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Mediation analyses are valuable for examining mechanisms underlying an association, investigating possible
explanations for nonintuitive results, or identifying interventions that can improve health in the context of
nonmanipulable exposures. However, designing a study for the purpose of answering a mediation-related
research question remains challenging because sample size and power calculations for mediation analyses
are typically not conducted or are crude approximations. Consequently, many studies are probably conducted
without first establishing that they have the statistical power required to detect a meaningful effect, potentially
resulting in wasted resources. In an effort to advance more accurate power calculations for estimating direct and
indirect effects, we present a tutorial demonstrating how to conduct a f lexible, simulation-based power analysis.
In this tutorial, we compare power to estimate direct and indirect effects across various estimators (the Baron
and Kenny estimator (J Pers Soc Psychol. 1986;51(6):1173–1182), inverse odds ratio weighting, and targeted
maximum likelihood estimation) using various data structures designed to mimic important features of real data.
We include step-by-step commented R code (R Foundation for Statistical Computing, Vienna, Austria) in an effort
to lower implementation barriers to ultimately improving power assessment in mediation studies.

mediation; natural direct effect; power; simulation; statistics; stochastic direct effect

Abbreviations: DGM, data-generating mechanism; IORW, inverse odds ratio weighting; NDE, natural direct effect; NIE, natural
indirect effect; SDE, stochastic direct effect; SIE, stochastic indirect effect; TMLE, targeted maximum likelihood estimation.

Editor’s note: An invited commentary on this article
appears on page 1568, and the authors’response appears on
page 1571.

Mediation analyses have been growing in popularity as
a way for researchers to elucidate mechanisms underly-
ing an association (1), investigate possible explanations for
nonintuitive results (2), or identify interventions that can
improve health in the context of nonmanipulable exposures
(3). However, study design remains challenging because
sample size and power calculations for mediation analyses
are typically not conducted or are crude approximations (4,
5). Consequently, many mediation studies are probably con-
ducted without first establishing that they have the statistical
power required to detect a meaningful effect, potentially
resulting in wasted resources.

One commonly used approach for estimating statistical
power for mediation analysis is an equation based on gener-
alized linear models that calculates the required sample size
or power to detect whether or not mediation exists—in con-
trast to estimating the power to detect a given indirect effect
size—by calculating the change in the regression coefficient
associated with the exposure before and after inclusion of the
mediator in the model (4). Another common approach, used
primarily in the psychology literature, is to use simulations
to calculate the required sample size or power to detect a
given indirect effect size, using the Baron and Kenny product
estimator (6, 7), which is another generalized linear model-
based approach.

Both the analytical, equation-based approach and the
Baron and Kenny simulation have the advantage of being
simple to implement. However, this simplicity comes at the
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price of potentially significant limitations. First, the ana-
lytical, equation-based approach does not calculate power
to detect a given indirect effect size—only the power to
detect whether an indirect effect exists. In addition, both
of the above approaches rely on strong assumptions, like
1) correct specification of multiple parametric models, 2) no
effect of interaction between the exposure and the mediator
on the outcome (such that controlled direct effects equal
natural direct effects and, thus, that estimation of indirect
effects is possible), and 3) a linear relationship between
the mediator and outcome (8). They also rely on the iden-
tification assumptions for natural direct and indirect
effects of 4) sequential randomization (i.e., no unobserved
confounding of the exposure-mediator, exposure-outcome,
or mediator-outcome relationship), 5) no posttreatment
observed confounders of the mediator-outcome relationship,
6) positivity, and 7) consistency. While assumptions 4, 6,
and 7 are needed for most any causal mediation analysis, the
remaining 4 assumptions can usually be avoided by choosing
a more flexible analytical approach (1).

Second, for the Baron and Kenny simulation approach,
power estimates can vary based on the variance estimate
that is used (9–11). One way to estimate variance of the
indirect effect (which in the Baron and Kenny method is
calculated as the product of 2 coefficients) is to assume that
the product of 2 normal random variables is also a normal
random variable (6). However, this is not true in general
(9, 12), and evidence shows that the test of the normality
assumption for a product variable is itself underpowered
(10). Another way to estimate variance is to use the bootstrap
percentile method, which allows for potential asymmetries
in the confidence interval (9, 10). However, using bootstrap
percentiles for confidence bounds is generally not recom-
mended (13). In addition, there is a lack of guidance (even
problematic guidance) for estimating power under more
complex (and realistic) distributions—for example, if there
are interactions between the exposure and the mediator, or if
there is a mediator-outcome confounder that is affected by
prior exposure.

Lastly, there has been significant methodological work in
recent years to develop estimators that reduce the number
and stringency of assumptions required to estimate direct
and indirect effects (14–16). To be useful, methods of esti-
mating power must adapt to include these new approaches.

To address the aforementioned limitations, we present a
tutorial that illustrates how to use simulation to estimate
statistical power for several different estimators of direct
and indirect effects (Baron and Kenny, an interaction ex-
tension to Baron and Kenny, inverse odds ratio weighting
(IORW), and targeted maximum likelihood estimation
(TMLE)) under different distribution scenarios. We also
compare the estimates of power for indirect effects with the
equation-based approach for detecting whether mediation
exists.

NOTATION

First, we define notation. We consider 2 data scenarios.
In one, we have observed data O = (W, A, M, Y), and in
the second we have O = (W, A, Z, M, Y), where W are pre-

exposure confounders, A is the exposure, Z is a mediator-
outcome confounder that is affected by prior exposure, M
is the mediator, and Y is the outcome (Figure 1). For this
simple tutorial, we assume that all variables are binary—in
reality, one would match the distributions in the simulated
data to the distributions in the actual data.

We define the direct and indirect effects that we are
interested in estimating in terms of potential outcomes (17).
Uppercase letters denote random variables, and lowercase
letters denote assigned values. Ya,m denotes the potential
outcome of Y setting A = a and M = m, possibly contrary
to fact. Similarly, Ya,Ma denotes the potential outcome of
Y setting A = a and M = ma, the potential value of the
mediator under A = a. We assume consistency, which means
that Ya,m would be the observed value of Y if A = a and
M = m were the realized values of those variables and
composition, which in turn means that Ya,Ma would be the
observed value of Y if A = a was the realized value of A
(18, p. 229).

MEDIATION ESTIMANDS CONSIDERED

We focus on estimation of 2 types of mediation estimands:
1) natural direct and indirect effects and 2) stochastic (also
called randomized interventional) direct and indirect effects.
We describe each briefly here and refer the interested reader
to separate tutorial papers for additional discussion (1, 19,
20). Although, for this tutorial, we estimate effects on the
risk difference scale, the tutorial can serve as a road map
for relative risk or odds ratio scales, substituting appropriate
estimators (8).

Natural direct and indirect effects

The natural direct effect (NDE) is defined as E(Ya,Ma∗) −
E(Ya∗,Ma∗), where A = a corresponds to “exposed” and
A = a∗ corresponds to “unexposed.” The natural indi-
rect effect (NIE) is defined as E(Ya,Ma) − E(Ya,M∗

a
). The

NIE and NDE sum to the total effect. In order to identify
these parameters from the data, positivity must be satisfied
(meaning that for each subgroup of covariate combinations,
there is a nonzero probability of each value of A, and, sim-
ilarly, a nonzero probability for each value of M for each
subgroup combination of Z, A, W). Consistency must be sat-
isfied, and there must be no unmeasured exposure-mediator
confounding, no unmeasured mediator-outcome confound-
ing, and no unmeasured exposure-outcome confounding. In
addition, there must be no mediator-outcome confounder

Figure 1. Structural causal models considered in the simulations.
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that is affected by prior exposure; the NIE and NDE cannot
be identified from the observed data when such a confounder
exists, even if it is observed and measured (14, 15).

Stochastic direct and indirect effects

Stochastic (randomized interventional) direct and indirect
effects can, however, include mediator-outcome con-
founders affected by prior exposure and estimate similar
parameters to the NDE and NIE when these confounders do
not exist (14). The stochastic direct effect (SDE) is defined
as E(Ya,gM|a∗,W) − E(Ya∗,gM|a∗,W), and the stochastic indirect
effect (SIE) is E(Ya,gM|a,W) − E(Ya,gM|a∗,W), where gM|a,W
is the observed distribution of the mediator conditional on
covariates, W, and setting exposure A = a. To be able to
estimate stochastic mediation effects, positivity and consis-
tency must be satisfied, and there must be no unmeasured
exposure-mediator confounding, no unmeasured mediator-
outcome confounding, and no unmeasured exposure-
outcome confounding. The standard equation-based ap-
proach and the Baron and Kenny simple simulation
approach cannot generally be used to calculate power for
the SDE and SIE. This, in part, motivates use of the more
flexible simulation approach we describe in this tutorial.
However, for the particular structural causal model depicted
in Figure 1A, the SDE and SIE are equivalent to the NDE
and NIE, so these common approaches can be used, albeit
with the additional assumptions discussed above.

MEDIATION ESTIMATORS CONSIDERED

To illustrate how estimator choice can affect power esti-
mates in a simulated data scenario, we consider 4 estimators
that can be used to estimate either natural and/or stochas-
tic direct and indirect effects. We compare these with the
analytical, equation-based approach that estimates power to
detect any indirect effect. We consider 2 parametric regres-
sion approaches given their ubiquity across public health,
psychology, and other social sciences: the original Baron
and Kenny estimator (6) and an extension to the Baron and
Kenny estimator developed by Valeri and VanderWeele (8)
that allows for an effect of interaction between the treatment
and the mediator on the outcome. We consider these to be
“typical approach” benchmarks. We also consider the IORW
estimator (16, 21), which has been increasingly used in the
field of epidemiology due to its ease of implementation and
flexibility in dealing with high-dimensional or continuously
distributed mediators. Finally, we consider TMLE (2, 14),
as it offers advantages of double robustness, efficiency, and
incorporation of machine learning algorithms in model-
fitting. Detailed descriptions of the estimators and the equa-
tion are given in the Web Appendix (available at https://
academic.oup.com/aje), in the papers cited above (1, 2, 6,
8, 14, 16, 21), and in another tutorial (1).

SIMULATION TUTORIAL

In this section, we take the reader step by step through
the process of conducting a simulation to estimate statistical

power in the estimation of natural or stochastic direct and
indirect effects.

Step 1: Simulate data

First, one simulates data that match important attributes
of the real data to be used to answer the research question.
For the purpose of illustrating the differences in perfor-
mance across estimators, we consider and discuss relative
performance across an array of data-generating mechanisms
(DGMs) (Table 1). Commented R code (22) that simulates
each of these DGMs is provided on GitHub (23).

These DGMs include variations across several attributes
that could influence the statistical power of an estimator:

1. sample size;
2. effect size;
3. the presence of an effect of the interaction between A and

M on Y;
4. the structural causal model (e.g., observed data O =

(W, A, M, Y) versus observed data O = (W, A, Z, M, Y));
5. the strength of Z given observed data O=(W, A, Z, M, Y);

and
6. the distributions of M and Y (note that we limit this tu-

torial to binary, nonrare M and Y; changing these features
could affect power).

Sample size and effect size are 2 well-appreciated deter-
minants of statistical power. We include 3 sample sizes:
n = 100, n = 1,000, and n = 10,000. We examine perfor-
mance under relatively large and small effect sizes for the
direct effect (range, 0.033–0.330) and indirect effect (range,
0.0014–0.0770), based on previous epidemiologic research
(2). True effect sizes for each simulation DGM are given in
Web Tables 1 and 2.

We also examine how estimator power is affected by the
presence of the effect of an interaction between A and M on
Y . Both the IORW and TML estimators allow for such an
interaction. The original Baron and Kenny approach (6) does
not, though the extension (8) does. Consequently, the simu-
lation explores how violating that assumption may influence
power to detect an effect.

Our DGMs fall into one of 2 observed structural causal
models. In the first, we have observed data O = (W, A, M, Y),
corresponding to Figure 1A. In the second, we have observed
data O=(W, A, Z, M, Y), corresponding to Figure 1B. In the
first scenario, without Z, natural direct and indirect effects
coincide with their stochastic counterparts (19). Thus, under
correct specification of all parametric models, positivity, and
a large sample size, DGMs 1 and 3 represent “best-case”
scenarios for estimating statistical power for all estimators
and the analytical equation. In the second scenario, with Z,
only stochastic direct and indirect effects are identified.
Thus, only TMLE is theoretically unbiased in this scenario.
It is possible that the degree to which performance is affect-
ed by violating the assumption of no posttreatment con-
founder of the mediator-outcome relationship depends on
the strength of the effect of Z on M and Y , so that is another
attribute that we incorporate into our DGMs (Table 1).

For each DGM, we calculate the true direct and indirect
effect in order to compare the estimators’ performance in
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Table 1. Data-Generating Mechanisms Considered in the Simulationsa

Data-Generating
Mechanism

Effect
Size

Strength
of Z

A - M
Interaction

η2 β1 β2 θ1 θ2 θ3 θ4

O = (W, A, M, Y)

1 Small N/A No N/A 0.05 N/A 0.03 N/A 0.60 0

2 Small N/A No N/A 0.03 N/A 0.03 N/A 0.04 0

3 Small N/A Yes N/A 0.01 N/A 0.03 N/A 0.01 0.1

4 Large N/A No N/A 0.10 N/A 0.30 N/A 0.20 0

5 Large N/A Yes N/A 0.10 N/A 0.20 N/A 0.15 0.2

(O = W, A, Z, M, Y)

6 Small Weak No 0.10 0.03 0.20 0.03 0.03 0.04 0

7 Small Strong No 0.60 0.03 0.20 0.01 0.03 0.01 0

8 Small Weak Yes 0.10 0.01 0.01 0.03 0.03 0.01 0.1

9 Small Strong Yes 0.60 0.01 0.01 1.50 0.03 0.01 0.1

10 Large Weak No 0.10 0.10 0.20 0.10 0.30 0.20 0

11 Large Strong No 0.60 0.10 0.20 0.15 0.30 0.30 0

12 Large Weak Yes 0.10 0.10 0.15 0.10 0.15 0.15 0.2

13 Large Strong Yes 0.60 0.10 0.20 0.20 0.20 0.15 0.2

Abbreviation: N/A, not applicable.
a Models used: P(Z = 1|a, w) = η0 + η1a + η2w; P(M = 1|z, a, w) = β0 + β1a + β2z + β3w; and P(Y =

1|m, z, a, w) = θ0 + θ1a + θ2z + θ3m + θ4am + θ5w.

terms of power and coverage. The truth for the natural
direct and indirect effects under DGMs 1–4 (when there
is no Z variable) is calculated using Pearl’s mediational
formula (24). The truth for the stochastic direct and indirect
effect is calculated using a draw from a superpopulation
of 5,000,000. (This truth is calculated for each simulated
data set, reflecting the fact that the estimator is for a data-
dependent parameter that assumes a known stochastic inter-
vention on M.)

Step 2: Implement estimation approach

Second, one decides on a mediation estimand of interest
(e.g., natural direct/indirect effect; stochastic direct/indi-
rect effect) and an estimator for estimating it. We provide
details on how we implemented each estimator below, as
well as details for implementing the equation-based power
calculation. Additional information about each estimator is
available in the Web Appendix. We also provide commented
R code for each on GitHub (23).

Baron and Kenny estimator (original and extension for effect
of A-M interaction on Y). First we implement the Baron
and Kenny estimator and the interaction extension to the
Baron and Kenny estimator. We calculate 95% confidence
intervals using 1,000 bootstrapped samples with a Wald-
type confidence interval for the NDE and the percentile
confidence interval for the NIE. In previous work, Hayes
and Scharkow (25) showed similar power when using boot-
strapped confidence intervals as opposed to assuming
that the 2 coefficients are joint normally distributed.

These 2 estimators cannot accommodate data-generating
mechanisms 6–13 that include Z (i.e., observed data
O = (W, A, Z, M, Y)). Consequently, we implement these
estimation approaches making the decision to omit Z from
the models and making the alternative decision to control for
Z in the models. We include the results from each decision.

Inverse odds ratio weighting. We implement IORW using
the inverse odds as weights as opposed to the inverse odds
ratios, as recommended (21). We use 250 bootstrap repli-
cates to estimate Wald-type standard errors for both the NDE
and the NIE. IORW also cannot accommodate postexposure
confounders of the mediator-outcome relationship. Thus, for
DGMs 6–13, we show the results of the IORW estimator
making the same 2 alternative decisions detailed above:
1) omitting Z from the models and 2) controlling for Z in the
models.

Targeted maximum likelihood estimation. We implement a
simple version of TMLE that treats the stochastic interven-
tion on M as known, estimated using observed data (14).
We compare 2 approaches for estimating the standard errors:
1) the sample standard deviation of the efficient influence
curve for the SDE and SIE and 2) the standard deviation of
the bootstrapped estimates for the SDE and SIE. Wald-style
confidence intervals are constructed using these variance
estimates.

Analytical equation

Lastly, even though it is not an estimator in the sense
that it is not estimating a direct or indirect effect or giving
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any measure of variance/inference, we also implement the
regression-based equation that calculates power to detect an
indirect effect (4). We estimate each of the required param-
eters using a superpopulation as the truth, and we calculate
the power according to the equation described in the Web
Appendix. Since this approach does not allow for postexpo-
sure confounders, for DGMs 6–13 we compare the results
from omitting and including Z in the outcome models.

Step 3: Calculate power to detect a given effect size

Third, one calculates the statistical power of the estimator
of choice in estimating a given effect size for a given sample
size. Formally, statistical power is P(reject H0|H1 true),
where H0 is the null hypothesis and H1 is the alternative
hypothesis. In this case, � = 0 under H0 and � > 0 under
H1, where � is the parameter (e.g., NIE). Thus, one can per-
form some number of simulations—we choose 1,000—and
calculate the percentage of simulations that correctly reject
H0 for a given � and sample size.

In addition to power, we also calculate 95% confidence
interval coverage, which is the percentage of simulations
where the 95% confidence interval covers the true effect. If
allassumptionsfor identification are met, if there are no prac-
tical positivity violations (26), and if the sample size is large
enough, each estimator should cover the true effect 95% of
the time.

RESULTS

Results foreachsimulationscenarioare showninFigures 2
and 3, Web Figures 1–4, and Web Tables 1 and 2. These
figures plot power and coverage by sample size for each of
the estimators and DGMs. In the plots of simulation results,
the dotted horizontal lines correspond to 80% power, and the
dotted vertical lines represent 95% coverage. Under optimal
performance, the estimators would lie on the vertical line
and above the horizontal line. The results of the equation-
based approach for detecting any mediation are plotted to the
right of 100% coverage. This is to make clear that they are
not based on an estimator of indirect effects, and therefore
coverage cannot be calculated for them.

First structural causal model, O = (W, A, M, Y)

We first discuss results corresponding to DGMs 1–5 under
the first structural causal model (Figure 1A) where we have
data O = (W, A, M, Y).

When there is no effect of A-M interaction on Y (cor-
responding to DGMs 1, 2, and 4), any estimator should
theoretically give appropriate coverage for a sufficiently
large sample size. DGMs 1 and 2 produce a small effect size
in this scenario, and DGM 4 produces a large effect size.
DGMs 1 and 2 differ in that the NDE is equal to the NIE in
DGM 1 (NDE = NIE = 0.03), resulting in DGM 1’s having a
larger NIE than DGM 2. We see in parts A–D of Figure 2
that nearly all estimators result in coverage near 95%, as
expected (the exception being for the IORW estimator of
the NIE under DGM 1 (Figure 2B)). For the smaller NIE
under DGM 2, power varies across estimators (Figure 2D).

With n = 10,000, the Baron and Kenny estimator and the
interaction extension to the Baron and Kenny estimator have
the highest power (90% and 70%), followed by TMLE
(64% and 63%) and then IORW (9%). The equation-based
approach slightly overestimates power for each sample size.
As expected, power is higher with the larger NIEs in DGMs
1 and 4 (Figure 2, parts B and E). However, we again see
some variability across the estimators for the NIE. Again,
the equation-based approach overestimates power.

DGMs 3 and 5 introduce an effect of the interaction
between A and M on Y corresponding to smaller and large
effect sizes, respectively (Figure 3). In this scenario, the
controlled direct effect will not necessarily equal the NDE,
so only the interaction extension to the Baron and Kenny
estimator (denoted “Ixn exn to B and K” in Figure 3),
IORW, and TMLE are theoretically appropriate. This is best
evidenced in DGM 5, where, for the NIE, the original Baron
and Kenny estimator produces significant undercoverage of
23% for the largest sample size (Figure 3D; for exact power
and coverage estimates, see Web Table 1). For the larger
effect size, power is universally high for sample sizes of
1,000 and 10,000. Use of the equation overestimates the
power when n = 100 but is about the same as the simulation
results for n = 1,000 and n = 10,000. For the smaller effect
size, DGM 3, power in estimating the NIE is high only for
TMLE with n = 10,000 (Figure 3B); this case is also the only
one in which the equation does not overestimate power.

Second structural causal model, O = (W, A, Z, M, Y)

We next discuss results corresponding to DGMs 6–13
under the second structural causal model (Figure 1B) where
we have data O = (W, A, Z, M, Y). In this scenario, only
TMLE may be theoretically unbiased in estimating the iden-
tified parameter. However, we hypothesized that the relative
performance of the other estimators may depend on the
strength of Z and whether or not it is controlled for or omitted
in the analyses.

DGMs 6 and 10 correspond to a weak effect of Z and no
A-M interaction; DGM 6 represents a small effect size and
DGM 10 represents a large one. In this scenario, we expect
that all methods have appropriate coverage, given that the
violation of the “no postexposure confounder” assumption
is relatively weak. We found this to be generally true for
the NDE (except for the IORW estimator omitting Z and
the interaction extension to the Baron and Kenny estimator
controlling for Z), but coverage for the NIE was more
variable for the non-TML estimators (Web Figure 1). For
both the small and large effect sizes, the Baron and Kenny
and IORW estimators omitting Z resulted in poor coverage
of the NIE, and for the large effect size, the other IORW
estimator also resulted in poor coverage. All estimators of
the NDE had more than 80% power when the sample size
was 10,000, although power was lower for sample sizes of
1,000 and 100. For the NIE, all estimators except IORW had
more than 80% power when the sample size was 10,000,
although power was lower for sample sizes of 1,000 and
100. Both equation-based methods (that control for and omit
Z) produced similar estimates of power but overestimated
power for all sample sizes.
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Figure 2. Statistical power and coverage of estimators of the natural direct effect (NDE) and the natural indirect effect (NIE), by sample size,
estimation method, and effect size, for data-generating mechanisms (DGMs) ref lecting no Z and no A-M interaction. A) NDE for DGM 1 (small
effect size); B) NIE for DGM 1 (small effect size); C) NDE for DGM 2 (small effect size); D) NIE for DGM 2 (small effect size); E) NDE for DGM 4
(large effect size); F) NIE for DGM 4 (large effect size). “Baron and Kenny” corresponds to the original version of the Baron and Kenny estimator
(6). “Ixn exn to B and K” corresponds to the extension to the Baron and Kenny estimator that allows for A-M interaction (8). TMLE1 corresponds
to variance estimated using the efficient inf luence curve, and TMLE2 represents variance calculated using the bootstrap. Ixn exn, interaction
extension; TMLE, targeted maximum likelihood estimation.

Am J Epidemiol. 2020;189(12):1559–1567



Estimating Power for Mediating Effects 1565

Figure 3. Statistical power and coverage of estimators of the natural direct effect (NDE) and the natural indirect effect (NIE), by sample size,
estimation method, and effect size, for data-generating mechanisms (DGMs) ref lecting no Z and A-M interaction. A) NDE for DGM 3 (small
effect size); B) NIE for DGM 3 (small effect size); C) NDE for DGM 5 (large effect size); D) NIE for DGM 5 (large effect size). “Baron and Kenny”
corresponds to the original version of the Baron and Kenny estimator (6). “Ixn exn to B and K” corresponds to the extension to the Baron and
Kenny estimator that allows for A-M interaction (8). TMLE1 corresponds to variance estimated using the efficient inf luence curve, and TMLE2
represents variance calculated using the bootstrap. Ixn exn, interaction extension; TMLE, targeted maximum likelihood estimation.

DGMs 8 and 12 reflect a weak effect of Z and interaction
between A and M on Y; DGM 8 represents a small effect size
and DGM 12 represents a large effect size. Again, only the
TML estimators are theorectically appropriate under these
DGMs. We expect the original Baron and Kenny estimator
to perform especially poorly, as it assumes that Z does not
exist and also assumes no effect of A-M interaction on Y .
These differences in coverage are particularly pronounced
in DGM 12, where the effect size is large (Web Figure
2). Although power is universally high under DGM 12 for
N ≥ 1,000, all estimators other than TMLE, including the
equation approaches, have low power in detecting the NIE
under the small effect size DGM 7.

When there is a strong relationship with Z, only TMLE is
expected to result in appropriate coverage. This is generally
reflected in the simulation results. The DGMs without A-M
interaction in this scenario are 7 and 11, for small and large
effect sizes, respectively, and the DGMs with A-M interac-
tion are 9 and 13 for small and large effect sizes, respectively.
DGM 7 represents a particularly challenging scenario in
which no estimator or equation achieves satisfactory power
for the SIE, even with n = 10,000 (Web Figure 3). The large-
effect-size version, DGM 11, demonstrates that only TMLE
has appropriate coverage across the SDE and SIE and has
high power for n = 1,000 and n = 10,000 (Web Figure 3).
The equation-based method’s power estimate is consistent
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with that of other estimators in these DGMs when n = 1,000
and n = 10,000 but is an overestimate when n = 100.

Under DGMs 9 and 13, only TMLE demonstrates con-
sistently appropriate coverage for the SDE and SIE (Web
Figure 4). All estimation approaches have high power under
the large effect size DGM, but with the smaller effect size,
only TMLE demonstrates high power for estimating the
SIE. Similar to the non-TML estimators, the equation-based
approach has low statistical power in this scenario.

DISCUSSION

We demonstrated via tutorial how to use simulation to
estimate the power of a particular estimator under a particu-
lar data-generating mechanism to detect direct and indirect
effects, including step-by-step, commented R code. Usually,
effect size and sample size are the only factors considered
in a power analysis. However, as we demonstrated in our
simulation, choice of estimator and features of the DGM also
greatly affect power. Unfortunately, the typical power cal-
culation approaches—the analytical equation-based method
and the Baron and Kenny simulation-based method—are
inflexible to testing power for a variety of estimators and
make potentially restrictive assumptions about features of
the DGM. These constraints motivate the adoption of the
more flexible approach we illustrate.

In our simulation, we examined 13 DGMs spanning com-
binations of various factors of importance: 1) the presence
(vs. absence) of a posttreatment confounder of the M-Y rela-
tionship, 2) the strengths of that posttreatment confounder
where it exists, 3) the presence (vs. absence) of an effect of
the A-M interaction on Y , 4) effect size, 5) sample size, and
6) estimator type or equation. We found that estimators could
vary greatly in terms of power, keeping all else constant. For
example, for a given DGM and sample size, some estimators
could have 100% power, while others had 8% despite having
appropriate 95% confidence interval coverage (e.g., Web
Figure 1A). This rather extreme discrepancy in estimator
power underscores the potential utility in using a simulation-
based approach that includes a variety of appropriate estima-
tors to both aid in the choice of estimator for a planned anal-
ysis and calculate the anticipated power of such a planned
analysis more accurately than using the analytical equation-
based method as the default.

The coverage of the 95% confidence interval will be
approximately 95% for unbiased estimates and for a suffi-
ciently large sample size, using a consistent estimator with
appropriate variance estimation. Coverage deviating signif-
icantly from 95% indicates that the assumptions underlying
estimator use for a particular effect have not been met, and
consequently that an alternative estimator with assumptions
that are better aligned with the data structure and estimand
should be considered. One can utilize an appropriate esti-
mator for the DGM, reflected by appropriate coverage with
a sufficiently large sample size, but this estimator may none-
theless have low power. This may be due to the estimator’s
being inefficient; thus, it may be more difficult to detect an
effect. We see this in particular with the IORW estimator for
DGM 2 (Figure 2B). In this simple DGM, all estimators are
appropriate for estimation of the NDE and NIE, but the IORW

is inefficient. This inefficiency makes it difficult to detect a
small effect size, even with a large sample size of 10,000.

Conversely, one could have high power but poor coverage.
In this case, the veracity of the power should be questioned,
as it is likely that the estimator used in the first place
is inappropriate (e.g., one of the assumptions is violated).
For example, in DGMs 3 and 5 (Figure 3), power is high
for the original Baron and Kenny estimator but low for
the sample size of 10,000. The original Baron and Kenny
estimator assumes no A-M interaction, so it is known to be
an inappropriate estimator for this DGM, which is reflected
in the low coverage. Because the estimator’s inference is
demonstrated to be incorrect under this DGM, the resulting
power estimate is not meaningful.

Although we illustrate here how one might conduct such
a power simulation, our tutorial has several limitations.
First, we included several common estimators used to cal-
culate mediation effects, but there are many others (27–
32). Second, we examined how 6 particular features may
affect power, but this too is an incomplete list. For example,
we considered estimates on the risk difference scale, but
different effect scales, like the relative risk and odds ratio,
could also affect power. Among the features we did examine,
our simulation scenarios were limited. For example, we uti-
lized binary, nonrare variables for simplicity. We encourage
researchers to generate simulated data sets that most closely
approximate the features of their own data and to estimate
power for the particular estimand of interest. This tutorial
serves as a road map that can be followed for any set of dis-
tributions, estimands, and estimators.

In summary, the statistical power to detect a mediation
effect can vary dramatically across an array of features.
Traditional power approaches account for only 2 of these:
sample size and effect size. Error in these crude approx-
imations may result in mediation studies that are mistak-
enly not pursued due to underestimating power or that are
mistakenly pursued due to overestimating power (despite
an inability to detect any reasonable effect). In an effort
to advance more accurate power calculations for estimating
direct and indirect effects, we demonstrate how to conduct
a simulation-based power analysis, comparing power across
various estimators using a data structure mimicking the real
data one might have. We have made commented R code
available for every step of this process (23) in an effort to
lower implementation barriers.
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