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Abstract

Motivation: It is a fundamental task to identify microRNAs (miRNAs) targets and accurately locate their target sites.
Genome-scale experiments for miRNA target site detection are still costly. The prediction accuracies of existing
computational algorithms and tools are often not up to the expectation due to a large number of false positives. One
major obstacle to achieve a higher accuracy is the lack of knowledge of the target binding features of miRNAs. The
published high-throughput experimental data provide an opportunity to analyze position-wise preference of
miRNAs in terms of target binding, which can be an important feature in miRNA target prediction algorithms.

Results: We developed a Markov model to characterize position-wise pairing patterns of miRNA–target interactions.
We further integrated this model as a scoring method and developed a dynamic programming (DP) algorithm,
MDPS (Markov model-scored Dynamic Programming algorithm for miRNA target site Selection) that can screen pu-
tative target sites of miRNA-target binding. The MDPS algorithm thus can take into account both the dependency of
neighboring pairing positions and the global pairing information. Based on the trained Markov models from both
miRNA-specific and general datasets, we discovered that the position-wise binding information specific to a given
miRNA would benefit its target prediction. We also found that miRNAs maintain region-wise similarity in their target
binding patterns. Combining MDPS with existing methods significantly improves their precision while only slightly
reduces their recall. Therefore, position-wise pairing patterns have the promise to improve target prediction if incor-
porated into existing software tools.
Availability and implementation: The source code and tool to calculate MDPS score is available at http://hulab.ucf.
edu/research/projects/MDPS/index.html.
Contact: xiaoman@mail.ucf.edu or haihu@cs.ucf.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

MicroRNAs (miRNAs) are a type of small (about 22 nucleotides
long) non-coding RNAs. They play important regulatory roles in
various cellular processes and their dysfunction associates with com-
plex diseases (Barham et al., 2019; Li and Kowdley, 2012; Wang
et al., 2017, 2020). miRNAs may target messenger RNAs (mRNAs),
long non-coding RNAs, transfer RNAs, circular RNAs etc.
(Burroughs et al., 2011). They bind their targets through imperfect
complementary matching, which regulates the amount of protein
translated and/or causes the destabilization of the targets (Axtell
et al., 2011; Bartel, 2004; Wang et al., 2011). Thus, the identifica-
tion of miRNA targets is critical for the functional characterization
of miRNAs and their involvement in various biological processes.

Early experiments have identified the canonical rule of seed
matching during miRNA binding. This canonical rule requires that a
miRNA–target interaction involves extensive binding between the

miRNA seed region (Positions 2–8) and the mRNA 30 untranslated
regions (UTRs; Brennecke et al., 2005). Later this canonical rule
was given a bit of leeway, allowing non-canonical seeds (one mis-
match or wobble in the seed region) and the binding in miRNA 30

regions centered on Positions 13–16, along with other features such
as target accessibility (Kertesz et al., 2007), local AU content
(Grimson et al., 2007), folding energy (Enright et al., 2003;
Grimson et al., 2007), conservation (Helwak et al., 2013) etc.
Dozens of tools developed focus primarily on these features (Ding
et al., 2015, 2016, 2018).

In the past several years, next-generation sequencing (NGS)-
based technologies have significantly advanced the study of miRNA
targets. Chi et al. (2009) applied NGS techniques with the cross-
linking and immunoprecipitation (CLIP) to directly identify miRNA
targets (Chou et al., 2016). Hafner et al. (2010) used
photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP) to
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increase the resolution of the original CLIP-seq method. Helwak
et al. (2013) performed cross-linking, ligation and sequencing of
hybrids (CLASH) experiments to detect miRNA-target pairs as chi-
meric reads in NGS data. Moore et al. (2015) improved the CLASH
experiments with the covalent ligation of endogenous Argonaute-
bound RNAs-CLIP (CLEAR-CLIP) experiments. The CLASH and
CLEAR-CLIP experiments ultimately presented a transcriptome-
wide dataset containing more than 18 000 and 30 000, respectively,
high-confidence miRNA–target interactions, revealing the preva-
lence of seed and non-seed interactions and the diversity of in vivo
miRNA targets in mRNA 30 UTR, 50 UTR and coding DNA se-
quence regions. The interactions are of different stability and have
different free folding energy (ranging from 1.5 to 32 kcal/mol). With
NGS datasets from these studies, a number of new tools have been
developed for miRNA target prediction based on the aforemen-
tioned features together with new features learned from NGS data
(Ding et al., 2016; Li and Hu, 2019; Lu and Leslie, 2016; Wang,
2016).

Despite the existence of various studies on miRNAs, it is still
challenging to predict miRNA targets. High-throughput experimen-
tal approaches are still costly and may not be able to carry out under
certain conditions. Computational methods often have low accuracy
especially low precision although they are indispensable. The low
accuracy of available computational methods may be partially due
to our limited knowledge of the characteristics of miRNA target
sites. Several studies thus investigated new features of miRNA bind-
ing sites. Among them, a Markov chain-based method started to
model the base pairings between the entire mature miRNAs and
their targets (Fu et al., 2009). Although only two states, forming a
matching base pair or not, were considered in this Markov model,
this study demonstrated the value of considering flexible matching
patterns instead of the canonical seed matching when identifying
miRNA target sites.

In this study, we created Markov models for miRNA–target
interactions based on the position-wise pairing information (match,
mismatch, bulge and wobble). We also evaluated the importance of
the pairing patterns of a miRNA beyond its seed region for target
prediction. From the model learning, we identified position-wise
pairing patterns of a mature miRNA as a valuable feature for
miRNA target site prediction. We also found region-specific correla-
tions between miRNAs in terms of target binding. We further devel-
oped a Markov model-scored Dynamic Programming algorithm for
miRNA target site Selection (MDPS) using the position-wise pairing
information. Combining MDPS with three existing tools, we dem-
onstrated that incorporating the discovered position-wise pairing in-
formation into existing target prediction pipelines has the potential
to improve the accuracy of current miRNA target predictions.

2 Materials and methods

2.1 Training and testing
Using the miRNA–mRNA interactions reported in the CLASH study
(Helwak et al., 2013), we designed two training datasets. One set
contained 77 miRNAs with at least 50 targets each in the CLASH
experiments. We named this set of interaction as ‘target-enriched
dataset’. The other set included 122 miRNAs with at least 20 targets
each, where the miRNA–mRNA folding energy was at least

�15 kcal/mol. We termed this set as the ‘energy-filtered dataset’
(Supplementary Material S1).

For each of these CLASH interaction sets, we randomly chosen
80% of the interactions as the training data and kept the remaining
20% for testing. We did 10-fold cross-validation on the training
data to obtain the best prediction model which was later used to
make the prediction on the testing data of the corresponding inter-
action set. In addition, we also used an independent experimentally
validated miRNA target dataset generated by a CLEAR-CLIP study
(Moore et al., 2015) to test MDPS, as this dataset also provides
miRNA-target binding information based on each position of an
miRNA. To be consistent, we filtered out interactions in CLASH
and CLEAR-CLIP that did not map to any mRNA transcript from
ENSEMBL version 75 (Supplementary Material S1). To obtain the
position-wise alignment information, we aligned the reported target
sequences and the miRNA sequences using the RNAhybrid tool
(Kruger and Rehmsmeier, 2006), as in the CLASH study (Helwak
et al., 2013). The number of miRNAs and their corresponding tar-
gets for these datasets are given in Table 1.

2.2 Different states of miRNA–target interactions in

MDPS
Considering the position dependency of neighboring pairings, we
used a Markov model to learn the position-wise binding patterns for
a given miRNA and its targets. We first defined the five states for
the pairings in the alignment of a given miRNA sequence and one of
its target sequences: match (M), mismatch (N), G-U wobble match
(W), bulge in target (Bx) and bulge in miRNA (By; Fig. 1).

With the five states, we designed a 5 � 5 transition matrix t that
describes the transition probabilities of the five states and a weight
matrix w to describe the probability of a state that a miRNA pos-
ition prefers. For a miRNA sequence of length n, its weight matrix
w is a 4 by n matrix, in which each column corresponds to one pos-
ition in this miRNA, each row corresponds to one of the following
four states: M, N, W, By and each number in the matrix gives the
probability that the corresponding miRNA position prefers the cor-
responding state. The state Bx does not correspond to any miRNA
position and thus was not considered in the weight matrix w. We
calculated the transition and the weight matrices using the two
training datasets. In brief, to create the weight matrix, we counted
the number of the occurrences of each of the four states at each
miRNA position in all miRNA–target interactions in a dataset. To
create the transition matrix, we calculated the number of times each
transition occurred in the interactions. We added a small pseudo
count of 0.0001 to every entry in the matrices and then normalized
the numbers in each row so that the sum of the numbers in a row to

Table 1. Training and test datasets

Total Target-enriched dataset Energy-filtered dataset

MiRNAs Targets MiRNAs Targets MiRNAs Targets

CLASH 399 18 041 77 15 390 122 16 209

CLEAR-CLIP 451 20 094 — — — —

Note: We randomly selected 80% of the CLASH interactions to train a model using 10-fold cross-validation. We then tested

the model on the 20% of the remaining CLASH interactions. We also tested the model on the independent CLEAR-CLIP

interactions.

Fig. 1. Five states in a miRNA–target interaction
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be 1. Both w and t were calculated from 50 to 30 direction of
miRNAs, with the aligned miRNA-target sequences in the training
data.

We defined two types of models: miRNA-specific and miRNA-
general model. The miRNA-specific model was learned by calculat-
ing the transition and weight matrices given the pairing information
of a specific miRNA and its targets. The miRNA-general model was
trained by the pairing information of all available miRNAs and their
targets. Note that, a miRNA-general model was parametrized by
only one transition matrix and one weight matrix. The transition
and weight matrices were the unweighted average of the transition
and weight matrices of all the involved miRNA-specific models,
respectively.

2.3 MDPS scoring strategy
MDPS selects miRNA target sites by scoring miRNA–target interac-
tions using a dynamic programming (DP) algorithm. For a given
miRNA and a calculated weight matrix and transition matrix, we
have the following DP algorithm to score a target RNA sequence to
determine whether it may contain a potential target site of this
miRNA.

Here, we first define two notations, S½i; j; k� and state(i, j). We de-
fine S½i; j;k� as the best score of the alignment between
miRNAð1 . . . iÞ and targetð1 . . . jÞ, with the last alignment position is
at the kth posture. Here, miRNAð1 . . . iÞ represents the miRNA se-
quence from the Position 1 to the Position i. Similarly, targetð1 . . . jÞ
represents the target sequence from the Position 1 to the Position j.
There are three different possibilities for the last alignment position.
When k¼0, it means the last alignment position is at the states M,
N or W, which we call Posture 0. When k¼1, it means the last
alignment position is at the Posture 1 and the state is By. When
k¼2, it means the last alignment position is at the Posture 2 and the
state is Bx. We also define state(i, j) as the state of the pairing of the
ith miRNA position and the jth mRNA position. Since two actual
base pairs are involved, state(i, j) can only be one of the states: M, N
and W.

With the two notations, it is evident that S½i; j; 0� ¼ �1, if i¼0
or j¼0. We also have S½1; j; 0� ¼ logðwðstateð1; jÞ; 1ÞÞ for any j>0,
where wðstateð1; jÞ; 1Þ means the ðstateð1; 1Þ;1Þ-entry of the weight
matrix of this miRNA. In addition, we have S½i;1; 0� ¼
logðwðstateði;1Þ; iÞÞ þ S½i� 1;0; 1� þ logðtðBy; stateði;1ÞÞÞ for any
i>1. With these initializations, we have the following iteration for-
mula to calculate S½i; j; 0� for any i>1 and j>1:

S½i; j;0� ¼ log ðwðstateði; jÞ; iÞÞþ

max
S½i� 1; j� 1; 0� þ log ðtðstateði� 1; j� 1Þ; stateði; jÞÞÞ
S½i� 1; j� 1; 1� þ log ðtðBy; stateði; jÞÞÞ
S½i� 1; j� 1; 2� þ log ðtðBx; stateði; jÞÞÞ

8<
:

Similarly, we calculate S½i; j; 1� by the following iteration with initial-
ization S½0; j; 1� ¼ �1 and S½1; j; 1� ¼ logðwðBy; 1ÞÞ for i>1 and
any j.

S½i; j; 1� ¼ log ðwðBy; iÞÞþ

max
S½i� 1; j; 0� þ log ðtðstateði� 1; jÞ;ByÞÞ
S½i� 1; j; 1� þ log ðtðBy;ByÞÞ

�

Similarly, we initialize S½i; j; 2� by S½i;1;2� ¼ S½i; 0; 2� ¼ �1, and cal-
culate S½i; j;2� for any i and j>1 by

S½i; j; 2� ¼ max
S½i; j� 1; 0� þ log ðtðstateði; j� 1Þ;BxÞÞ
S½i; j� 1; 2� þ log ðtðBx;BxÞÞ

�

With the above three types of iterations, we obtain the maximum
of S½n; j;k�, for any j and k, and for n being the length of the miRNA
under consideration. This maximum value is regarded as the score
of the alignment of this miRNA and the target RNA sequence under
consideration. The actual alignment resulted in this score describes
the pairing between this miRNA and this target RNA. For a better
understanding of the DP method, we show an example of the DP
score calculation method in the Supplementary Material S2.

Using the above CLASH training datasets, we generated the
MDPS models that consisted of the w matrices, the t matrices and the
corresponding score cutoffs that gave the best predictions on the
CLASH training dataset for different miRNAs. We generated these
miRNA-specific models from the target-enriched dataset and the
energy-filtered dataset separately. In addition to these miRNA-specific
models, we also generated the general models for all miRNAs by aver-
age these miRNA-specific models from the target-enriched dataset and
the energy-filtered dataset separately. Since the column size of the w
matrix was the length of the corresponding miRNAs. The column size
of the average w matrix in the models was the length of the longest
miRNAs in the training datasets. If the score was larger than a given
cutoff, this sequence was called the target of this miRNA. We tested
five different cutoffs and chosen the Average score þ 2 * SD as the
final cutoff for the final MDPS models, where the Average score and
the SD are the mean and the SD of the alignment scores of the
miRNA-target duplexes in the training datasets, respectively.

2.4 Combining MDPS scores with existing tools
Existing target prediction algorithms emphasize the miRNA-target
pairing in the seed regions (Agarwal et al., 2015; Friedman et al.,
2008; Grimson et al., 2007; Lewis et al., 2003), and/or do not con-
sider the dependence of the neighboring pairings (Enright et al.,
2003). The alignment scores measured by MDPS may thus provide
additional features for assessing miRNA–target interactions. If so,
by combining the alignment scores from MDPS with the existing
tools, the precision of the miRNA-target prediction may be
improved. To test this hypothesis, we combined the MDPS scores
with three popular methods, miRanda, RNA22 and TargetScan
(Agarwal et al., 2015; Betel et al., 2010; Friedman et al., 2008;
Lewis et al., 2003; Miranda et al., 2006). First, we generated the
predictions on a given miRNA and target sequences using these
tools, by running miRanda 3.3a and TargetScanHuman 7.0 and
using the existing predictions of RNA22 (ENSEMBL 65, miRbase
18). Then we applied MDPS on the prediction of these tools. We
compared the performance of the combined methods with that of
the original methods without the MDPS alignment scores on the
two test datasets (Table 1).

3 Results

3.1 Non-seed regions may be important for miRNA–tar-

get interactions
To evaluate the importance of the miRNA positions outside seed re-
gion in target binding, we analyzed the 18 041 CLASH interactions
to see how many miRNAs and how many interactions had pairings
(match/wobble states) outside the seed regions. We considered
miRNA Positions 1–8 as seed region in this section. Figure 2A shows
the percentage of miRNAs in CLASH data having different min-
imum number of match/wobble pairings outside the seed regions.
More than 12% of miRNAs had at least eight matches/wobbles after
the eighth position in the interactions they were involved. For the
399 miRNAs listed in the CLASH study (Helwak et al., 2013), 386
(97%) miRNAs had interactions with at least one match/wobble
pairing outside the seed regions. Figure 2B shows the distribution of
the number of match/wobble pairing outside the seed regions among
the 18 041 CLASH interactions. Only 14 interactions had no match/
wobble pairing outside the seed region.

We further studied whether miRNA–target interactions with seed
matching had match/wobble pairings outside the seed regions. Similar
to the CLASH study (Helwak et al., 2013), we considered the 6mer,
7mer, 8mer and 9mer interactions as interactions with seed matching,
which had 6, 7, 8 and 9 continuous matches from the miRNA
Position 1, respectively. We found that there were indeed many
match/wobble pairings after the seed regions, even for the 9-mer inter-
actions (Fig. 2C). From Figure 2, it is thus evident that it may be valu-
able to consider miRNA-target pairings after seed regions.

We also studied the dependency of pairings in miRNA–target
interactions. When two miRNA-target pairings (match/wobble)
occur side-by-side, the strength of one pairing might help to stabilize
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the pairing by its side. To study the dependency between neighbor-
ing pairing states, for each position of a miRNA, we labeled each
‘Match’ or ‘Wobble’ state with a ‘1’ and each ‘Mismatch’ or ‘bulge’
with a ‘0’. In this way, for each miRNA position, we had a binary
binding vector representing the binding states of that miRNA pos-
ition in the interactions. The size of this binding vector reflected the
number of miRNA interactions (Fig. 3A). We then applied
Matthews correlation coefficient (MCC) formula on the two binary
vectors for each pair of positions of the miRNA to find the correla-
tions between different positions of the same miRNA (Fig. 3A). We
found that only the neighboring positions tend to have positive cor-
relation (MCC � 0:75). We also found that the Regions 2–9, 11–14
and 16–21 of a large number of miRNAs tend to show the

correlations (Fig. 3B). This suggested potential dependency or co-
operation between adjacent binding positions of a miRNA and its
targets. Together with the above studies on positions after the seed

regions, it was clear that we may need to consider the pairing of all
miRNA positions and their dependency for miRNA–target interac-

tions, which was exactly done in the MDPS scores.

3.2 Different miRNAs share correlated target binding

patterns
Since many miRNA–target interactions involve seed regions and the
pairing at different miRNA positions are dependent, we hypothe-

sized that many miRNAs may have similar or correlated target

Fig. 3. Correlated pairs of miRNA positions. (A) An illustration of how MCC is calculated for miR-484. (B) The percentage of miRNAs having correlated position pairs

(MCC � 0:75). The heatmap has miRNA positions in the axes and the percentage of correlated miRNAs are shown for every pair of positions

Fig. 2. Non-seed regions may be important for miRNA–target interactions. (A) Percentage of miRNAs with the different lowest number of match/wobble pairings after the

Position 8 in the 18 041 CLASH interactions. (B) Percentage of the 18 041 CLASH interactions having different number of match/wobble pairing after the Position 8. (C) The

frequency of match/wobble pairing at different miRNA positions for different types of CLASH interactions
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binding patterns. We tested this hypothesis with the obtained weight
matrices and transition matrices and found that many miRNAs in-
deed share correlated binding patterns.

To investigate whether different miRNAs have similar or corre-
lated binding patterns, we divided a miRNA sequence into two
equal size regions, Positions 1–8 and 9–16. We illustrated our study
with the energy-filtered dataset here and the conclusion was similar
for the target-enriched dataset. For each of the 122 miRNAs in the
energy-filtered dataset, we obtained its position-wise ‘Match’ and
‘Mismatch’ probabilities from the learned weight matrix. We then
computed the Spearman’s correlation between each pair of miRNAs
based on their position-wise ‘Match’ and ‘Mismatch’ probabilities
in the two regions separately. We did not consider the G-U wobble
and bulge states in this calculation, as the probabilities of these two
states were very low at most positions of a miRNA. We ignored the
miRNAs that belonged to the same family here, as these miRNAs
had high sequence similarity and thus strong correlations. We per-
formed clique-finding-based clustering (29; correlation
cutoff¼0.75) and identified 17 distinct clusters of miRNAs that
were correlated in terms of ‘Match’ state probabilities at Positions
1–8. The largest 8 clusters had 50.88% of the total 122 miRNAs
(Fig. 4A shows four different exclusive clusters). When considering
the Positions 9–16 of a miRNA, we got 29 distinct clusters corre-
lated on ‘Match’ state probabilities (Fig. 4B). The largest 10 clusters
had only 29.82% of the total 122 miRNAs considering ‘Match’
probabilities. These statistics suggested that the seed regions
(Positions 1–8) of miRNAs were more correlated than the non-seed
region (Positions 9–16), which supported the current practice of
considering seed matching for miRNA targeting.

3.3 miRNA-general models showed better performance

on target site prediction than miRNA-specific models
Many miRNAs have similar or correlated target binding patterns, as
demonstrated in Section 3.2. We thus hypothesized that the model
learned from all miRNAs and their corresponding targets would
work better than the models learned for individual miRNAs, where
we trained the models with the corresponding individual miRNA
and its targets. In the miRNA-general model, we learned a common
weight matrix and a common transition matrix for all miRNAs to-
gether. In the miRNA-specific model, we had a unique weight ma-
trix and a unique transition matrix for each individual miRNA with
a decent number of targets (� 20). The models were learned with
the 10-fold cross-validation based on two training datasets.

We found that the miRNA-general model worked better than
the miRNA-specific models for individual miRNAs with a specific
model. In the target-enriched datasets, the miRNA-general model

identified 93.49% of the CLASH interactions correctly while the
miRNA-specific models identified 87.56% of the CLASH interac-
tions. Similarly, in the energy-filtered datasets, the miRNA-general
model identified 91.59% of the CLASH interactions while the
miRNA-specific models identified only 85.91% of the interactions
(Supplementary Material S3). We did not strive to study the false
positive predictions here, as we did not have the negative datasets
here. In addition, our goal was to reduce the false positive predic-
tions in existing tools.

The miRNA-general models worked better, probably because of
the following reasons. First, as demonstrated above, miRNAs do
share similar or correlated patterns in terms of target binding, which
enables the miRNA-general model caught the ‘key’ or ‘conserved’
characteristics of miRNA–target interactions; Second, there were
much more training data to train a miRNA-general model than that
to train a miRNA-specific model; Third, because of the number of
targets a miRNA had was still small in our training datasets, the
miRNA-specific model might encountered ‘overfitting’. Note that
since the 10-fold cross-validation accuracy on the 10 groups of un-
trained datasets was similar (Supplementary Material S1), it was un-
likely that the miRNA-specific models were overfitted or not well-
trained. Therefore, the general models worked better highly likely
because of the similarity of the binding patterns of different
miRNAs.

Despite of the overall better performance of the miRNA-general
models, for certain miRNAs, their miRNA-specific models did work
better. For instance, for miR-10a, the miRNA-specific model pre-
dicted 100% of its target sites correctly, whereas the miRNA-
general model predicted 86% of its target sites correctly. This
miRNA had 51 targets in the energy-filtered training dataset. Note
that, it was the miRNA-specific binding patterns, not the number of
target sites in the training dataset that resulted in the different per-
formance of the miRNA-specific models and the miRNA-general
models. For example, in case of miR-186, the miRNA-general model
did not perform better, even though it had 81 training target sites.
On the other hand, the miRNA-specific model performed better for
miR-1301, although it only had 26 training target sites.

3.4 Combining the MDPS scores with existing tools

improved their accuracy
Since the existing tools did not consider the entire miRNA regions
for miRNA–target interaction prediction, and/or did not consider
the dependency among different pairing positions in miRNA–target
interactions, we hypothesized that by combining the MDPS scores
with the existing tools, we may be able to improve the accuracy of
the existing tools. We found that it was indeed the case and the

Fig. 4. Clusters of miRNAs with similar ‘Match’ patterns in specific regions. The X-axis of a cluster plot shows the positions of the miRNAs in that cluster and the Y-axis of

the plot shows the percentage of interactions having ‘Match’ in corresponding miRNA positions (A) Clusters of miRNAs correlated with the ‘Match’ state probability from

Positions 1 to 8. (B) Clusters of miRNAs correlated with the ‘Match’ state probability from Positions 9 to 16
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MDPS scores facilitated more accurate prediction of miRNA target
sites.

We combined the MDPS scores with three existing tools,
miRanda, RNA22 and TargetScan. To combine MDPS scores with
these tools, we applied these tools to predict miRNA–target interac-
tions first. We then calculated the MDPS scores for the predicted
targets and determined whether the predicted target sites were true
or false based on the default MDPS score cutoff from the trained
general models. We tested the combined tools on the untrained 20%
CLASH dataset and the independent CLEAR-CLIP dataset, for both
the MDPS scores trained with the target-enriched dataset and the
MDPS scores trained with the energy-filtered dataset. We found that
the precision of the combined tools was significantly increased while
the recall of the combined tools was slightly decreased, compared
with the original tools (Table 2 and Supplementary Material S3).
Overall, the F1 score of the combined tool was improved. For in-
stance, the recall, precision and F1 score of RNA22 on the CLEAR-
CLIP data were increased by �9.35%, 22.71% and 22.46%, re-
spectively, when combined with the MDPS model trained on the
energy-filtered dataset. This analysis demonstrated that the MDPS
score as an additional feature for miRNA target site prediction
decreased the false positive predictions by the existing tools.

4 Discussion

Recent experimental data on miRNA–target interactions provide
insights into miRNA binding rules. Studies on these newly generated
datasets have shown potential involvement of non-seed regions of
miRNAs in the binding activities. However, the importance of non-
seed regions for miRNA target binding has not been thoroughly
studied; neither did the dependency among positions and regions of
miRNA–target interactions. The MDPS algorithm was developed to
learn miRNA-target pairing patterns, especially in the non-seed
regions of miRNA binding, by utilizing the genome-wide CLASH
datasets. MDPS takes into account the dependency of neighboring
pairing positions using a Markov model. Utilizing the weight and
transition matrices of the trained Markov model, MDPS is then able
to score each potential miRNA binding site to pre-select/predict pu-
tative candidate miRNA–target interactions. By combining the
MDPS scores with existing tools, we showed that the precision of
the combined tools has been greatly improved.

The DP used in MDPS is different from the one used in miRanda
(Enright et al., 2003), which applies a standard DP algorithm to per-
form pair-wise alignment between a miRNA and a potential target.
The alignment score is then used as a criterion together with site
conservation and binding energy scores to predict miRNA target
sites. There are at least two important differences between the
miRanda DP algorithm and the MDPS one. One is the scoring
schema for miRNA-target alignments, for which miRanda uses a
fixed scoring schema, such as a score of þ5 for G:C and A:T pairs,
þ2 for G:U wobble pairs etc. (Betel et al., 2010), whereas MDPS
uses a probabilistic scoring schema based on the CLASH training
data. The other is, MDPS considers neighboring pairing positions in
the alignments, whereas miRanda assumes the independence of
neighboring pairing positions.

Through the investigation of the Markov models learned from
both target-enriched datasets and energy-filtered datasets, we were
able to make interesting findings on position-wise binding patterns
of miRNA–target interactions. We found subsets of miRNAs had
correlated binding patterns in specific sub-regions. We also found
both seed and non-seed regions contribute to the specific miRNAs’
binding patterns. Besides seed region binding, the length of the con-
tinuous pairings outside the seed region, the gap between two con-
tinuous pairings, the number and position of G-C pairing in an
interaction are also some of the important features that can play a
part in miRNA target prediction. The position-wise knowledge of a
miRNA target binding, the continuous paring patterns, the number
and position of the G-C bonds along with the canonical seed prefer-
ence rule can help us to find a target prediction algorithm with less
bias, better sensitivity and specificity.

Although the MDPS scores can help to improve the miRNA tar-
get site prediction, we are unsure whether these selected target sites
are functional. In other words, although the miRNAs may indeed
bind to the corresponding selected target sites, the miRNAs may not
suppress the expression level of the target RNAs. These selected sites
can only be considered as potential target sites and their functional
effects need to be further investigated by experiments.

The current version of MDPS was not developed to be a tool for
miRNA target prediction. Many features such as sequence conserva-
tion, binding energy and target site abundance need to be considered
to confidently predict miRNA target sites. However, the study here
based on MDPS shows that the dependency of neighboring pairing
for miRNA binding to targets and global pairing information of
miRNA–target interactions is important for target site selection. The
incorporation of MDPS either as a feature or an additional step in
existing miRNA target prediction pipelines has the promise to en-
hance their overall performance of miRNA target prediction tools.

Funding

This work was supported by the United States National Science Foundation

[1356524, 1149955 and 1661414] and the United States National Institutes

of Health [R15GM123407].

Conflict of Interest: none declared.

References

Agarwal,V. et al. (2015) Predicting effective microRNA target sites in mam-

malian mRNAs. eLife, 4,

Axtell,M.J. et al. (2011) Vive la différence: biogenesis and evolution of
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