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Abstract

Motivation: Methods for analyzing microbiome data generally fall into one of two groups: tests of the global hypoth-
esis of any microbiome effect, which do not provide any information on the contribution of individual operational
taxonomic units (OTUs); and tests for individual OTUs, which do not typically provide a global test of microbiome
effect. Without a unified approach, the findings of a global test may be hard to resolve with the findings at the
individual OTU level. Further, many tests of individual OTU effects do not preserve the false discovery rate (FDR).

Results: We introduce the linear decomposition model (LDM), that provides a single analysis path that includes global
tests of any effect of the microbiome, tests of the effects of individual OTUs while accounting for multiple testing by con-
trolling the FDR, and a connection to distance-based ordination. The LDM accommodates both continuous and discrete
variables (e.g. clinical outcomes, environmental factors) as well as interaction terms to be tested either singly or in com-
bination, allows for adjustment of confounding covariates, and uses permutation-based P-values that can control for
sample correlation. The LDM can also be applied to transformed data, and an ‘omnibus’ test can easily combine results
from analyses conducted on different transformation scales. We also provide a new implementation of PERMANOVA
based on our approach. For global testing, our simulations indicate the LDM provided correct type I error and can have
comparable power to existing distance-based methods. For testing individual OTUs, our simulations indicate the LDM
controlled the FDR well. In contrast, DESeq2 often had inflated FDR; MetagenomeSeq generally had the lowest sensitiv-
ity. The flexibility of the LDM for a variety of microbiome studies is illustrated by the analysis of data from two micro-
biome studies. We also show that our implementation of PERMANOVA can outperform existing implementations.
Availability and implementation: The R package LDM is available on GitHub at https://github.com/yijuanhu/LDM in
formats appropriate for Macintosh or Windows.
Contact: yijuan.hu@emory.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Data from studies of the microbiome are accumulating at a rapid
rate. The relative ease of conducting a census of bacteria by sequenc-
ing the 16S rRNA gene (or, for fungi, the 18S rRNA gene) has led to
many studies that examine the association between microbiome and
health states or outcomes. Many microbiome studies have complex
design features (e.g. paired, clustered or longitudinal data) or com-
plexities that frequently arise in medical studies (e.g. the presence of
confounding covariates). While a number of new methods for ana-
lyzing microbiome data have been recently proposed, there is still a
need for methods that can account for the special features of micro-
biome data and the complex study designs in common use while
preserving size or controlling the false discovery rate (FDR).

Statistical methods for analyzing microbiome data seem to fall
into one of two camps. One camp comprises methods that test the

global effect of the microbiome, such as PERMANOVA (Anderson,
2001; McArdle and Anderson, 2001), MiRKAT (Zhao et al., 2015),
aMiSPU (Wu et al., 2016) and pairNM (Shi and Li, 2017), which
can be used to test the hypothesis that variables of interest
(e.g. case–control status) are significantly associated with overall
microbial compositions. However, these methods do not provide
convenient tests of the effects or contributions of individual oper-
ational taxonomic units (OTUs), should a global microbiome effect
be found (here we use ‘OTU’ generically to refer to any feature such
as amplicon sequence variants or any other taxonomic or functional
grouping of bacterial sequences). The other camp is comprised of
OTU-by-OTU tests, often directly using a method developed for
RNA-Seq data such as DESeq2 (Love et al., 2014) and edgeR
(Robinson et al., 2010) or a modification thereof such as
MetagenomeSeq (Paulson et al., 2013); some other methods in this
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camp have adopted a compositional data approach [such as
ANCOM (Kaul et al., 2017; Mandal et al., 2015) and ALDEx2
(Fernandes et al., 2014)] were developed for longitudinal data [such
as ZIBR (Chen and Li, 2016)], or employed a multi-stage strategy
[such as massMap (Hu et al., 2018)]. While some of these
approaches have been widely applied, they generally do not give a
single test of the global null hypothesis. Although test statistics or P-
values from OTU-specific tests can of course be combined to give a
global test, the performance of this kind of global test is often poor
since many of the OTU-specific tests only contribute noise.

We introduce here the linear decomposition model (LDM) for
analyzing microbial count or relative abundance data that are obtained
in a 16S rRNA study or a shotgun metagenomics sequencing study.
The LDM gives a unified approach that allows both global testing of
the overall effect of the microbiome on arbitrary traits of interest, while
also providing OTU-specific tests that correspond to the contribution
of individual OTUs to the global test results. It allows for complex
fixed-effects models such as models that include multiple variables of
interest (both continuous and categorical), their interactions, as well as
confounding covariates. It is permutation-based, and so can accommo-
date clustered data and maintain validity for small sample sizes and
when data are subject to overdispersion. Because the permutations are
based on the Freedman–Lane approach (Freedman and Lane, 1983),
we can construct powerful type III or ‘last variable added’ tests like
those used in most linear regression packages (Kleinbaum et al., 2007;
Muller and Fetterman, 2012). We also provide a new version of the
PERMANOVA test based on our approach that we show outperforms
the functions adonis and adonis2 in the R package vegan, the
most commonly used implementations of PERMANOVA. Recent
simulation studies suggest that many microbiome analysis methods fail
to control the FDR when applied to overdispersed data (Hawinkel
et al., 2019). We show that the LDM controls FDR in exactly the kind
of situations where other methods fail.

We describe the LDM in detail in Section 2. In Section 3, we de-
scribe the simulation studies and the two real datasets that we use to
assess the performance of the LDM, and compare it to results
obtained by PERMANOVA, MiRKAT, aMiSPU, DESeq2, edgeR,
MetagenomeSeq, the Wilcoxon rank-sum test, ANCOM and
ALDEx2. We conclude with Section 4. Some technical details are
relegated to Supplementary Materials.

2 Materials and methods

Data from a microbiome study are usually summarized in a table of
read counts, here referred to as the OTU table and denoted by Y. The
OTU table is the n� J data matrix whose i; jð Þ � th element is the num-
ber of times OTU j is observed in sample i. The total counts in each sam-
ple (the library size) can vary widely between samples and this
variability must be accounted for. Here, we accomplish this by convert-
ing counts to frequencies (i.e. relative abundances) by dividing the raw
counts in each sample by the library size of that sample, although other
normalizations can be used with the LDM if desired. Our simulation
studies showed that the LDM performs well when counts are scaled to
frequencies, even with highly overdispersed data. Although the LDM
accounts for the compositionality of the frequency data by using an ap-
propriate permutation scheme, a compositional analysis in the sense of
Aitchison (1986) can also be conducted by applying the LDM to appro-
priately transformed (e.g. centered log-ratio) data.

2.1 The LDM as a linear model
Many reasonable models of the relationship between data in an
OTU table and covariates that describe traits or characteristics of in-
dividual samples can be expressed as a linear model. Because the
large number of OTUs is a problem for models in which OTU fre-
quencies predict traits or covariates when the goal is inference, we
consider models in which traits and covariates are used as predictors
of OTU frequencies. Thus, we consider the model

Y ¼ Xbþ �; (1)

where X is an n� r design matrix containing r covariates (including
traits and confounders), b is an r� J matrix that we must estimate

and � is an n� J matrix of error terms with Eð�jXÞ ¼ 0. Considered
as J models for the columns of Y, the j-th column of b are the regres-
sion coefficients for the j-th regression model. In order to provide a
clean decomposition of the sum of squares of Y, we first make the
columns of X orthonormal using the Gram–Schmidt process. This
also aids in the interpretation of some hypothesis tests, particularly
terms that represent interactions with main effect terms that are also
being tested. A motivating example for (1) is when X contains only
an intercept and an indicator for a binary trait such as case–control
status; then the first row of b is proportional to the means of the
OTU frequencies while the second row of b is proportional to the
differences in the OTU frequencies between case and control
participants.

The least-squares estimators for the matrix b can be obtained by
minimizing jjY �Xbjj2F with respect to b (holding X and Y fixed),
where jjAjj2F � TrðAATÞ �

P
i;j A2

ij is the Frobenius (matrix) norm of
matrix A and Trð:Þ is the trace operator. Satten et al. (2017) showed
that the resulting estimators are b̂ ¼ XTY, which are also the estima-
tors obtained by fitting the regression model column by column. If
we write b̂ ¼ D̂V̂

T
where D̂ is a diagonal matrix with elements

given by the norms of the rows of b̂, so that the columns of V̂ are
normalized rows of b̂, then we may rewrite (1) as

Y ¼ XD̂V̂
T þ r; (2)

where r ¼ Y �XD̂V̂
T

is the residual matrix. Equation (2) is the
basic form of the LDM. It is similar to the singular value decompos-
ition (SVD) in that a matrix Y is decomposed into the product of an
orthogonal matrix X, a diagonal matrix D with positive elements
and a third matrix V, but differs from the SVD because X may be
chosen in any convenient way as long as it has orthonormal col-
umns, and because the columns of V are not orthogonal.

In some situations, we may wish to partition covariates into K
groups, which we call ‘submodels’. For example, we may wish to group
several measures of smoking history into a single smoking ‘submodel’.
In this case, we partition X as (X1; . . . ;XK), and rewrite (1) and (2) as

Y ¼
XK

k¼1

Xkbk þ � ¼
XK

k¼1

XkD̂kV̂
T

k þ r; (3)

where the least-squares estimators of bk are given by b̂k ¼ XT
k Y ¼

D̂kV̂
T

k for each k. We will refer to the number of linearly independ-
ent columns in Xk as the number of components in the submodel.

The LDM (3) can be used to describe the amount of the total
sum of squares Stotal ¼ jjYjj2F that is explained by each submodel Xk

or the full model X by noting that Smodel ¼
PK

k¼1 Sk; where Sk ¼
jjXkD̂kV̂

T

k jj
2
F for k ¼ 1; . . . ;K. In analogy with Satten et al. (2017)

we can express Sk in one of two ways:

Sk ¼ TrðD̂2

kÞ (4)

or

Sk ¼
XJ

j¼1

jb̂k;�jj2; (5)

where b̂k;�j is the j-th column of b̂k and jbj is the Euclidean norm of
vector b. The first representation indicates that, as with a standard
SVD, the sum of squares for the k-th submodel is given by the sum
of squares of the corresponding singular values (diagonal elements
of D̂k). The second representation partitions Sk into contributions
from each OTU. Note these results only require X has orthonormal
columns, not V̂ .

2.2 Testing hypotheses using the LDM
The LDM uses the decomposition of the sum of squares in (4) and
(5) to test global and OTU-specific null hypotheses about the effect
of individual covariates or sets of covariates grouped into submo-
dels. To test hypotheses about the contribution of the j-th OTU to
the sum of squares for the k-th submodel, we use its contribution to
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the model sum of squares given in (5), normalized as an F-statistic,
to give the test statistic

Fkj ¼
jb̂k;�jj2

jY�jj2 �
PK

k¼1 jb̂k;�jj2
; (6)

where Y�j is the j-th column of Y and we have dropped the constant
of proportionality fRankðYÞ � RankðXÞg=RankðXkÞ found in a typ-
ical F test as we intend to use permutation to assess significance.

To test the global hypothesis, we consider the total sum of
squares for the k-th submodel given in (4), again normalized as a F-
statistic. This statistic can either be constructed directly, or by sum-
ming the numerator and denominator of the OTU-specific statistics
(5) separately, i.e.

Fk;global ¼
TrðD̂2

kÞ
jjYjj2F � TrðD̂2Þ

¼
PJ

j¼1 jb̂k;�jj2PJ
j¼1ðjY�jj

2 �
PK

k¼1 jb̂k;�jj2Þ
: (7)

The presence of all submodels in the denominator indicates that this
is a type III or ‘last variable added’ test statistic. As before, the usual
constant of proportionality in a F-statistic is dropped because
significance will be assessed using permutation. Note that
OTU-specific and global tests are linked through (6) and (7) in a
natural way. If Y is centered, the sums-of-squares in (4) and (5) are
proportional to the variance explained (VE) by a submodel or an
individual OTU in a submodel; for this reason, we sometimes refer
to the F-tests in the LDM as tests of the VE.

2.3 The LDM as a decomposition
The LDM in Equation (3) can also lead to an exact decomposition
of the OTU table Y, if we augment X with extra columns Xr so
that the full set of columns ~X ¼ ðX;XrÞ ¼ ðX1; . . . ;XK;XrÞ span the
column space of Y. The ‘extra’ columns Xr are used to decompose
the residual matrix r. If we further write b̂r ¼ XT

r Y ¼ D̂rV̂
T

r , where
D̂r is a diagonal matrix with entries given by the norms of the
rows of b̂r, so that the columns of V̂ r are normalized, then we can
rewrite (3) as

Y ¼
XK

k¼1

Xkb̂k þXrb̂r ¼
XK

k¼1

XkD̂kV̂
T

k þXrD̂rV̂
T

r ¼ ~X ~D ~V
T
; (8)

where ~D ¼ diagfD̂1; . . . ; D̂K; D̂rg and ~V ¼ ðV̂ 1; . . . ; V̂K; V̂ rÞ. Thus,
the LDM, like the SVD, can give a full-rank decomposition of Y.

We can establish a connection between the LDM and distance-
based methods such as PERMANOVA by choosing Xr to be the
eigenvectors of a (residual) distance matrix Dr ¼ ðI �XXTÞDðI �
XXTÞ that have non-zero eigenvalues, where XXT is the hat matrix
of X. Note these eigenvectors are always orthogonal to the columns
of X. This choice allows direct comparison of the variability
explained by covariates to the variability explained by the principal
components of a (residual) distance matrix, in analogy with
PERMANOVA. A scree plot based on values of ~D in (8) can visually
indicate whether that values of D̂

2

k are ‘large’ relative to the residual
error. To help ensure that the rank of ~X and D agree, if Y has been
column-centered, then we also center D as recommended by Gower
(1966). Then, the columns of both ~X and Y are orthogonal to the
vector 1. Some caution is necessary for submodels having more than
one component; although Sk in (4) is invariant to the choice of basis
for Xk, the individual diagonal elements of D̂k depend on the choice
of basis. Thus, we recommend these elements be replaced by
Sk=RankðD̂kÞ. Note that the individual diagonal elements of D̂r are
uniquely defined, as the columns of Xr are the eigenvectors of Dr.
The scree plot obtained in this way is a quick and easy way to see
which submodels explain a reasonable fraction of the variability we
would expect to see in an ordination using distance D. Additionally,
the residual distance matrix Dr can also be used for ordination if we
wish visualize the observations after removing the (linear) effects of
covariates from a distance matrix D.

A further connection to PERMANOVA can be made by noting
that, as long as D is not rank-deficient (i.e. as long as Xk is in the

range of D), the column vectors Xk span the range of Dk ¼
XkXT

k DXkXT
k for any D. In fact, when constructing X, the columns

Xk could be replaced by the eigenvectors of Dk having non-zero
eigenvalues (denoted, say, by X�k); note this would not change the
sums-of-squares test statistics since Xk and X�k are each orthonormal
and span the same space, and are hence related by an orthogonal
transformation. In either case, ~X has columns that span the model
matrices (the Dks) and the residual (Dr) matrix of a PERMANOVA
analysis. Of course, if Xk is comprised of a single column, then Xk

automatically corresponds to the single eigenvector of Dk having
non-zero eigenvalue.

Even if we choose X�k for the columns of ~X, note that the diag-
onal elements of D̂

2

k in the LDM are not eigenvalues of the distance
matrix D, but rather represent the amount of variability in the OTU
table Y that is explained by the (Euclidean) projection of the col-
umns of Y on Xk. Thus, the diagonal elements of D̂

2

k only corres-
pond to the eigenvalues in a PERMANOVA analysis if the distance
matrix D is the Euclidean distance. In some cases, it is possible to
convert a distance matrix D into the Euclidean distance matrix by
data transformation; in these cases, the LDM can also be considered
distance-based. However, choosing X�k when constructing ~X does
have an advantage when constructing the scree plot, as it gives an
unambiguous meaning to the individual diagonal elements of D̂k for
submodels with more than one component.

2.4 Assessing significance by permutation
We assess the significance of our test statistics, Fkj and Fk;global, using
a variant of a permutation scheme described by Freedman and Lane
(1983). The original Freedman–Lane procedure permutes residuals.
To preserve the correlation structure among OTUs, we use the same
permutation scheme for each OTU (i.e. permuting the residual
matrix by row). We show in Supplementary Text S1 that this is
equivalent to a permutation procedure in which the residuals are
held fixed but the covariates (i.e. the rows of X) are permuted.

To describe our permutation approach, define Yk, the residual
matrix obtained after fitting a reduced model to Y that excludes the
k-th submodel term Xk, to be Yk ¼ ðI �

P k0 ¼ 1
k0 6¼ k

K
Xk0X

T
k0 ÞY and note

that, because of the orthogonality of the columns of X, we can write
b̂k ¼ XT

k Y as b̂k ¼ XT
k Yk. As a result, Fkj in (6) can be rewritten as

Fkj ¼
YT

k;�jXkXT
k Yk;�j

YT
k;�jðI �

PK
k0¼1 Xk0X

T
k0ÞYk;�j

; (9)

where Yk;�j is the j-th column of Yk. The analogous result for the glo-
bal test statistic Fk;global is obtained by summing numerator and de-
nominator over j. In Supplementary Text S1, we show that if Pp is a
permutation matrix corresponding to p, a permutation of the inte-
gers 1; . . . ; n, then the Freedman–Lane procedure is equivalent to
forming the test statistics

F
ðpÞ
kj ¼

YT
k;�jX

ðpÞ
k X

ðpÞT
k Yk;�j

YT
k;�j

�
I �

PK
k0¼1 X

ðpÞ
k0 X

ðpÞT
k0

�
Yk;�j

; (10)

where X
ðpÞ
k ¼ PpXk is a row-permuted version of Xk. The test statis-

tic for the global test F
ðpÞ
k;global is obtained by (separately) summing

the numerator and denominator of (10) over OTUs and can be writ-
ten as

F
ðpÞ
k;global ¼

Tr½YT
k X
ðpÞ
k X

ðpÞT
k Yk�

Tr½YT
k

�
I �

PK
k0¼1 X

ðpÞ
k0 X

ðpÞT
k0

�
Yk�

: (11)

Although Freedman and Lane (1983) only considered residuals
from independent observations, some simple but important cases
involving correlated data from clustered samples can be tested using
the Freedman–Lane approach. Considering permutation of covari-
ates rather than residuals, the main requirement for a valid permuta-
tion replicate dataset is that the dataset preserve the correlation
found in the original data. Thus, variables that vary within clusters
(sometimes called ‘plots’ in the Ecology literature) can be permuted
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within each cluster; here, we only consider the case of clustered data
in which residuals within each cluster can be considered as ex-
changeable. For example, if each cluster consists of a ‘before treat-

ment’ observation and an ‘after treatment’ observation from the
same individual, the effect of treatment can be tested by randomly

permuting the ‘before’ and ‘after’ assignment within each cluster (in-
dividual). Note that, in this situation, the cluster sizes need not be
balanced (i.e. have equal size). If all variables in an analysis are con-

stant for all cluster members (i.e. are assigned at or ‘above’ the clus-
ter level), only permutation replicates that assign the same value to

each cluster member are allowed; here, exchangeability is not
required. For example, in a rodent study of the effect of diet on the
gut microbiome, rodents housed in the same cage should be treated

as a cluster, as rodents are coprophagic. Thus, when permuting diet,
rodents in the same cage should always be assigned the same diet.

Note that for datasets with variables assigned at or above the cluster
level, the cluster sizes must all be equal or the data must be stratified
by cluster size with all permutations taking place within strata. Our

implementation of the LDM uses the same permutation options
available in the R package vegan, through the R package
permute.

Our software implementation of the LDM uses sequential stop-
ping rules to increase computational efficiency. When only the glo-

bal test is of interest, we adopt the sequential stopping rule of
Besag and Clifford (1991) for calculating the P-value of the global

test. This algorithm terminates when either a pre-determined
number Lmin of rejections (i.e. the permutation statistic exceeded
the observed statistic) has been reached or a pre-determined max-

imum number Kmax of permutations has been generated. When the
OTU-specific results are desired, we use the algorithm proposed by

Sandve et al. (2011), which adds an FDR-based sequential stop-
ping criterion to the Besag et al. algorithm. Note that the Sandve
et al. algorithm limits the total number of needed permutations

to J � Lmin � a�1, which is 200 times the number of OTUs J when
the nominal FDR a ¼ 10% and Lmin ¼ 20. When testing

multiple hypotheses (e.g. both the global and OTU-specific
hypotheses, or hypotheses corresponding to multiple submodels),
we generate permutations until all hypotheses reach their stopping

point.

2.5 A Freedman–Lane PERMANOVA test

(PERMANOVA-FL)
The operations that lead to the F-statistics for the LDM can also be

used to develop an improved PERMANOVA test statistic. We first
consider a Euclidean distance D. Following McArdle and Anderson

(2001), we note that any Euclidean distance D can be written as D ¼
ZZT for some matrix Z; we then write a linear model of the form
(3) in which Z replaces Y. Here, the only tests of interest are the glo-

bal tests; the analogs of the OTU-specific tests are tests of the effect
of covariates on the j-th component (column) of Z and are only used

as intermediate steps. After replacing Y with Z in (7) and using the
invariance of the trace to cyclic permutations, the statistic Fk;global

can be rewritten as

Fk;PERMANOVA /
Tr½XkXT

k DXkXT
k �

Tr
h�

I �
PK

k0¼1 Xk0X
T
k0

�
D
�

I �
PK

k0¼1 Xk0X
T
k0

�i ;

(12)

which is the usual form of the PERMANOVA F-statistic; note that
D here can be generalized to any (non-Euclidean) distance D. The

same argument leading to (9) yields

Fk;PERMANOVA /
Tr½XkXT

k
~DkXkXT

k �
Tr
h�

I �
PK

k0¼1 Xk0X
T
k0

�
~Dk

�
I �

PK
k0¼1 Xk0X

T
k0

�i ;

where

~Dk ¼
�

I �
XK

k0¼1;k0 6¼k

Xk0X
T
k0ÞDðI �

XK

k0¼1;k0 6¼k

Xk0X
T
k0

�
:

Thus, for a replicate dataset having covariates X
ðpÞ
k , the Freedman–

Lane PERMANOVA test statistic can be obtained by replacing Y by
Z in (11):

F
ðpÞ
k;PERMANOVA /

Tr½XðpÞk X
ðpÞT
k

~DkX
ðpÞ
k X

ðpÞT
k �

Tr
h�

I �
PK

k0¼1 X
ðpÞ
k0 X

ðpÞT
k0

�
~Dk

�
I �

PK
k0¼1 X

ðpÞ
k0 X

ðpÞT
k0

�i :

(13)

We refer to this test as PERMANOVA-FL. The same kinds of
restricted permutations as in our implementation of the LDM are
available in PERMANOVA-FL.

The permutation scheme implemented in adonis is similar to
(13) except that the ~Dks are all replaced by D. We further note that
our proposed permutation replicates in (13) have the same advan-
tages as the PERMANOVA replications implemented in adonis, in
that they only require functions of the distance matrix D (which, in
our approach, are the projected distance matrices ~Dk). As a result,
our approach, like other implementations of PERMANOVA, can be
computed even if the distance matrix is non-Euclidean. Further, the
distance matrices ~Dk do not need to be recalculated for each
replicate.

2.6 The arcsin-root transformation
The LDM can also be applied to transformed data. Because we con-
sider frequency data, we show we achieve good results using the
arcsin-root transformation, which is variance-stabilizing for
Multinomial and Dirichlet-Multinomial (DM) counts. Thus, we
write Hij ¼ sin �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yij=Ni

p
where Yij are the raw counts and Ni

are the library sizes. We can additionally center the data matrix
H¼fHijg, replacing it by ðI � n�111TÞH if we also plan to center D.
We can now replace Y by H in (1) or (3) and proceed as before. This
approach is related to an approach of Berkson (1944) for fitting lo-
gistic models to bioassay data. We also had considered a logit-based
model using Haldane’s (Haldane, 1956) unbiased logit by forming
Hij ¼ lnfðYij þ 0:5Þ=ðNi � Yij þ 0:5Þg but found that the arcsin-root
transform performed better in all cases we examined. We expect the
LDM applied to (untransformed) frequency data will work best
when the associated OTUs are abundant, while we expect the LDM
applied to arcsin-root-transformed frequencies to work best when
the associated OTUs are less abundant. Since we do not know the
association mechanism a priori, we also consider an omnibus strat-
egy that simultaneously applies LDM on both data scales. For the
omnibus tests, we use the minimum of the P-value obtained from
the frequency and arcsin-root-transformed data as the final test stat-
istic and use the corresponding minima from the permuted data to
simulate the null distribution (Westfall and Young, 1993). As dem-
onstrated by our simulation studies, the omnibus test achieves the
best overall performance compared to the LDM applied to either
data scale and is recommended for use in real data analysis.

3 Results

3.1 Simulation studies
We conducted several simulation studies to evaluate the perform-
ance of the LDM and compare it to competing methods. To evaluate
the global test, we compared our results to those obtained using our
own implementation of PERMANOVA and the PERMANOVA
implemented in adonis2. We also calculated OTU-specific tests
using the LDM, which we compared to results from DESeq2. We
only performed limited comparisons to aMiSPU, edgeR,
MetagenomeSeq, Wilcoxon rank-sum test (applied to OTU frequen-
cies), ANCOM and ALDEx2, because aMiSPU does not allow for
clustered data, edgeR generally has highly inflated FDR (Hawinkel
et al., 2019), and the others do not allow for confounding
covariates.
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To generate our simulation data, we used the same motivating
dataset as Zhao et al. (2015), specifically data on the upper-
respiratory-tract (URT) microbiome first described by Charlson
et al. (2010). To simulate read count data for the 856 OTUs
reported in this study, we adopted a DM model using the empirical
frequencies calculated from the study data; we set the overdispersion
parameter to the estimate 0.02 obtained from these data, which is
also the median value we observed in an admittedly brief survey of
the literature (Chen and Li, 2013; La Rosa et al., 2012; Morgan
et al., 2015). While the original microbiome dataset was generated
from 454 pyrosequencing with mean library size �1500, we
increased the mean library size to 10 000 to reflect Illumina MiSeq
sequencing which is currently in common usage. For each simula-
tion, we generated data for 100 samples unless otherwise noted. We
also conducted sensitivity analysis with a wide range of library sizes,
overdispersion parameters and sample sizes, and by replacing the
DM model with a Poisson log-normal model (PLNM) or negative-
binomial (NB) model to generate the read count data (the PLNM
and NB model are described in Supplementary Text S2 and S3,
respectively).

We focused on two complementary scenarios. The first scenario
(S1) assumed that a large number of moderately abundant and rare
OTUs were differentially abundant between cases and controls, and
the second scenario (S2) assumed the top 10 most abundant OTUs
were differentially abundant. Both scenarios have a one-way, case–
control design with a confounder and independent samples. Later
we varied these scenarios to simulate a continuous trait, a two-way
design, or clustered data.

In both scenarios S1 and S2, we let U denote case–control status
and assumed an equal number of cases (U¼1) and controls (U¼0).
We simulated a confounder, C ¼ 0:5U þ �, where � was drawn from
a uniform distribution on ½0; 1�. In S1, we uniformly and independ-
ently sampled two (overlapping) sets of 428 OTUs (half of all
OTUs), the first set associated with U and the second set associated
with C; the set for U was sampled after excluding the top three most
abundant OTUs to focus on less abundant OTUs. In S2, we assumed
the 10 most abundant OTUs were associated with U and the next 40
most abundant OTUs were associated with C. These OTU sets were
held fixed across replicates of data. We denoted the OTU frequencies
estimated from the real data by the vector p1 and formed vectors p2

and p3 by first setting p2 and p3 equal to p1 and then randomly per-
muting those frequencies in p2 and p3 that belong to the selected set
of OTUs associated with U and C, respectively. Note that the fre-
quencies for OTUs not selected to be associated with U (or C) remain
the same in p1 and p2 (or p3). We then defined a sample-specific fre-
quency vector as ~pðU;CÞ ¼ p1ðU;CÞp1 þ p2 ðUÞp2 þ p3ðCÞp3,
where p2ðUÞ ¼ bU; p3ðCÞ ¼ bCC; p1ðU;CÞ ¼ 1� p2ðUÞ � p3ðCÞ.
In this model, b and bC are the effect sizes of U and C on the overall
community compositions, respectively; here we set bC to 0.3 except
for simulations with no confounding, for which we set bC to zero. At
the OTU level, the strengths and directions of the effects of U (or C)
are heterogeneous because the resulting frequencies at each OTU are
characterized not just by b (or bC), but also by the differences be-
tween p1 and p2 (or p1 and p3), which vary in magnitude and sign at
different OTUs. We then generated the OTU count data for each
sample using the DM model with ~pðU;CÞ, overdispersion parameter
of 0.02, and library size sampled from Nð10 000; 10 000=3Þ and
left-truncated at 500. By mixing p1, p2 and p3 in a way that depends
on the values of U and C, we induced associations between the
selected OTUs and U and C. Note that p1 serves as the ‘reference’
OTU frequencies that characterizes samples for which U and C are
both zero. In addition, the correlations among U, C and OTU fre-
quencies establish C as a confounder of the association between U
and the OTUs. Finally, note that when b¼0, ~pðU;CÞ does not de-
pend on U, so that the null hypothesis of no association between U
and OTU frequencies holds. The simulations of clustered data, data
with a two-way design and data with a quantitative trait are
described in Supplementary Text S4.

We evaluated type I error and power for testing the global hy-
pothesis at nominal significance level 0.05, and we assessed empiric-
al sensitivity (proportion of truly associated OTUs that are detected)

and empirical FDR for testing individual OTUs at nominal FDR
10%. Results for type I error were based on 10 000 replicates; all
other results are based on 1000. In all simulations with confounders,
we treated C and U as separate submodels, when fitting the LDM.
For the two-way simulations, U1 and U2 were considered as separate
submodels.

3.1.1 Results for testing global hypotheses with independent

samples in the one-way case–control design

For testing the global hypothesis H0 : b ¼ 0 of no association be-
tween microbiome composition and U, we applied the LDM on the
frequency and arcsin-root scales and also calculated the omnibus
test; these results are presented as VE-freq, VE-arcsin and VE-omni,
respectively, where VE denotes variance explained. We also applied
our own implementation of PERMANOVA as well as the adonis2
implementation; we refer to them as PERMANOVA-FL and
adonis2, respectively.

Table 1 (top panel) shows our results for type I error. All meth-
ods, after adjusting for confounders, had correct type I error; with
the small sample size 20, the type I error rates of PERMANOVA-FL
and LDM methods were slightly conservative, which is consistent
with the findings of Anderson and Legendre (1999). There was sub-
stantial inflation of type I error for S1 and modest inflation for S2
when the confounder was not accounted for, demonstrating that our
methods are effective in accounting for confounders, with either
modest or substantial confounding. The type I error rates were also
close to 0.05 when the PLNM was adopted for count data simula-
tion (Supplementary Table S1).

Figure 1 (top panel) displays our results for power. We can see
that VE-arcsin is more powerful than VE-freq under S1 and vice
versa under S2; this is presumably because the variance stabilization
of the arcsin-root transformation gives greater power to detect asso-
ciation with the rare OTUs that carry association in S1, while the
untransformed data give increased power to detect the common-
OTU associations that characterize S2. In both cases, VE-omni
achieved almost the same power as the most powerful test, without
having to know whether common or rare OTUs were most import-
ant. PERMANOVA-FL has varying power depending on the choice
of distance measure: the power is lowest with the weighted-UniFrac
distance, since the association was induced without reference to any
phylogenetic tree, and the power is highest with the Hellinger dis-
tance in S1 and Bray–Curtis in S2. In both S1 and S2, our best-
performing method has comparable power as the best-performing
PERMANOVA-FL. aMiSPU has a comparable power to VE-omni
under S1 but has the least power under S2. Our sensitivity analysis
showed that the relative performance of these methods persists for a
wide range of library sizes, overdispersion parameters and sample
sizes (Supplementary Fig. S1), as well as with the PLNM
(Supplementary Fig. S2). For this set of studies, PERMANOVA-FL
and adonis2 yielded very similar power.

3.1.2 Results for testing individual OTUs with independent samples

in the one-way case–control design

Because PERMANOVA-FL and adonis2 does not provide OTU-
specific results, we compared our results on testing individual OTUs
to DESeq2. When applying DESeq2, we replaced the default nor-
malization by GMPR normalization (Chen et al., 2018), which was
specifically developed for zero-inflated microbiome data.

Figure 1 middle and bottom panels display results on empirical
sensitivity and empirical FDR, respectively. The LDM-based meth-
ods controlled FDR at 10% in all cases; their empirical FDRs are
conservative (and the sensitivity values are low) in S1 because this
scenario permuted frequencies among 428 OTUs selected for U, ma-
jority of which are rare, and thus generated many weakly associated
OTUs that are essentially null OTUs. The sensitivity of VE-omni
tracks the method between VE-freq and VE-arcsin that performs
better. Note that VE-arcsin has a higher sensitivity than VE-freq in
both S1 and S2, but the order can be reversed in the scenario with a
continuous trait (Supplementary Fig. S6). In contrast, the empirical
FDRs for DESeq2 are modestly inflated under S1 and highly inflated
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under S2. Even when the read count data were simulated from the
NB model (for which DESeq2 was designed), the empirical FDRs of
DESeq2 are still inflated (Supplementary Fig. S3), likely due to the
large number of zero counts.

Because MetagenomeSeq, the Wilcoxon rank-sum test,
ANCOM, and ALDEx2 do not allow for adjustment of confounding
covariates, we have not included results from these methods in
Figure 1. To compare with these methods, we set bC ¼ 0 for both
scenarios S1 and S2 to remove confounders and displayed the results
in Supplementary Figure S4. MetagenomeSeq always controlled
FDR but was extremely conservative (FDR<2% for nominal FDR
of 10% and sample size 100) in detecting associated OTUs for the
simulations we conducted. The Wilcoxon test controlled FDR and
achieved good sensitivity when the DM model was used for generat-
ing the read count data; when the PLNM was used (with no
confounders), the data appeared less overdispersed and Wilcoxon
had consistently lower sensitivity than VE-omni (Supplementary
Fig. S2). ANCOM cannot control FDR under S2. While ALDEx2
controlled FDR under S1 and S2, its sensitivity is consistently lower
than the LDM-based methods. We have also included edgeR in this
study, whose highly inflated FDR corroborated the finding in
Hawinkel et al. (2019). Finally, DESeq2 failed to control FDR even
in the absence of any confounders.

3.1.3 Results for the two-way design

We set b1 ¼ 0 and b2 ¼ 0:5 to ascertain the type I error of the test of
U1, and b2 ¼ 0 and b1 ¼ 0:5 to ascertain the type I error of the test
of U2, which results were summarized in Table 1. Both the LDM
and PERMANOVA-FL yielded correct type I error for testing each
factor, whereas adonis2 had conservative type I error in scenario S1.
The type I error using adonis2 was about a factor of 3 smaller for
testing U1 than for testing U2 because the sampled OTUs for associ-
ation with U2 (or C) included the top two most abundant OTUs
and, as a result, U2 had a stronger global effect on the OTUs than
U1. Consistent with the conservative type I error, adonis2 had lower
power than PERMANOVA-FL (Fig. 2). LDM (VE-omni) continued
to maintain good power relative to PERMANOVA-FL for either

Table 1. Type I error for testing the global hypothesis at level 0.05

Scenario n P-FL adonis2 VE-freq VE-arcsin VE-omni

Independent samples, one-way case–control design

Adjusting for confounder S1 20 0.040 0.052 0.045 0.031 0.038

100 0.053 0.052 0.050 0.054 0.053

S2 20 0.039 0.054 0.043 0.026 0.034

100 0.050 0.050 0.052 0.047 0.053

Not adjusting for confounder S1 20 0.299 0.296 0.215 0.408 0.362

100 0.987 0.987 0.913 0.998 0.997

S2 20 0.065 0.064 0.056 0.076 0.067

100 0.151 0.151 0.083 0.245 0.194

Independent samples, two-way design

Testing for U1 S1 100 0.046 0.013 0.048 0.048 0.050

S2 100 0.049 0.048 0.051 0.051 0.050

Testing for U2 S1 100 0.049 0.036 0.049 0.046 0.049

S2 100 0.053 0.048 0.053 0.054 0.054

Clustered samples, one-way case–control design

Accounting for clustering S1 100 0.050 0.050 0.048 0.051 0.053

S2 100 0.044 0.047 0.047 0.044 0.045

Not accounting for clustering S1 100 1 1 1 1 1

S2 100 1 1 0.999 1 1

Independent samples, continuous trait

Adjusting for confounder 100 0.049 0.051 0.055 0.049 0.051

Not adjusting for confounder 100 0.095 0.095 0.090 0.093 0.091

Note: P-FL, PERMANOVA-FL. Results for PERMANOVA-FL and adonis2 are based on the Bray–Curtis distance. n is the number of samples. When testing

U1, we set b2 ¼ 0:5; when testing U2, we set b1 ¼ 0:5. All analyses of clustered data adjust for the confounder.
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Fig. 1. Simulation results for one-way, case–control studies with independent sam-

ples. The gray dotted lines represent FDR¼0.1. BC, Bray–Curtis; WU, weighted-

UniFrac; H, Hellinger

LDM 4111

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa260#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa260#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa260#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa260#supplementary-data


factor (Fig. 2). Further, LDM controlled FDR for OTUs that was
detected to be associated with either factor (Fig. 2).

3.1.4 Results for clustered data

In Table 1, we can see that permuting the case–control status over
clusters rather than observations yields the correct type I error for all
methods. We also calculated the type I error we would have obtained
if we had incorrectly ignored the clustering structure when performing
the permutations. Note that failure to account for the clustering struc-
ture result in a type I error of 100%. In Supplementary Figure S5, we
see the LDM controlled FDR for these data, although the power and
sensitivity are lower than was observed with the same number of sam-
ples which were unclustered (Fig. 1). This is reasonable, as data with
within-individual correlation is typically not as informative as data
from an equivalent number of independent samples.

3.1.5 Results for continuous trait

From Table 1, we again see that all methods (adjusting for the con-
founder) have the correct type I error for data with a continuous
trait; there was inflation of type I error when the confounder was
not accounted for. In Supplementary Figure S6, we see that the
power of most methods is about the same. Although the sensitivity
remains low as the effect size b increases, this appears to be related
to the sample size, as we also show that the sensitivity increases rap-
idly as the sample size increases (at fixed b¼3). The LDM continues
to control FDR as the sample size and sensitivity increase, while the
empirical FDR for DESeq2 is never <40% for the range of sample
sizes we considered.

3.2 Analysis of two microbiome datasets
To show the performance of the LDM in real microbiome data, we
reanalyzed two datasets that were previously analyzed using
MiRKAT and MMiRKAT (Zhan et al., 2017) (a variant of
MiRKAT for testing association between multiple continuous cova-
riates and microbiome composition). The first is from a study of the
association between the URT microbiome and smoking, and the se-
cond is from a study of the association between the prepouch-ileum
(PPI) microbiome and host gene expression in patients with inflam-
matory bowel disease (IBD). We compared the performance of our
global test (VE-omni) with PERMANOVA-FL, MiRKAT and
MMiRKAT; we also compared our OTU-specific results with results
from DESeq2.

3.2.1 URT microbiome and smoking association study

The data for our first example were generated as part of a study to
examine the effect of cigarette smoking on the orpharyngeal and
nospharyngeal microbiome (Charlson et al., 2010). The 16S se-
quence data are summarized in an OTU table consisting of data
from 60 samples and 856 OTUs with mean library size 1500; meta-
data on smoking status (28 smokers and 32 non-smokers) and two
additional covariates (gender and antibiotic use within the last
3 months) was also available. An imbalance in the proportion of
male subjects by smoking status (75% in smokers, 56% in non-
smokers) indicates potential for confounding. Zhao et al. (2015)
analyzed these data using MiRKAT, finding a significant global as-
sociation between microbiome composition and smoking status
after adjusting for gender and antibiotic use. We used the Bray–
Curtis distance for our analysis because it led to the smallest
P-values compared to other distances in Zhao et al. (2015). We
combined gender and antibiotic use into a single submodel and
treated smoking status as another submodel when fitting the LDM.

We first constructed the ordination plots in Figure 3 using the
Bray–Curtis distance after removing the effects of gender and anti-
biotic use (i.e. using D1 as the distance matrix); these plots demon-
strate a clear shift in smokers compared with non-smokers even
after removing the effect of potential confounders. The accompany-
ing scree plots (Fig. 3) on both frequency and arcsin-root scales fur-
ther suggest that smoking explains an important faction of the
variability in the OTU table. The residual (non-model) components

are plotted in decreasing order of the size of the eigenvalue of the
component in the spectral decomposition of D2 (after removing the
effect of confounders and smoking); the high correlation between
the order of values Dk from the LDM and the order of eigenvalues
of D2 is noteworthy. We filtered out OTUs with presence in <5 sam-
ples, retaining 233 OTUs for analysis. The results of the LDM glo-
bal tests, along with results from PERMANOVA-FL and MiRKAT,
are presented in top-left panel of Table 2. VE-omni gave a smaller
P-value than MiRKAT or PERMANOVA-FL based on the Bray–
Curtis distance. In the top-right panel of Table 2, we show the
results of our OTU-specific tests. VE-omni detected 5 OTUs (which
include the 4 OTUs detected by VE-freq and constitute 5 of the 14
OTUs detected by VE-arcsin) whereas DESeq2 detected none. The
inefficiency of DESeq2 is consistent with our simulation studies
when the mean library size was 1500 (results not shown).

3.2.2 PPI microbiome and host gene expression association study

The data for our second example were generated in a study of the as-
sociation between the mucosal microbiome in the PPI and host gene
expression among patients with IBD (Morgan et al., 2015). The PPI
microbiome data are summarized in an OTU table with data from
196 IBD patients and 7000 OTUs; gene expression data at 33 297
host transcripts, as well as clinical metadata such as antibiotic use
(yes/no), inflammation score (0–13) and disease type (familial aden-
omatous polyposis/FAP and non-FAP) were also available. The data
also included nine gene principal components (gPCs) that together
explain 50% of the total variance in host gene expression. Zhan et al.
(2017) gave a joint test of all nine gPCs for association with
microbiome composition, using MMiRKAT based on the Bray–Curtis
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Fig. 2. Simulation results for studies with the two-way design and independent sam-

ples. BC, Bray–Curtis. When testing U1, we set b2 ¼ 0:5; when testing U2, we set

b1 ¼ 0:5
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Fig. 3. Exploratory analysis of the URT microbiome data based on the Bray–Curtis

distance. Left plot: ordination plot after removing the effects of confounders gender

and antibiotic use, colored by smoking status. Center and right plots: proportions of

VE by smoking and the PCs of the (residual) distance measure after removing the

effects of gender and antibiotic use. The center plot is based on frequency data and

the right plot is based on arcsin-root-transformed data. The PCs are ordered by the

magnitude of their corresponding eigenvalue in a spectral decomposition of D2 (the

distance matrix after removing the effect of the confounders and smoking)
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distance measure and adjusting for antibiotic use, inflammation score
and disease type (FAP/non-FAP). Here, we performed the same joint
test using the LDM by putting the confounders in one submodel and
then including all nine gPCs in another submodel; however, we fol-
lowed Morgan et al. (2015) in only analyzing the original 196 PPI
samples, not an additional 59 pouch samples from some of the same
individuals included in the analysis of Zhan et al. (2017). We filtered
out OTUs found in fewer than 5% of samples, retaining 2096 OTUs
for analysis. VE-freq, VE-arcsin and VE-omni yielded P-values 0.023,
0.0084 and 0.015, respectively, and detected 0, 4 and 3 OTUs (the 3
OTUs detected by VE-omni are included in the 4 OTUs detected by
VE-arcsin) that significantly accounted for the global association at a
nominal FDR rate of 10%. PERMANOVA-FL had P-value 0.0076
and MMiRKAT 0.0049, both based on the Bray–Curtis distance.

We also followed Zhan et al. (2017) to conduct individual tests of
each of the nine gPCs. We treated each gPCs as a separate submodel
in a single LDM, with the first submodel accounting for the same
confounders as in the joint test. Note that the gPCs are orthogonal.
Scree plots for frequency and arcsin-root-transformed data are shown
in Supplementary Figure S7, and indicate that gPC4 and gPC5 are
most likely to be associated with microbial composition although
any association is likely to be marginal. In fact, Table 2 confirms that
gPC4 and gPC5 showed significant associations (at the 0.05 signifi-
cance level) with the overall microbiome composition by the global
tests; no other gPCs were found to be associated. Both VE-omni and
VE-arcsin detected (the same) 3 associated OTUs for gPC5, while
VE-arcsin additionally found one OTU associated with gPC4. Both
VE-omni and VE-arcsin also detected (the same) 1 OTU for gPC6,
which was not significantly associated with the microbiome in a glo-
bal test by any method. In contrast to the results obtained by the
LDM, DESeq2 detected between 4 and 59 OTUs for each of the nine
gPCs, which seems implausible given the results of the global tests.
These findings may be related to the failure of DESeq2 to control
FDR in the presence of confounders in our simulation studies.

4 Discussion

We have presented the LDM, a linear model for testing association
hypotheses for microbiome data that can account for the complex
designs found in microbiome studies. We have shown that the LDM
has good power for global tests of association between variables of
interest and the microbiome when compared to existing methods
such as PERMANOVA and MiRKAT (the simulation results of
MiRKAT were similar to those of PERMANOVA and thus not
shown), but also provides OTU-specific tests. This is true even when
confounding covariates are present, or when the study design results

in correlated data. We have additionally shown that the OTUs
identified by the LDM preserve FDR, while those identified by
RNA-Seq-based approaches such as DESeq2 typically do not; fur-
ther, since global and OTU-specific tests are unified, our analysis of
the PPI microbiome data show that the LDM is less likely to identify
‘significant’ OTUs for variables that are not globally significant. In
the analyses we show here, there was only one instance where the
LDM discovered OTUs that were significantly associated with a
variable but the LDM global test for that variable was non-
significant (gPC6 in the PPI data); in our simulations there were no
such cases, although that may be because we only evaluated sensitiv-
ity for effect sizes that were large enough that the global test was al-
ways positive. While some analysts may choose to only calculate
OTU-specific tests in the presence of a significant global test, this re-
striction is not required to control FDR at the OTU level. We have
evaluated our approach using simulated data with realistic amounts
of overdispersion, confounding covariates and clustered data, and
have shown how it can be applied to two real datasets.

We have implemented our approach in the R package LDM,
which is scalable to large sample sizes. Using a single thread of a
MacBook Pro laptop (2.9 GHz Intel Core i7, 16 GB memory) and
the default value Lmin ¼ 20, it took 8, 19, 833 s to perform inte-
grated global and OTU tests with a simulated dataset that consists
of 20, 100 and 1000 samples. In our applications to real data, we
used Lmin ¼ 100 to ensure stability of results which are based on
Monte Carlo sampling. It took 23 s (and stopped after 29 400 per-
mutations) to perform global and OTU tests with the URT data, and
5 h (and stopped after 1 273 000 permutations) to perform global
and OTU tests of nine gPCs separately with the PPI data. Because
the LDM has dual goals of testing both the global and OTU-specific
hypotheses, and because it is based on permutation, it generally
takes more run time than tests that only test the global hypotheses,
such as PERMANOVA, or OTU-specific tests that are based on ana-
lytical P-values, such as DESeq2. However, because our R package
LDM uses a sequential stopping rule, the computational time is still
manageable. In particular, LDM is much faster than ANCOM and
comparable to ALDEx2.

The LDM has features in common with redundancy analysis
(RA), a multivariate technique to describe how much variability in
one matrix (say, an OTU table Y) can be described by variables in a
second matrix (say, a design matrix X); see more details in
Supplementary Text S5. The LDM differs from RA most important-
ly in its ability to simultaneously obtain results for several submo-
dels. To fit more than one submodel using RA, it is necessary to fit
RA to each submodel, using data for which the previous submodels
have been projected off. This precludes use of type III (last variable

Table 2. Results in analysis of the two real datasets

Testing the global hypothesis Testing individual OTUs

Trait MiRKAT P-FL VE-freq VE-arcsin VE-omni VE-freq VE-arcsin VE-omni DESeq2

URT microbiome data

Smoking 0.0019 0.0018 0.0070 0.0006 0.001 4 14 5 0

PPI microbiome data

gPC1 0.22 0.19 0.13 0.47 0.19 0 0 0 14

gPC2 0.36 0.19 0.19 0.19 0.26 0 0 0 49

gPC3 0.24 0.31 0.30 0.21 0.29 0 0 0 29

gPC4 0.16 0.088 0.013 0.080 0.021 0 1 0 13

gPC5 0.0094 0.015 0.034 0.010 0.015 0 3 3 48

gPC6 0.19 0.41 0.43 0.49 0.53 0 1 1 23

gPC7 0.15 0.21 0.76 0.16 0.22 0 0 0 59

gPC8 0.21 0.33 0.64 0.36 0.47 1 0 0 4

gPC9 0.15 0.12 0.10 0.12 0.15 0 0 0 20

Note: P-FL, PERMANOVA-FL. For the global hypotheses, reported results are P-values. For the individual OTU tests, results reported are the number of

OTUs detected at FDR¼ 10%. MiRKAT and PERMANOVA-FL results are based on the Bray–Curtis distance. In analysis of the URT microbiome data,

MiRKAT and PERMANOVA-FL yielded P-values 0.005 and 0.0042, respectively, when the weighted-Unifrac distance was used, and 0.00078 and 0.0006 when

the Hellinger distance was used.
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added) tests, which are known to be the most powerful (Muller and
Fetterman, 2012). Our use of the Freedman–Lane approach also
gives superior performance; in simulations, our PERMANOVA-FL
had higher power than the adonis and adonis2 functions in the R
package vegan, even though adonis2 is based on some form of
permutation of residuals (according to adonis2 output).

Although the LDM is primarily based on the Euclidean distance
in its focus on sums-of-squares, variability explained and F-like
tests, we have shown how information on an arbitrary distance can
be incorporated in exploratory analyses, and how a distance matrix
can be used to choose analysis directions when submodels contain
multiple components. Although the Euclidean distance has been
criticized when used for ecological analysis, Chao and Chiu (2016)
have recently suggested the problems associated with use of the
Euclidean distance as a measure of beta diversity are related to nor-
malization, rather than any intrinsic failure of the Euclidean dis-
tance. Finally, while distance-based RA (Legendre and Anderson,
1999) does incorporate distance information, like PERMANOVA, it
removes information on the effects of individual OTUs, and so was
not included in our discussion.

In our examples here, we have put all confounders into the first
submodel X1. This conforms with practice in epidemiology in which
confounders are not tested for inclusion into a model, but rather are
included based on subject-area knowledge (VanderWeele and
Shpitser, 2011). With this in mind, our implementation of the LDM
does not provide P-values for the set of variables that are designated
as confounders, which makes the code run faster. However, for
those who want to estimate and test the individual effects of con-
founders, each confounder can be treated as separate submodel, and
the LDM will calculate a P-value for each confounder. The results
obtained in this way for the remaining variables are identical.

Among OTU-specific tests in absence of confounders, we found
that MetagenomeSeq controlled FDR in the simulations we conducted,
while Hawinkel et al. (2019) claimed that MetagenomeSeq failed to
control FDR. We noticed that Hawinkel et al. (2019) adopted the
zero-inflated Gaussian mixture distribution (i.e. the fitZig function),
whereas we adopted the zero-inflated log-normal mixture model (i.e.
the fitFeatureModel function) as recommended by the
MetagenomeSeq R package. We also found that the Wilcoxon rank-
sum test is a robust and powerful choice for detecting differentially
abundant OTUs when testing a single binary covariate. A recently
developed version of the rank-sum test (Satten et al., 2018) that uses
inverse-probability-of-treatment weights could provide an interesting
extension for categorical testing when adjustment for confounding
covariates is required. However, OTU-specific tests based on the rank-
sum test do not provide coherent results with any global test.

The question of whether rare OTUs should be removed before
analyzing microbiome data is unresolved. In our simulations, we did
not filter out any OTUs to show the validity of the LDM even in the
most challenging situation where these rare OTUs are retained. We
applied filters in the real data analysis to reduce the multiple-
comparison penalty and increase the chance of finding OTU-level
associations. Retaining only those OTUs found in at least five sam-
ples, or in at least 5% of samples, are both commonly used filters in
the literature, and we used one for each data analysis. Filtering out
the very rare OTUs will only minimally affect the performance of
our global test because these OTUs explain a negligible proportion
of the variability in either the frequency-scale or arcsin-root-
transformed data.
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