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MACHINE LEARNING, COMPUTATIONAL PATHOLOGY, AND BIOPHYSICAL IMAGING
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Interstitial fibrosis and tubular atrophy (IFTA) on a renal biopsy are strong indicators of disease chronicity and
prognosis. Techniques that are typically used for IFTA grading remain manual, leading to variability among
pathologists. Accurate IFTA estimation using computational techniques can reduce this variability and provide
quantitative assessment. Using trichrome-stained whole-slide images (WSIs) processed from human renal
biopsies, we developed a deep-learning framework that captured finer pathologic structures at high resolution
and overall context at the WSI level to predict IFTA grade. WSIs (nZ 67) were obtained from The Ohio State
UniversityWexnerMedical Center. Five nephropathologists independently reviewed themandprovidedfibrosis
scores that were converted to IFTA grades: �10% (none or minimal), 11% to 25% (mild), 26% to 50%
(moderate), and >50% (severe). The model was developed by associating the WSIs with the IFTA grade
determined by majority voting (reference estimate). Model performance was evaluated on WSIs (n Z 28)
obtained from the Kidney Precision Medicine Project. There was good agreement on the IFTA grading between
the pathologists and the reference estimate (kZ 0.622� 0.071). The accuracy of the deep-learning model
was 71.8%� 5.3%on The Ohio State UniversityWexnerMedical Center and 65.0%� 4.2%onKidney Precision
Medicine Project data sets. Our approach to analyzing microscopic- and WSI-level changes in renal biopsies
attempts to mimic the pathologist and provides a regional and contextual estimation of IFTA. Such methods
can assist clinicopathologic diagnosis. (Am J Pathol 2021, 191: 1442e1453; https://doi.org/10.1016/
j.ajpath.2021.05.005)
Renal biopsy is an integral part of clinical work-up for pa-
tients with several kidney diseases,1 as it provides diagnostic
and prognostic information that guides treatment. Despite
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such integral clinical use, current assessment of renal biopsy
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Deep Learning for Renal Fibrosis
fibrosis and tubular atrophy (IFTA), an important prognostic
indicator, is based mainly on visual estimation and semi-
quantitative grading and hence may not reveal relationships
that are not immediately evident using compartmentalized
approaches.3 Such estimates do not capture finer details or
heterogeneity across an entire slide, and therefore may not be
optimal for analyzing renal tissues with complex histopa-
thology. These aspects underline the need for leveraging
advances in digital pathology and developing modern data
analytic technologies, such as deep learning (DL), for
comprehensive image analysis of kidney pathology.

DL techniques that utilize digitized images of biopsies are
increasingly considered to facilitate the routine workflow of a
pathologist. There has been a surge of publications show-
casing DL applications in clinical medicine and biomedical
research, including those in nephrology and neph-
ropathology.4e9 Specifically, DL techniques, such as con-
volutional neural networks, have been widely used for the
analysis of histopathologic images. In the context of kidney
diseases, researchers have been able to produce highly ac-
curate methods to evaluate disease grade, segment various
kidney structures, and predict clinical phenotypes.10e18

Although this body of work is highly valuable, almost all
of it focuses on analyzing high-resolution whole-slide images
(WSIs) by binning them into smaller patches (or tiles) or
resizing the images to a lower resolution, and associating
them with various outputs of interest. These techniques have
various advantages and limitations. While the patch-based
approaches maintain image resolution, analyzing each patch
independently cannot preserve the spatial relevance of that
patch in the context of the entire WSI. In contrast, resizing
the WSI to a lower resolution can be a computationally
efficient approach but may not allow one to capture the finer
details present within a high-resolution WSI.

The goal of this study was to develop a computational
pipeline that can process WSIs to accurately capture the
IFTA grade. The nephropathologist’s approach to grading the
biopsy slides under a microscope were emulated. A typical
workflow by the expert involves manual operations, such as
panning as well as zooming in and out of specific regions on
the slide to evaluate various aspects of the pathology. In the
zoom out assessment, pathologists review the entire slide and
perform global or WSI-level evaluation of the kidney core. In
the zoom in assessment, they perform in-depth, microscopic
evaluation of local pathology in the regions of interest. Both
these assessments allow them to comprehensively assess the
kidney biopsy, including estimation of IFTA grade. We hy-
pothesized that a computational approach based on DL
would mimic the process that nephropathologists use when
evaluating the kidney biopsy images. Using WSIs and their
corresponding IFTA grades from two distinct cohorts, the
following objectives were addressed. First, the framework
needs to process image subregions (or patches) and quantify
the extent of IFTA within those patches. Second, the
framework needs to process each image patch in the context
of its environment and assess IFTA on the WSI. A
The American Journal of Pathology - ajp.amjpathol.org
computational pipeline based on deep learning was devel-
oped that can incorporate patterns and features from the local
patches along with information from the WSI in its entirety to
provide context for the patches. Through this combination of
patch- and global-level data, the model was designed to
accurately predict IFTA grade. An international team of
practicing nephropathologists evaluated the digitized biopsies
and provided the IFTA grades. The WSIs and their corre-
sponding IFTA grades were used to train and validate the DL
model. The DL model was also compared with a modeling
framework based on traditional computer vision and machine
learning that uses image descriptors and textural features. The
performances of the DL model and identified image sub-
regions that are highly associated with the IFTA grade are
reported.

Materials and Methods

Study Population, Slide Digitization, and
Preprocessing

De-identified WSIs of trichrome-stained kidney biopsies of
patients submitted to The Ohio State University Wexner
Medical Center (OSUWMC) were obtained. Renal biopsy
as well as patient data collection, staining, and digitization
followed protocols approved by the Institutional Review
Board at OSUWMC (study number: 2018H0495) (Table 1).
De-identified WSIs were also obtained from the following
recruitment sites of the Kidney Precision Medicine Project
(KPMP): Brigham and Women’s Hospital, Cleveland
Clinic, Columbia University, Johns Hopkins University, and
University of Texas Southwestern, Dallas. KPMP is a
multiyear project funded by the National Institute of Dia-
betes and Digestive and Kidney Diseases with the purpose
of understanding and finding new ways to treat chronic
kidney disease and acute kidney injury. Race/ethnicity
information was directly obtained from the OSUWMC
records and the KPMP website.

All WSIs were uploaded to a secure, web-based software
(PixelView; deepPath, Inc., Boston, MA). C.A.C. served as
the group administrator of the software account and provided
separate access to the WSIs to the other nephropathologists
(K.R., S.S.B., L.M.B., and P.B.), who were assigned as users
to the group account. This process allowed each expert to
independently evaluate the digitized biopsies. The KPMP
WSIs and associated clinical data were obtained following
review and approval of the Data Usage Agreement between
KPMP and Boston University (Table 2 and Supplemental
Table S1). All methods were performed according to fed-
eral guidelines and regulations. Renal tissues consisted of
needle biopsy samples from biopsies received at OSUWMC
and KPMP participants. All OSUWMC biopsies were scan-
ned using a WSI scanner [Aperio (Leica Biosystems, Wet-
zlar, Germany) or NanoZoomer (Hamamatsu, Hamamatsu
City, Japan)] at �40 apparent magnification, resulting in
WSIs with a resolution of 0.25 mm per pixel (Supplemental
1443
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Table 2 Data from the Kidney Precision Medicine Project

Description Value Units

Participants 14 n
Whole-slide images 28 n
Age (30e39, 40e49, 50e59,
60e69, 70e79) (binned)

4, 0, 1, 7, 2 Years

Sex (males, females) 7, 7 n
Patients per ethnicity
(White, Black, others, unknown)

10, 3, 0, 1 n

Baseline eGFR (<15, 15e29,
30e59, 60e89, �90) (binned)

0, 1, 7, 3, 3 mL/minute
per 1.73 m2

Proteinuria (<150, 150e499,
500e999, �1000) (binned)*

3, 2, 3, 2 mg

All the cases obtained from the Kidney Precision Medicine Project are
shown. For each participant, two trichrome images were available and both
were used for model testing. Creatinine values were unavailable on all the
participants.
*Proteinuria values were unavailable on four participants. Baseline eGFR

data were unavailable on all the patients.
eGFR, estimated glomerular filtration rate.

Table 1 Data from The Ohio State University Wexner Medical
Center

Description Value Units

Patients 64 n
Whole-slide images 67 n
Age (0e9, 10e19,
20e29, 30e39,
40e49, 50e59,
60e69, 70e79,
80e89) (binned)*

2, 1, 12, 4, 10,
9, 17, 4, 1

Years

Sex (males, females) 34, 30 n
Patients per ethnicity
(White, Black, others,
unknown)

35, 10, 4, 15 n

Creatinine, median (range)y 1.5 (0.3e10.9) mg/dL
Proteinuria, median (range)z 4 (0.5e22) g/day

The cases obtained from The Ohio State University Wexner Medical Center
are shown. A single trichrome-stained biopsy slide was digitized for each
patient.
*Age was unavailable on four patients.
yCreatinine values were unavailable on 11 patients.
zProteinuria values were unavailable on 13 patients.
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Figure S1). All the WSIs from KPMP were generated by
digitizing renal biopsies using Aperio AT2 high-volume
scanners (Leica Biosystems) at �40 apparent magnification
with resolution 0.25 mm per pixel (Figure 1). More details on
the pathology protocol can be obtained directly from the
KPMP website (https://www.kpmp.org, last accessed May 1,
2021). The Aperio-based WSIs were obtained in the SVS
format, and the Hamamatsu-based WSIs were obtained in
NDPI format.

A manual quality check was performed on all the WSIs
by a nephropathologist (C.A.C.). This check ensured there
were no artifacts on the selected WSI regions, such as air
bubbles, folding, compressing, tearing, overstaining or
understaining, stain batch variations, knife chatter, and
thickness variances. Because most WSIs had multiple cores,
the nephropathologist was able to select a core that had no
quality issues on all cases (Supplemental Figure S2). The
selected portion of the WSI was then carefully cropped and
converted to numeric matrices for further analysis.

Fibrosis Grading

A nephropathologist (C.A.C.) identified and annotated the
cortical regions within eachWSI (Figure 1) where both cortex
andmedulla were present. All the nephropathologists accessed
and independently reviewed the WSIs for IFTA using Pixel-
View on a web browser from their respective computers. The
scorewas provided as percentage of cortical regionswith IFTA
(0% to 100%), which was then converted to a semiquantitative
grade: �10% (none or minimal), 11% to 25% (mild), 26% to
50% (moderate), and>50% (severe).19 The final IFTA grades
were computed by performing majority voting on the grades
obtained from each nephropathologist. The fibrosis scores for
the KPMP data set were obtained directly from the study
1444
investigators and converted to IFTA grades using the same
criterion. The derived IFTA grades from both data sets were
used for further analysis.
Deep-Learning Framework

Our DL architecture is based on combining the features
learned at the global level of the WSI along with the ones
learned from local high-resolution image patches from the
WSI (Figure 2A). Similar DL architectures have been
recently applied to computer vision-related tasks.20e24 This
architecture is referred to as glpathnet. Briefly, glpathnet
comprises three arms: i) local branch (Figure 2A), ii) global
branch (Figure 2A), and iii) ensemble branch (Figure 2A).
The local branch receives cropped filtered patches from the
original images as the input to a Feature Pyramid Network
(FPN) model.25 The FPN uses an efficient architecture to
leverage multiple feature maps at low and high resolutions to
detect objects at different scales.
Cropped image patches (Np � Np pixels) were auto-

matically extracted from the original WSIs and labeled as
tissue or background using the following criterion. Image
patches containing tissue within at least 50% or more
pixels were labeled as tissue and otherwise labeled as
background. The local branch containing the image
patches labeled as tissue was fed into the FPN model. The
global branch containing downsampled low-resolution
versions (Ng � Ng pixels) of the original WSIs served as
inputs to another FPN model. To enable local and global
feature interaction, the feature maps from all layers of
either branches were shared with the others (Figure 2B).
The global branch cropped its feature maps at the same
spatial location as the current local patch. To interact with
the local branch, glpathnet upsamples the cropped feature
maps to the same size of the feature maps from the local
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Trichrome-stained whole-slide images of human renal biopsies. Sample trichrome images are shown on cases graded as minimal interstitial
fibrosis and tubular atrophy (IFTA; A), mild IFTA (B), moderate IFTA (C), and severe IFTA (D). For each grade, two different images are shown. Left panels:
Images had no annotations because the entire image was composed of the cortical region. Right panels: On the images, a nephropathologist (C.A.C.)
annotated the cortical regions. For cases with no annotations, the entire image served as inputs to the deep-learning (DL) model; and for cases with
annotations, the annotated regions were segmented, which served as inputs to the DL model. The final IFTA grading was derived by performing majority voting
on the ratings obtained from five nephropathologists. Scale bars Z 400 mm (AeD).

Deep Learning for Renal Fibrosis
branch in the layer with the same depth. Subsequently,
glpathnet concatenates the local feature maps and cropped
global feature maps, which are fed into the next layer in
the local branch. In a symmetrical manner, the local
branch downsamples its feature maps to the same relative
spatial ratio as the patches cropped from the original input
image. On the basis of the location of the cropped patches,
the downsampled local feature maps are merged together
into feature maps of the same size of the global branch
feature in the same layer. Feature maps with all zeros were
used for the patches labeled as background. The global
feature maps and merged local feature maps were
concatenated and fed into the next layer in the global
branch.

The ensemble branch in glpathnet contains a convolu-
tional layer, followed by a fully connected layer. It takes the
concatenated feature maps from the last layer of the local
branch and the same ones from the global branch. The
The American Journal of Pathology - ajp.amjpathol.org
output of the ensemble branch is a patch-level IFTA grade,
and the final IFTA grade was determined as the most
common patch-level IFTA grade.

Cross-entropy loss was used to train glpathnet on the
OSUWMC data using a pretrained DL architecture
(ResNet50),26 as part of the convolutional network of the FPN
model. Tomaximize efficiency, bothNp andNgwere set to 508
pixels. Adam optimizer (b1 Z 0.9; b2 Z 0.999) was used to
optimizemodel trainingwith a batch size of 6.We assigned the
initial learning rate to 2 � 10�5 for the local branch and
1 � 10�4 for the global branch. Glpathnet was implemented
using PyTorch, and model training was performed on a
graphical processing unit (GPU) workstation containing
GeForce RTX 2080 Ti graphics cards (NVIDIA, Santa Clara,
CA) with an 11-Gb GDDR6 memory. Model training took
<16 hours to reach convergence. Prediction of IFTA grade on
a new WSI that was not used for model training took
approximately 30 seconds.
1445
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Figure 2 Deep-learning architecture. A: The proposed deep neural network uses a novel approach that learns from both local and global image features to
predict the output label of interest. The local features are learned at the level of image patches, and the global features are learned on a downsampled version
of the whole image. The local and global feature maps are fused at each layer, where each layer is highlighted using a blue dashed boxed area. The black
boxed areas on the whole-slide image (far left) denote the locations where image patches are extracted for further processing. B: A schematic representing
local and global feature sharing is shown. Scale bars: 800 mm (A, black); 50 mm (A, white).

Zheng et al
Traditional Machine-Learning Model

For comparison, an IFTA classification model was con-
structed based on traditional machine learning that used
derived features from OSUWMC WSI data. Weighted
neighbor distance was used that included compound hier-
archy of algorithms representing morphology,27e29 which is
a multipurpose image classifier that can extract approxi-
mately 3000 generic image descriptors, including poly-
nomial decompositions, high-contrast features, pixel
statistics, and textures (Supplemental Table S2). These
features were directly derived from the raw WSI, transforms
of the WSI, and compound transforms of the WSI (trans-
forms of transforms). Using these features as inputs, a four-
label classifier was constructed to predict the final IFTA
grade. The model was trained on the OSUWMC data set,
and the KPMP data set was used for testing.

Performance Metrics

The final IFTA grade (reference estimate) was determined
by taking the majority vote on the IFTA grading among all
the five nephropathologists. The agreement between the
nephropathologists was computed using k scores between
each pathologist grade and the reference estimate. The
percentage agreement between the pathologists and between
pathologists and the reference estimate was also computed.
1446
For the DL model trained on the OSUWMC data set, a
fivefold cross validation was performed, and the average
model accuracy, sensitivity/recall, specificity, precision, and
k scores were reported. Sensitivity/recall measures the
proportion of true positives that are correctly identified,
specificity measures the proportion of true negatives that are
correctly identified, and precision is a fraction of true pos-
itives over the total number of positive calls.

Data Sharing

Computer scripts and manuals are made available on
GitHub (https://github.com/vkola-lab/ajpa2021, last
accessed May 1, 2021). Data from the OSUWMC can be
obtained on request and subject to institutional approval.
Data from KPMP can be freely downloaded (https://atlas.
kpmp.org/repository, last accessed May 1, 2021).

Informed Consent

Informed consent was not required as all obtained data were
de-identified.

Results

There was good agreement on the IFTA grading between
the nephropathologists, where pairwise agreements ranged
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Pathologist-level interstitial fibrosis and tubular atrophy
grading. A: Pairwise values of percentage agreement between the neph-
ropathologists are shown on the cases obtained from The Ohio State Uni-
versity Wexner Medical Center (OSUWMC). The values were normalized to lie
between 0 and 1. B: Pairwise k scores between the nephropathologists on
the OSUWMC data are shown. The k values range from 0 to 1, where 0 in-
dicates no agreement and 1 indicates perfect agreement.

Deep Learning for Renal Fibrosis
from 0.48 to 0.63 (Figure 3A). Interpathologist ratings
assessed using pairwise k showed moderate agreement,
ranging from 0.31 to 0.50 (Figure 3B). There was good
agreement when each pathologist grading was compared
with the reference IFTA grade (k Z 0.622 � 0.071). Note
that this agreement must be interpreted by considering the
evidence that the reference IFTA grade was also derived
from the pathologists’ grades.

The DL model (glpathnet) accurately predicted the IFTA
grade on the OSUWMC data (accuracy Z 71.8% � 5.3%),
Figure 4 Deep-learning model performance on The Ohio State University Wexne
validated model is shown for each interstitial fibrosis and tubular atrophy (IFTA) gra
is shown. B: The ROC curve for the mild grade is shown. C and D: The ROC curves for
including precision, sensitivity, and specificity on the entire whole-slide images, is

The American Journal of Pathology - ajp.amjpathol.org
based on fivefold cross validation (Figure 4). The patch-
level model predictions also consistently predicted IFTA
grade, as indicated by the class-level receiver operating
characteristic (ROC) curves (Figure 4, AeD). For the
minimal IFTA label, the patch-level cross-validated model
resulted in area under ROC curve of 0.65 � 0.04. For the
mild IFTA label, the area under ROC curve was
0.67 � 0.04; for the moderate IFTA label, the area under
ROC curve was 0.68 � 0.09; and for the severe IFTA label,
the area under ROC curve was 0.76 � 0.06. For each class
label, the cross-validated model performance on the WSIs
was evaluated by computing mean precision, mean sensi-
tivity, and mean specificity along with their respective
standard deviations Figure 4E). For the minimal IFTA label,
the precision was 0.82 � 0.17, the sensitivity was
0.77 � 0.08, and the specificity was 0.93 � 0.07. For the
mild IFTA label, the precision was 0.71 � 0.15, the sensi-
tivity was 0.68 � 0.10, and the specificity was 0.91 � 0.05.
For the moderate IFTA label, the precision was 0.82 � 0.10,
the sensitivity was 0.73 � 0.20, and the specificity was
0.93 � 0.05. Finally, for the severe IFTA label, the preci-
sion was 0.65 � 0.06, the sensitivity was 0.72 � 0.16, and
the specificity was 0.88 � 0.04. Because of the nature by
which specificity was computed for the model (ie, minimal
versus not minimal, mild versus not mild, moderate versus
not moderate, and severe versus not severe), the values were
generally higher than precision and sensitivity for all cases.
r Medical Center data set. AeD: Patch-level performance of the fivefold cross-
de. A: The receiver operating characteristic (ROC) curve for the minimal grade
moderate and severe grades, respectively, are shown. E: Model performance,
shown for each IFTA grade. AUC, area under ROC curve.

1447
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Figure 5 Visualization of discriminatory regions within the pathology images. The first column represents the original whole-slide images (WSIs) along
with the ground truth labels derived using majority voting on the pathologists’ interstitial fibrosis and tubular atrophy (IFTA) grades. The second column shows
global class activation maps (CAMs) generated on the entire WSI and the global CAM-based model predictions. The third to sixth columns show CAMs derived by
combining local and global representations for each class label along with their corresponding model predictions. The CAM indicating the correct prediction is
indicated with a black border around it. A: In the first row, a case with a minimal IFTA grade is shown. The approach that used global CAMs only predicted the
IFTA grade as mild, whereas the approach using local and global CAMs correctly predicted the IFTA grade as minimal. B: In the second row, a case with a mild
IFTA grade is shown. Both the approaches that used global CAMs only and the one that used local and global CAMs correctly predicted the IFTA grade as mild.
C: In the third row, a case with a moderate IFTA grade is shown. The approach that used global CAMs only predicted the IFTA grade as severe, whereas the
approach using local and global CAMs correctly predicted the IFTA grade as moderate. D: In the fourth row, a case with a severe IFTA grade is shown. Both the
approaches that used global CAMs only and the one that used local and global CAMs correctly predicted the IFTA grade as severe. All these cases were obtained
from The Ohio State University Wexner Medical Center. Scale bars Z 1300 mm (AeD).

Zheng et al
Fivefold cross validation indicated good agreement be-
tween the true and predicted IFTA grades on the OSUWMC
data (k Z 0.62 � 0.07) (Supplemental Figure S3). Class
activation mapping (CAM) was performed on the WSIs to
explore the regions that are highly associated with the
output class label (Figure 5 and Supplemental Figure S4).
Two different strategies were used to generate CAMs. The
first method generated CAMs at the WSI (or global) level
without utilizing the local features, whereas the second
method generated CAMs that synthesized features at the
local and global level. Although both these strategies
generated CAMs that highlighted image subregions,
CAMs based on the model that combined local and
global representations showed higher qualitative associ-
ation with the output label. Patch-level probabilities with
1448
high-degree association with the IFTA grade were
generated (Figure 6). Each image patch and its set of
probability values were reviewed by the nephropathol-
ogist (C.A.C.), who confirmed that patch-level patterns
were consistent with model predictions of the corre-
sponding IFTA grades. Note that C.A.C. reviewed the
patch-based results after they performed IFTA grading
on all the WSIs, and were not biased by the model
results during IFTA grading. It should be noted that the
IFTA grade was based on WSI-level estimation, and the
probabilities were predicted at patch level.
Although the fivefold cross-validated model on the

OSUWMC data set generated convincing results, perfor-
mance of glpathnet on an external data set was also evalu-
ated. The cross-validated model was used to predict IFTA
ajp.amjpathol.org - The American Journal of Pathology
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Figure 6 Patch-level probabilities of the deep-learning model. Selected image patches and their corresponding probability values for each interstitial
fibrosis and tubular atrophy (IFTA) grade are shown. A: The set of image patches shows the ones with minimal IFTA. B: The patches indicate the ones with mild
IFTA. C: The cases show image patches with moderate IFTA. D: The image patches indicate the cases with severe IFTA. All the image patches and their
corresponding probability values were reviewed by a nephropathologist (C.A.C.). All patches are of the same scale. Scale bars Z 50 mm (AeD).

Deep Learning for Renal Fibrosis
grade on the KPMP data. The entire process, including
random data split followed by model training using
OSUWMC data and prediction on KPMP data, was repeated
five times, and average model performance was reported
(accuracy Z 65.0% � 4.2%) (Figure 7A). Also, for each
class label, the cross-validated model performance on the
WSIs was evaluated by computing mean precision, mean
sensitivity, and mean specificity along with their respective
SDs. For the minimal IFTA label, the precision was
0.82 � 0.06, the sensitivity was 0.73 � 0.08, and the
specificity was 0.78 � 0.08. For the mild IFTA label, the
precision was 0.55 � 0.08, the sensitivity was 0.57 � 0.17,
and the specificity was 0.87 � 0.04. For the moderate IFTA
label, the precision was 0.64 � 0.05, the sensitivity was
The American Journal of Pathology - ajp.amjpathol.org
0.53 � 0.19, and the specificity was 0.92 � 0.03. Perfor-
mance scores for the severe IFTA label were not computed
because none of the cases from the KPMP data set was
graded as severe IFTA. Even for those cases, CAMs based
on the model that combined local and global representations
had a better association with the output label (Figure 7,
BeD). Model performance between these cohorts featuring
broad variance in slide staining protocols, slide digitization,
geographic location, and recruitment criteria suggests a
good degree of generalizability. Moreover, sensitivity
analysis on the model parameters revealed that the selected
model configuration resulted in best performance on both
the OSUWMC and the KPMP data sets (Supplemental
Table S3). Of note, the DL model outperformed the
1449
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Figure 7 Deep-learning model performance on the Kidney Precision Medicine Project data set. A: Model performance, including precision, sensitivity, and
specificity on the entire whole-slide images (WSIs), is shown for each interstitial fibrosis and tubular atrophy (IFTA) grade. Note that performance scores for
the severe IFTA label were not computed because none of the cases was graded as severe IFTA. BeD: Class activation maps (CAMs) were generated on the data
set. The first column represents the original WSIs along with the ground truth labels derived using majority voting on the pathologists’ IFTA grades. The second
column shows global CAMs generated on the entire WSI and the global CAM-based model predictions. The third to sixth columns show CAMs derived by
combining local and global representations for each class label along with their corresponding model predictions. The CAM indicating the correct prediction is
indicated with a black border around it. B: In the first row, a case with a minimal IFTA grade is shown. The approach that used global CAMs only predicted the
IFTA grade as mild, whereas the approach using local and global CAMs correctly predicted the IFTA grade as minimal. C: In the second row, a case with a mild
IFTA grade is shown. Both the approaches that used global CAMs only and the one that used local and global CAMs correctly predicted the IFTA grade as mild.
D: In the third row, a case with a moderate IFTA grade is shown. The approach that used global CAMs only predicted the IFTA grade as minimal, whereas the
approach using local and global CAMs correctly predicted the IFTA grade as moderate. n Z 28 (A). Scale bar Z 400 mm (BeD).

Zheng et al
traditional machine-learning model (weighted neighbor
distance using compound hierarchy of algorithms repre-
senting morphology), which was constructed using generic
image descriptors from the WSIs. Specifically, weighted
neighbor distance using compound hierarchy of algorithms
representing morphology achieved an accuracy of
21.4% � 7.5% on the OSUWMC data set (Table 3) and an
accuracy of 35.0% � 14.7% on the KPMP data set
(Table 4). Taken together, these findings underline the
advantage of utilizing DL for predicting IFTA grade on
digitized kidney biopsies.
Discussion

We developed a deep-learning framework that can analyze
digitized kidney biopsies at the level of an expert pathologist.
Specifically, we selected automated IFTA grading as our task
because fibrosis on kidney biopsy is a known structural
correlate of progressive and chronic kidney disease.19,30
Table 3 Performance of the Traditional Machine-Learning Model on T

Description Minimal Mild

Precision 0.12 � 0.15 0.25 �
Recall/sensitivity 0.10 � 0.13 0.40 �
Specificity 0.89 � 0.09 0.59 �
A machine-learning model based on weighted neighbor distance using compo

deriving approximately 3000 features from the whole-slide image data obtained f
fibrosis and tubular atrophy grade. The trained model was then used to predict on
of the model after fivefold cross validation on The Ohio State University Wexner
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Despite knowing the putative link between IFTA grade and
disease prognosis, there remains uncertainty on how to best
measure fibrosis within the kidney. Farris and Alpers2 pro-
vided an interesting perspective on this aspect in their recent
article, where they argue that current analytic approaches
generally avoid rigorous assessment of various aspects
related to characterizing fibrosis of the tubulointerstitium.
They note that human reproducibility is not generally high
because there is no agreeable definition on how to measure
IFTA. For example, some consider percentage interstitial
fibrosis to be percentage of overall tissue occupied by fibrous
tissue, whereas others note the percentage of fibrosis to be the
percentage of abnormal tissue. In clinical practice, however,
people often refer to scoring systems defined by established
national and international working groups (Renal Pathology
Society Working Group or Banff classification) for grading
fibrosis. Morphometric analysis can also be performed to
evaluate renal fibrosis as this approach can bring efficiency,
reproducibility, and functional correlation.3 These de-
velopments lend themselves to using more advanced
he Ohio State University Wexner Medical Center Data Set

Moderate Severe

0.13 0.22 � 0.12 0.29 � 0.18
0.17 0.27 � 0.13 0.23 � 0.17
0.14 0.67 � 0.12 0.86 � 0.07

und hierarchy of algorithms representing morphology was constructed by
rom The Ohio State University Wexner Medical Center to predict interstitial
the data obtained from the Kidney Precision Medicine Project. Performance
Medical Center data set is shown. Data are expressed as means SD.
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Table 4 Performance of the Traditional Machine-Learning Model on the Kidney Precision Medicine Project

Description Minimal Mild Moderate Severe

Precision 0.52 � 0.26 0.30 � 0.40 0.26 � 0.20 N/A
Recall/sensitivity 0.49 � 0.30 0.07 � 0.08 0.27 � 0.20 N/A
Specificity 0.63 � 0.24 0.88 � 0.17 0.79 � 0.23 N/A

The trained model based on weighted neighbor distance using compound hierarchy of algorithms representing morphology on The Ohio State University
Wexner Medical Center data set was used to predict on the data obtained from the Kidney Precision Medicine Project. Performance of the trained model on the
Kidney Precision Medicine Project data set is shown. Data are expressed as means SD.
N/A, not available.

Deep Learning for Renal Fibrosis
computer methods, such as machine learning on digitized
images for IFTA grading.

The novelty of glpathnet is underlined by the fact that it
combines local representations to quantify features at the
image patch level as well as at the WSI level to accurately
predict the IFTA grade. A combination of both these assess-
ments provides a comprehensive evaluation of IFTA. This
method appears to capture the typical workflowof pathologists
as they examine the WSIs by performing manual operations,
such as panning across theWSI to perceive the overall context,
zooming in and out of specific WSI regions to evaluate the
local pathology, and finally combining the information learned
from both these steps to determine the IFTA grade. We must,
however, acknowledge that the nephropathologist’s clinical
impression and diagnosis is based on contextual factors above
and beyond visual inspection of a lesion in isolation. Never-
theless, by identifying WSI regions using CAMs that are
highly indicative of a class label, this approach provides a
quantitative basis by which to interpret the model-based
predictions rather than viewing DL methods as black-box ap-
proaches. As such, this approach stands in contrast to other
methods that rely on expert-driven annotations and segmen-
tation algorithms that attempt to quantify histologic regions
and derive information for pathologic assessment.12,15e18

Saliency mapping based on CAMs is increasingly being
considered as a framework to generate visual interpretations
of model predictions by highlighting image subregions that
are presumably correlated with the outputs of interest.31e40

These heat maps can be generated for any input image that
is associated with an output class label (ie, IFTA grade). The
underlying assumption is that the heat map representation
highlights pixels of the image that trigger the model to
associate the image with a particular class label. Our DL
strategy that combined local and global representations
consistently predicted the correct IFTA grade and generated
interpretable CAMs. This strategy turned out to be superior
than using only the global representations because several
image subregions highlighted by glpathnet-derived CAMs
appear to have high correlation with the output class label.

The morphologic assessment of interstitial fibrosis and
tubular atrophy by renal core biopsy has inherent limitations
that cannot be circumvented by the current work. Renal bi-
opsy samples are in general obtained from limited regions of
the kidney that are most accessible via imaging-guided
percutaneous biopsy. As such, a renal core biopsy com-
prises only a small percentage of the overall kidney mass and
The American Journal of Pathology - ajp.amjpathol.org
may not be completely representative of the kidney as a
whole, especially in disease processes with irregular distri-
bution throughout the parenchyma, leading to focal scarring.
Nevertheless, for most disease processes involving the kid-
ney, the degree of IFTA as estimated by renal core biopsies
has been shown to be one of the strongest morphologic
predictors of prognosis, which is why it continues to be an
important part of the renal biopsy report.19 Thus, any tool that
can facilitate IFTA assessment and increase its consistency
across pathology services is valuable not only to the pa-
thologists but also to the clinicians because it provides a more
robust prognostic marker that could help guide patient
management.

This study has a few limitations. First is the sole reliance on
WSIs derived using the trichrome stain, as this is commonly
used by nephropathologists. Past studies have found that
trichrome-stained slides can produce cost-effective, efficient,
reproducible, and functional correlations with outcomes, such
as estimated glomerular filtration rate.2,3 Some pathologists,
however, rely on other protocols, such as hematoxylin and
eosin, periodic acideSchiff, Jones methenamine silver, or
Sirius Red staining, to grade fibrosis.2,41e43 Also, this DL
framework has the potential to be applied effectively to WSIs
generated with other staining protocols. The OSUWMC cases
included in-house cases and consults from external in-
stitutions, indicating that this model performed well on cases
that may have employed different staining techniques.
Furthermore, this DL framework provides an automated
approach to IFTA grading to assist the pathologist rather than
replacing the human factor. Nevertheless, the ability to classify
WSIs using a computer with the accuracy of an experienced
nephropathologist has the potential to inform pathology prac-
tices, especially in resource-limited settings.

In conclusion, we demonstrated the effectiveness of
capturing localized morphologic along with WSI-level
contextual features using an advanced DL architecture
(glpathnet) to mimic the pathologist’s approach to IFTA
grading. It is possible to use glpathnet to study other organ-
specific pathologies focused on evaluating fibrosis, as well as
WSIs generated using other histologic staining protocols. This
proposed framework to local and contextual IFTA grading can
serve as an analysis template for researchers and practitioners
when new data from cohort studies, such as KPMP, become
available. Such methods may hold the potential to generate
more reproducible IFTA readings (eg, in multicenter studies)
than readings by nephropathologists. Further validation of the
1451
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glpathnet across different pathology practices and patient
populations is necessary to study its efficacy across the full
distribution and spectrum of fibrotic lesions.
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