed for independent

RNA-seq data is not a good idea when data are likely correlated due
to a repeated-measures experimental design. This point is not meant
as a criticism of methods like edgeR and DESeq2 and others that are
very useful for independent data; rather, our work is a caution
against misusing such methods for the analysis of repeated-measures
experiments.

In the implementation of our proposed method, it would be ideal
to reestimate s for each bootstrap sample to account for the uncer-
tainty in estimating s from the original data. Reestimating s would
lead to more accurate uncertainty quantification but would signifi-
cantly slow the proposed method. Our proposed method is a com-
promise between statistical accuracy and computation speed.
Furthermore, from our numerical experiments, using the s estimated
from the original data for all bootstrap samples results in perform-
ance similar to the approach that reestimates s for each bootstrap
sample. Our proposed method uses data from thousands of genes to
estimate one low-dimensional s vector that defines pairwise distan-
ces between time points for use with a CAR1 correlation structure.
Because there is a wealth of data for estimating the few parameters
in s, uncertainty in estimation of the s does not seem important,
which explains the negligible impact associated with computational-
ly expensive reestimation of s for each bootstrap sample. Other
measures of distance between times could be considered, but our ap-
proach is considerably more flexible than insisting on a pre-defined
assignment of distances between each pair of time points. Rather
than dictating pairwise distances associated with a distance func-
tion, we allow the full data from thousands of genes to inform us
about an appropriate choice for pairwise distances between time
points for use with a CAR1 correlation structure.

Even when s is not reestimated for each bootstrap sample, our
method is computationally intensive. Our implementation of the
proposed method in the R package rmRNAseq uses parallelization
to speed up the algorithm. Using 16 cores in parallel, it takes about
65 min to analyze 11 911 genes of the LPS RNA-seq dataset. In a
personal Macbook Pro with processor 2.7 GHz Dual-Core Intel
Core i5 and 8 GB memory using 4 cores, it takes about 4 h and
20 min for such analysis. While these runtimes are short compared
to the time it takes to execute experiments and collect data, some pa-
tience will be required using our R package to analyze RNA-seq
data from repeated-measures experiments.
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