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Hypoxia in multiple sclerosis; is it the chicken
or the egg?

Sebok K. Halder and Richard Milner

Over the past 50 years, intense research effort has taught us a great deal about multiple sclerosis. We know that it is the most com-

mon neurological disease affecting the young-middle aged, that it affects two to three times more females than males, and that it is

characterized as an autoimmune disease, in which autoreactive T lymphocytes cross the blood–brain barrier, resulting in demyeli-

nating lesions. But despite all the knowledge gained, a key question still remains; what is the initial event that triggers the inflam-

matory demyelinating process? While most research effort to date has focused on the immune system, more recently, another po-

tential candidate has emerged: hypoxia. Specifically, a growing number of studies have described the presence of hypoxia (both

‘virtual’ and real) at an early stage of demyelinating lesions, and several groups, including our own, have begun to investigate how

manipulation of inspired oxygen levels impacts disease progression. In this review we summarize the findings of these hypoxia stud-

ies, and in particular, address three main questions: (i) is the hypoxia found in demyelinating lesions ‘virtual’ or real; (ii) what

causes this hypoxia; and (iii) how does manipulation of inspired oxygen impact disease progression?
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Introduction
Multiple sclerosis is a chronic inflammatory disease that

results in demyelination and axonal degeneration (Ffrench-

Constant, 1994; Compston and Coles, 2008). Within mul-

tiple sclerosis patients, there is tremendous variation in how

patients present, progress, and respond to different medica-

tions (Brownlee et al., 2017; Doshi and Chataway, 2017).

To understand the reasons underlying this heterogeneity, 20

years ago, the Lassmann laboratory examined multiple scler-

osis lesions at the histopathological level and determined

that they could be segregated into four basic patterns

(Lucchinetti et al., 1996, 1999, 2000). Pattern I contains in-

flammatory T cells and macrophages but relative

preservation of oligodendrocytes. Pattern II is similar to pat-

tern I but includes antibody and complement accumulation

on degenerating myelin, suggesting an antibody-mediated

process (Prineas and Graham, 1981; Storch et al., 1998).

Pattern IV shows profound oligodendrocyte death at the

centre of the lesion, suggesting a primary oligodendrogliop-

athy (Lucchinetti et al., 1996). Pattern III shows low inflam-

mation and is characterized as a ‘dying back’

oligodendrogliopathy, in which myelin proteins concentrated

at the distal end of oligodendrocyte extensions, including

myelin associated glycoprotein, completely disappear, while

those concentrated more centrally, including myelin basic

protein and proteolipid protein, remain (Itoyama et al.,
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1980; Ludwin and Johnson, 1981; Lucchinetti et al., 2000).

Ultimately, the destruction spreads more centrally, resulting

in oligodendrocyte apoptosis. Interestingly, distal oligoden-

dogliopathy is a characteristic feature in the cuprizone de-

myelination model, in which cuprizone blocks

oligodendrocyte energy metabolism, providing a clue that

energy deficiency may be a cause of distal oligodendrogliop-

athy (Ludwin and Johnson, 1981). It is also consistently

found in ischaemic white matter stroke (Aboul-Enein et al.,

2003). Taken with the finding that type III lesions are

unique in showing high induction of hypoxia-induced factor

(HIF)-1a (Aboul-Enein et al., 2003), this evidence suggests

that hypoxia may be an early trigger of white matter inflam-

mation in multiple sclerosis, at least in type III lesions.

Is the hypoxia found in
demyelinating lesions
‘virtual’ or real?

Evidence of ‘virtual hypoxia’ in
multiple sclerosis lesions

The idea that hypoxia may play a role in multiple sclerosis

pathogenesis was first postulated many years ago (Gottlieb

et al., 1990). However, it was several years later before stud-

ies described hypoxic-like injury and generation of reactive

oxygen species (ROS) and nitric oxide (NO) in acute mul-

tiple sclerosis lesions, suggesting that these factors trigger

mitochondrial dysfunction, leading to tissue energy defi-

ciency (Redford et al., 1997; Aboul-Enein and Lassmann,

2005). Subsequent studies have confirmed structural and

functional mitochondrial damage in acute multiple sclerosis

lesions (Mahad et al., 2008), though interestingly, mitochon-

drial number and activity are actually increased in estab-

lished inactive multiple sclerosis plaques, suggestive of

increased energy demand by demyelinated axons (Witte

et al., 2009). In addition, studies of axonal pathology in

multiple sclerosis samples revealed marked suppression of

mitochondrial respiratory chain complexes (Dutta et al.,

2006), supporting the hypothesis that inflammation-associ-

ated NO or ROS inhibits mitochondrial function in chronic-

ally demyelinated axons, resulting in reduced ATP

production, which is then outstripped by the increased en-

ergy demand of hyperexcitable demyelinated axons, thus

creating an energy-deficient metabolic crisis, a situation

termed histotoxic or ‘virtual hypoxia’ (Trapp and Stys,

2009). A large number of studies have since confirmed these

findings and it is now well established that mitochondrial

dysfunction or ‘virtual hypoxia’ is an important mechanism

in multiple sclerosis pathogenesis (Mahad et al., 2015).

Furthermore, recent evidence shows that in addition to pro-

viding an insulating membrane that wraps axons, oligoden-

drocytes are also metabolically coupled to axons via

myelinic channels that transmit energy metabolites between

the myelin sheath and the periaxonal space, implying that

an energy deficit in oligodendrocytes will also negatively im-

pact adjacent axons (Simons and Nave, 2016).

Evidence of oxygen deficiency (true
hypoxia) in demyelinating lesions

Over the past 5–6 years, studies of multiple sclerosis patients

and the animal multiple sclerosis model, experimental auto-

immune encephalomyelitis (EAE), have demonstrated that

oxygen deficiency exists within demyelinating lesions. Using

pimonidazole labelling and oxygen probes, Davies et al.

(2013) demonstrated marked hypoxia in the lumbar spinal

cord of EAE rats, with the degree of hypoxia correlating

closely with neurological deficit (Davies et al., 2013).

Significantly, pO2 levels were restored to normal during dis-

ease remission but fell sharply again during relapse. Further

studies from the Smith laboratory adopting a lipopolysac-

charide (LPS) injection strategy to model the molecular

events underlying development of inflammatory demyelin-

ation, demonstrated transient hypoxia at an early stage, spe-

cifically in the white-grey matter border and dorsal white

column, that was associated with elevated ROS and NO,

which preceded demyelination (Desai et al., 2016). Based on

these findings, the authors proposed a model whereby acti-

vation of innate immune mechanisms leads to transient hyp-

oxia in vascular watershed regions of the spinal cord,

resulting in energy deficiency and subsequent oligodendro-

cyte death and demyelination.

Studies from the Dunn laboratory have confirmed hypoxia

in demyelinating lesions both in the CNS of EAE and mul-

tiple sclerosis patients. Using susceptibility-weighted imaging

(SWI), Nathoo et al. (2013) showed increased levels of deox-

yhaemoglobin (i.e. poorly oxygenated blood) within spinal

cord and cerebellar blood vessels in EAE mice. Notably,

when EAE mice received oxygen supplementation, the SWI

lesions disappeared (Nathoo et al., 2015). Studies using pO2

sensors in EAE demonstrated a strong correlation between

the degree of white matter inflammation and level of hyp-

oxia (Johnson et al., 2016). More recently, using frequency

domain near-infrared spectroscopy (fdNRS), Yang and

Dunn (2015) demonstrated that microvascular haemoglobin

oxygen saturation (StO2) in the cerebral cortex of multiple

sclerosis patients was markedly decreased, closely correlating

with clinical disability, strongly supporting the idea of a

pathogenic role for hypoxia in multiple sclerosis

progression.

What is the cause of
hypoxia in multiple sclerosis
lesions?
As the title of this review suggests, perhaps the critical out-

standing question remains: does hypoxia lead to
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neuroinflammation or is it the other way around? To answer

this question, we need to examine the possible causes of tis-

sue hypoxia.

Reduced oxygen delivery

Reduced cerebral blood flow

Reduced cerebral blood flow (CBF) in multiple sclerosis

patients was first demonstrated more than 35 years ago

(Swank et al., 1983; Brooks et al., 1984). More recently,

improved imaging techniques have enabled investigators to

differentiate between demyelinating lesions, normal-appear-

ing white matter (NAWM) and grey matter, revealing not

only that CBF is reduced in all forms of multiple sclerosis

(relapsing-remitting, primary progressive and clinically iso-

lated syndrome), but also that it occurs in brain areas not

yet showing demyelination (NAWM) (Law et al., 2004;

Adhya et al., 2006; Varga et al., 2009; Papadaki et al.,
2012). This suggests that cerebral hypoperfusion may be a

universal early pathogenic event in multiple sclerosis, but

what causes this reduced blood flow?

The high degree of comorbidity between vascular disease

and multiple sclerosis suggests that vascular pathology may

be an important predisposing factor in multiple sclerosis

pathogenesis (Christiansen et al., 2010; Tettey et al., 2014;

Kappus et al., 2016). This is supported by elevated levels of

cardiovascular risk factors in multiple sclerosis patients,

including type 1 diabetes (Bechtold et al., 2014), dyslipidae-

mia (Weinstock-Guttman et al., 2011), and cigarette smok-

ing (Hedström et al., 2013), as well as increased incidence of

ischaemic stroke (Capkun et al., 2015; Tseng et al., 2015).

Interestingly, intimal thickening of cerebral arteries (Yuksel

et al., 2019) and stiffer retinal arterioles have been described

in multiple sclerosis patients (Kochkorov et al., 2009).

Importantly, vasodilatory responses in cerebral arterioles are

impaired in multiple sclerosis patients (Marshall et al.,
2014). One proposed mechanism is that the vasoconstrictive

peptide endothelin-1 (ET-1) is upregulated by reactive astro-

cytes in multiple sclerosis lesions (Nie and Olsson, 1996;

Ostrow et al., 2000), triggering arteriolar constriction. In

support of this concept, ET-1 levels in blood and CSF are

elevated in multiple sclerosis patients (Speciale et al., 2000;

Haufschild et al., 2001), and a recent study showed that

while CBF in multiple sclerosis patients was reduced by

20%, ET-1 receptor blockade restored CBF to control values

(D’Haeseleer et al., 2013).

Hypoxic vulnerability due to cerebrovascular

anatomy

One of the strongest arguments for a vascular cause of mul-

tiple sclerosis is that lesions tend to occur predominantly in

CNS areas with a poor blood supply, including the periven-

tricular and juxtacortical regions of the brain, optic nerve,

and spinal cord white matter (Zimmerman and Netsky,

1950; DeLuca et al., 2006; Toosy et al., 2014). Most cere-

bral demyelinating lesions occur in the watershed areas be-

tween the anterior, middle and posterior cerebral arteries

that are located at the terminal end points of arterial

branches, where blood supply is weakest (Brownell and

Hughes, 1962; Haider et al., 2016). In the spinal cord,

lesions tend to occur in white matter tracts or in the grey–

white matter border zone, areas that have the poorest blood

supply (Hassler, 1966; Turnbull et al., 1966). Recently, an

MRI study showed that lesions tend to occur in regions with

relatively poor perfusion (Holland et al., 2012).

Blood–brain barrier disruption and oedema

Early in the evolution of a demyelinating lesion, the initial

trigger, whether it be hypoxia or localized inflammation,

results in blood–brain barrier breakdown (Kermode et al.,
1990; Gay and Esiri, 1991). This triggers leak of serum pro-

teins into the CNS parenchyma, causing localized oedema,

which compresses microvessels, leading to ischaemia and

hypoxic tissue damage.

Vascular inflammation

Studies of multiple sclerosis brain tissue demonstrate that

endothelial cell activation occurs before parenchymal reac-

tion or demyelination (Wakefield et al., 1994), suggesting

that vascular dysfunction may be an early trigger of multiple

sclerosis, via reduced CBF resulting in hypoxia. Activated

blood vessels also trigger the clotting cascade, via downregu-

lation of antithrombotic proteins such as thrombomodulin

and upregulation of thrombotic factors, such as tissue factor

and thrombin (Kopp et al., 1997; Esmon, 2005, 2012; Foley

and Conway, 2016), which predisposes to thrombotic occlu-

sion and hypoxia/ischaemia (Tomasson et al., 2009; Emmi

et al., 2015).

Metabolic crisis induced by
leucocyte infiltration

Active demyelinating lesions are characterized by mass infil-

tration of proliferating lymphocytes and monocytes, which

produce high levels of proinflammatory cytokines and

chemokines that amplify the inflammatory reaction

(Ffrench-Constant, 1994; Compston and Coles, 2008). All

this activity places high oxygen demand on the local envir-

onment. Notably, the most severe levels of hypoxia within

demyelinating lesions, as indicated by HIF-1a expression,

are found within inflammatory leucocytes (Le Moan et al.,

2015; Halder and Milner, 2020).

Hypoxia and inflammation: a
reciprocal relationship

Interestingly, in many different tissues and diseases, the link

between hypoxia and inflammation extends both ways. In

mice, systemic hypoxia drives vascular leakage and inflamma-

tory cell accumulation in multiple organs along with elevated

levels of circulating proinflammatory cytokines (Eckle et al.,

2008; Rosenberger et al., 2009; Eltzschig and Carmeliet,

2011). Likewise, humans who are exposed to high altitude

hypoxia show similar responses (Hartmann et al., 2000).
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At the extreme end of the spectrum, acute hypoxia caused by

ischaemic stroke triggers severe neuroinflammation in the

brain (Yang et al., 2019). Recent studies suggest that hypoxia

and inflammation are connected at the molecular level via the

enzyme prolyl hydroxylase (PHD), such that when hypoxia

inhibits the PHDs, this promotes signalling not only in the

HIF pathways, but because PHDs also suppress NF-jB pro-

duction, hypoxia also stimulates NFjB production, which

drives the production of proinflammatory cytokines (Bartels

et al., 2013). On the other hand, tissue inflammation is often

associated with marked hypoxia, such as that seen in sepsis,

inflammatory bowel disease and acute lung injury

(Karhausen et al., 2004; Eckle et al., 2013; Taccone et al.,
2014). It has also been postulated that the link between in-

flammation and hypoxia could account for the no reflow

phenomenon observed in ischaemic stroke and myocardial in-

farction (Eltzschig and Eckle, 2011; Burrows et al., 2016).

Taken with these findings in other tissues, it seems likely that

in the evolution of multiple sclerosis lesions, hypoxia and in-

flammation have an intertwined relationship whereby transi-

ent hypoxic episodes triggered by vascular dysfunction could

lead to inflammation, but equally, activation of the innate im-

mune system could augment tissue hypoxia. These events

would establish a ‘hypoxia-inflammation cycle’ as proposed

by the Dunn laboratory, and efforts to break this cycle could

have strong therapeutic potential in the management of mul-

tiple sclerosis (Yang and Dunn, 2019).

How does manipulation of
inspired oxygen impact
disease progression?
If hypoxia is a primary trigger of inflammatory demyelination,

it seems logical that treating multiple sclerosis patients with sup-

plemental oxygen should neutralize the pathogenic stimulus

and provide therapeutic benefit. However, if supplemental oxy-

gen provided such an easy fix, one would imagine this would

have been discovered and implemented as a multiple sclerosis

therapy many years ago, but unfortunately, that is not the case.

To understand the reasons behind this, it is important to look at

the history underlying this concept and examine some of the re-

cent basic science that may provide clues as to why this may or

may not be a good therapeutic option.

The clinical trials (and tribulations)
of hyperbaric oxygen therapy

Fifty years ago, Boschetty and Cernoch showed that hyper-

baric oxygen therapy (HBOT) alleviated clinical symptoms in

15 of 26 multiple sclerosis patients (Boschetty and Cernoch,

1970). Though this was a novel and interesting finding, un-

fortunately, the clinical improvements were only transient.

Several years later, studies led by Neubauer suggested a posi-

tive therapeutic effect of HBOT, noting that while HBOT

was not a cure, regular long-term application of HBOT ‘fa-

vorably altered the natural history of multiple sclerosis’

(Neubauer, 1978, 1980, 1985). A subsequent randomized,

placebo-controlled, double-blind study confirmed these find-

ings, making the important observation that ‘patients with

less severe forms of disease had a more favorable and lasting

response’, perhaps giving the first indication that oxygen

therapy is most effective when given at an early stage of dis-

ease (Fischer et al., 1983). Disappointingly, however, a large

number of follow-up studies provided mixed results, with

some demonstrating transient benefits of HBOT (Pallotta,

1982; Murthy et al., 1985; Barnes et al., 1987; Oriani et al.,

1990), but many failing to confirm the early positive findings

(Neiman et al., 1985; Wood et al., 1985; Confavreux et al.,

1986; Harpur et al., 1986; Lhermitte et al., 1986; Wiles

et al., 1986). A large multicentre 2-year clinical trial also

failed to demonstrate any significant long-term benefit of

HBOT (Kindwall et al., 1991). Bennett and Heard (2004)

performed a systematic meta-analysis review of 12 clinical

trials, concluding that there was little evidence of a significant

beneficial effect of HBOT, although they raised the possibil-

ity that ‘it still remains possible that HBOT is effective in a

subgroup of individuals not clearly identified in the trials to

date’ (Bennett and Heard, 2004). Based on the conflicting

outcomes of these studies, the use of HBOT is not currently

recommended for treating multiple sclerosis (Bennett and

Heard, 2010).

The benefits of oxygen
supplementation in animal studies

In 2013, motivated by their finding of frank hypoxia in the

spinal cords of EAE rats, Davies et al. (2013) examined

whether supplemental oxygen therapy impacts either the

presence of spinal cord hypoxia or neurological deficit

(Davies et al., 2013). This showed that after 1 h of breathing

normobaric 95% oxygen, rats showed small but significant

improvements in neurological score that was underpinned

by the disappearance of spinal cord hypoxia. Animals main-

tained on supplemental oxygen for longer demonstrated clin-

ical improvement up to Day 7. More recently, using an LPS

injection strategy aimed at modelling the early molecular

events underlying a multiple sclerosis lesion, the same group

demonstrated spinal cord hypoxia at an early stage of lesion

development (Desai et al., 2016). Interestingly, when rats

were treated with 80% normobaric oxygen for 2 days im-

mediately after LPS injection, the area of demyelination was

‘dramatically and significantly reduced or even absent’.

Based on these findings, the authors concluded that ‘hypoxia

emerges as a decisive constituent of the factors causing pat-

tern III demyelination’.

The benefits of oxygen reduction in
animal studies

While studies from the Smith laboratory hint at therapeutic

potential of oxygen therapy (Desai et al., 2016),
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paradoxically, several recent animal studies have highlighted

therapeutic benefit of the exact opposite, i.e. the application

of mild hypoxia. Inspired by the strong neuroprotective in-

fluence of hypoxic preconditioning in animal models of is-

chaemic stroke (Dowden and Corbett, 1999; Miller et al.,

2001; Stowe et al., 2011), the Dore-Duffy lab demonstrated

that mice maintained under chronic mild hypoxic conditions

(CMH; 10% O2) before EAE started, showed reduced

neurological deficit (Dore-Duffy et al., 2011).

Mechanistically, CMH promoted an anti-inflammatory en-

vironment in the CNS, as defined by reduced infiltrated

CD4 + T lymphocytes and increased regulatory T cells

(Tregs) (Esen et al., 2016).

In support of this, using a relapsing-remitting EAE model,

we found that CMH preconditioning reduced peak disease

severity by more than 50%, with protection maintained up

to 7 weeks (Halder et al., 2018), concomitant with reduced

levels of blood–brain barrier disruption, leucocyte infiltra-

tion, and demyelination. Mechanistic studies showed that

CMH enhanced blood–brain barrier stability, correlating

with reduced endothelial expression of VCAM-1 and

ICAM-1, and increased expression of tight junction proteins.

Recently, we made the more clinically relevant observation

that when applied to pre-existing EAE, CMH markedly

accelerates clinical recovery, leading to long-term reduction

in neurological deficit, correlating with significant reduction

in vascular disruption, leucocyte accumulation and demye-

lination within spinal cord (Halder and Milner, 2020). At

the molecular level, CMH reduced endothelial expression of

VCAM-1 while increasing expression of tight junction pro-

teins. Interestingly, while CMH had no impact on the extent

of leucocyte infiltration at peak disease (3 days after CMH

began), it profoundly enhanced apoptotic removal of infil-

trated leucocytes during the remission phase. HIF-1a expres-

sion was strongest in infiltrated monocytes and this was

greatly increased by CMH. These data suggest that CMH

protects by enhancing vascular integrity and apoptosis of

infiltrated monocytes.

What have we learnt from the
oxygen manipulation studies?

Recent studies demonstrate that both reduction and en-

hancement of oxygen delivery improve clinical function in

EAE (Desai et al., 2016; Esen et al., 2016; Halder and

Milner, 2020), but how can this paradox be explained? We

believe two main factors could account for this: (i) the devel-

opmental stage of inflammatory lesion when treatment is

applied; and (ii) the impact of oxygen manipulation on dif-

ferent cell types. If hypoxia is an early trigger of at least

some types of multiple sclerosis, it follows that oxygen sup-

plementation at an early stage of lesion development could

overcome this oxygen deficit, thus preventing the pathologic-

al cascade leading to demyelination. That supplemental oxy-

gen at an early stage of lesion development dramatically

reduced the extent of demyelination supports this concept

(Desai et al., 2016). However, if oxygen therapy is applied

at a later stage of lesion development, for instance, during

the remission phase, it might fail, not just because it is too

late to prevent the hypoxic-inflammatory cycle, but also be-

cause oxygen supplementation may prevent monocyte apop-

tosis during clinical remission (Halder and Milner, 2020).

Perhaps these recent EAE findings may explain the conflict-

ing HBOT outcomes in multiple sclerosis patients. Based on

recent studies demonstrating marked suppression of EAE by

mild hypoxia (Dore-Duffy et al., 2011; Esen et al., 2016;

Halder et al., 2018; Halder and Milner, 2020), is there any

therapeutic potential for the use of hypoxia? While CMH is

an impractical therapeutic option, two possibilities worth

exploring are intermittent hypoxic training (IHT), whereby

short bursts of mild hypoxia are designed to confer long-

term protection (Stowe et al., 2011) and hypoxia mimetics,

drugs that have already shown clinical efficacy in EAE

(Navarrete et al., 2018).

Conclusions
While a role for mitochondrial dysfunction (virtual hypoxia)

cannot be underestimated, the presence of cerebral hypoper-

fusion and true oxygen deficiency have been demonstrated

early in demyelinating lesions (Varga et al., 2009; Nathoo

et al., 2013; Desai et al., 2016), suggesting a potential role

as a primary trigger in the pathogenesis of multiple sclerosis

or at the very least, amplifying the pathogenic effect of vir-

tual hypoxia. So, what leads to this hypoxic state? One pos-

sibility (Fig. 1) is that cerebral hypoperfusion predisposes to

hypoxia in areas with poorest blood supply, which triggers

blood–brain barrier disruption, microglial activation and

subsequent myelin degradation. An alternative theory sug-

gests that activation of innate immune cells triggers vascular

dysfunction, leading to ischaemia/hypoxia in the watershed

areas (Desai et al., 2016). While it’s currently unclear which

comes first; vascular dysfunction or inflammation, future

analysis of this relationship in multiple sclerosis patients

using high resolution imaging, together with mechanistic ani-

mal studies, should shed light on this important question.

Is there any therapeutic potential in manipulating oxygen

supply to the multiple sclerosis patient? Unsurprisingly, for a

disease with heterogeneous clinical presentation and patho-

genesis, to date, this has not provided a simple answer, with

HBOT trials providing inconclusive results (Bennett and

Heard, 2010). Recent animal studies have further muddied

the waters by showing that enhanced and diminished oxygen

both provide therapeutic benefit in EAE (Desai et al., 2016;

Halder and Milner, 2020). However, closer inspection of

these studies has provided important clues, both in suggest-

ing that the timing of oxygen manipulation may be a critical

factor in determining therapeutic outcome, and in defining

the molecular mechanisms underlying this time sensitivity.

These data suggest that while supplemental oxygen may pro-

vide benefit in the very early stages of lesion development by

removing the hypoxic pathogenic trigger, it may prove
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counterproductive once the inflammatory process is in full

swing, because extra oxygen could ‘fan the flames’ of the in-

flammatory process. With this in mind, while it seems likely

that hypoxia plays a pivotal role in triggering the pathogen-

esis of demyelinating disease, more studies are required to

determine the cause of this hypoxia, how it can be prevented

or overcome, and at what time point of disease progression,

manipulation of inspired oxygen might become a realistic

therapeutic option in multiple sclerosis.
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