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Abstract

We study rank-based approaches to estimate the correlation between two right-censored 

variables. With end-of-study censoring, it is often impossible to nonparametrically identify 

the complete bivariate survival distribution, and therefore it is impossible to nonparametrically 

compute Spearman’s rank correlation. As a solution, we propose two measures that can be 

nonparametrically estimated. The first measure is Spearman’s correlation in a restricted region. 

The second measure is Spearman’s correlation for an altered but estimable joint distribution. 

We describe population parameters for these measures and illustrate how they are similar to 

and different from the overall Spearman’s correlation. We propose consistent estimators of these 

measures and study their performance through simulations. We illustrate our methods with a study 

assessing the correlation between the time to viral failure and the time to regimen change among 

persons living with HIV in Latin America who start antiretroviral therapy.
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1 | INTRODUCTION

In many medical studies, researchers are interested in measuring the correlation between 

two time-to-event variables. For example, in studies of HIV/AIDS, there is interest in 

studying the correlation between the time from antiretroviral therapy (ART) initiation to 

viral failure and the time from ART initiation to regimen change. These variables should 

be highly correlated, and it might be important to know if the observed correlation is 

weaker than expected. Bivariate survival data may also come from paired subjects. For 

example, researchers might be interested in assessing the correlation between the time to 

cardiovascular disease for a patient and that for his/her parents, or between times to events in 

twins.
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Right censoring is a defining element of bivariate survival data: One or both of the times to 

event may not be observed. When looking at correlation between times to events that occur 

in a single subject (e.g., time to viral failure and time to regimen change), the censoring 

time may be the same time for both outcomes. However, if the times to events are in paired 

subjects (e.g., times to events in twins), then the censoring times may differ. Our interest 

is in both scenarios, but we do not consider the setting where an event occurring in one 

variable causes censoring of the other, that is, competing risks.

Several different methods have been proposed to measure and test the correlation between 

two right-censored time-to-event variables. Clayton (1978) introduced a bivariate hazard 

ratio or a cross ratio as a single number summary of correlation in the context of a frailty 

model. Oakes (1982, 1989) suggested a test for independence based on the cross ratio, 

showed its relationship with Kendall’s tau, and extended its definition to a larger class 

of models. Fan et al. (2000) used a weighted average of the inverse of the cross ratio 

and a limited region Kendall’s tau. Cuzick (1982) proposed a model of correlation and 

several test statistics, one of which resembles Spearman’s rank correlation for censored data. 

Dabrowska (1986) derived generalized statistics to test the null hypothesis that the joint 

survival distribution is equal to the product of the marginals. Under certain assumptions, 

one of these statistics is related to a censored version of Spearman’s correlation, and 

another corresponds to a log-rank test based on martingale residuals. Shih and Louis (1996) 

developed two additional statistics based on martingale residuals. Shih and Louis (1995) 

also suggested a two-stage estimation procedure to evaluate the correlation in bivariate data 

using copulas (Nelsen, 2007). Other approaches for measuring correlation using copulas for 

bivariate survival data have been considered by Carriere (2000), Romeo et al. (2006), and 

Schemper et al. (2013).

Spearman’s rank correlation is ubiquitous in biomedical research because of its simple 

interpretation, robustness, and ability to capture nonlinear correlations. It is used much 

more frequently in practice than Kendall’s tau, perhaps because it closely approximates 

Pearson’s correlation under normality (Kruskal, 1958), and it is much easier to compute and 

interpret than a cross ratio. In the absence of censoring, Spearman’s correlation is simply the 

correlation of the ranked data. However, despite related work by Cuzick (1982), Dabrowska 

(1986), and Oakes (1989), there is no nonparametric estimator of Spearman’s correlation for 

bivariate survival data. Schemper et al. (2013) proposed a semiparametric iterative multiple 

imputation (IMI) method to estimate Spearman’s correlation (denoted as ρIMI throughout 

this paper). Their method transforms bivariate survival data into a Gaussian dependency 

structure using a normal copula, multiply imputes censored observations from this induced 

bivariate distribution, and approximates Spearman’s correlation using Pearson’s correlation 

of the normal deviates. This approach is semiparametric because it does not require any 

assumptions about the marginal distributions. However, it uses a Gaussian dependency 

structure, which may lead to bias due to misspecification.

The goal of this paper is to propose and study nonparametric estimators of Spearman’s 

correlation for right-censored data. Our methods use a nonparametric bivariate survival 

surface estimator. A challenge with estimating a bivariate survival surface, however, is that 

it may be nonparametrically estimable only within a certain region, for example, due to 
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end-of-study censoring. This motivates us to propose two correlation estimators: one that 

is defined only within the restricted region and another one that implicitly assigns values 

outside of this region as having the highest rank.

In Section 2, we express Spearman’s correlation for time-to-event data and describe target 

parameters of interest. In Section 3, we address estimation and inference. In Section 4, 

we evaluate the performance of our estimators with several sets of simulations. In Section 

5, we apply our methods to an HIV study by examining the correlation between times 

from treatment initiation to viral failure and regimen change. In Section 6, we discuss our 

methods and future directions. We have implemented our methods in the survSpearman R 

package (Eden et al., 2021).

2 | POPULATION PARAMETERS

2.1 | Notation and definitions

We are interested in estimating correlation between two time-to-event variables denoted 

as (TX, TY) defined on [0, ∞) × [0, ∞). Variables TX and TY can be observed on a 

single subject or on a pair of subjects. Each time to event can be censored. We denote 

time-to-censoring variables as (CX, CY) and assume independence between (TX, TY) and 

(CX, CY), but CX and CY can be dependent. If TX and TY are observed on a single subject, 

then it is likely that CX = CY. If CX = CY with probability one, then we call this univariate 
censoring, otherwise censoring is bivariate. In most studies, the follow-up period is bounded. 

We denote the maximum follow-up times, respectively, as τX and τY, and consider these to 

be fixed by study design. Censoring, due to the end of study, has been referred to as type I 

censoring. With type I censoring, no events will be observed beyond the region Ω = [0, τX) × 

[0, τY), or equivalently, CX ≤ τX and CY ≤ τY. For our presentation, we distinguish between 

strict type I censoring, where censoring occurs only at τX and τY (i.e., CX = τX, CY = τY), 

and generalized type I censoring (Klein and Moeschberger, 1997), where censoring may also 

occur prior to τX and τY (i.e., CX ≤ τX, CY ≤ τY). Strict type I censoring is rarely observed 

in practice, but will be helpful for explaining concepts; generalized type I censoring is quite 

common in practice, where follow-up time is bounded due to the length of the study, while 

subjects may start the study at different times or may drop out before the end of study. 

When the follow-up time is unbounded (τX = ∞ and τY = ∞), we refer to the censoring as 

unbounded.

As a result of censoring, we only observe X = min(TX, CX), Y = min(TY, CY), and event 

indicators ΔX = 1 TX ≤ CX , ΔY = 1 TY ≤ CY . We denote marginal and joint distribution 

functions of TX and TY as FX(x) = Pr(TX ≤ x), FY(y) = Pr(TY ≤ y), F(x, y) = Pr(TX ≤ x, TY 

≤ y), and marginal and joint survival functions as SX(x) = Pr(TX > x), SY(y) = Pr(TY > y), 

S(x, y) = Pr(TX > x, TY > y). We define FX(x−) = limt↑x FX(t) and F(x−, y) = limt↑x F(t, y); 

FY(y−) and F(x, y−) are defined similarly.

2.2 | Spearman’s rank correlation

As shown by Liu et al. (2018), in the absence of censoring, the population parameter for 

Spearman’s correlation between TX and TY can be defined as:
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ρS = Cor FX TX + FX TX
−

2 , FY TY + FY TY
−

2 . (1)

When both TX and TY are continuous, the above definition becomes

ρS = Cor FX TX , FY TY ,

the grade correlation (Kruskal, 1958). Notice that if FX and FY are estimated with their 

respective empirical distributions, then FX(TX) and FY(TY) are simply estimated as the ranks 

of TX and TY, respectively, divided by the number of points in the sample, corresponding to 

the well-known Spearman’s correlation estimator:

ρS = Cor rank TX, i , rank TY , i ,

where (TX,i, TY,i) for i = 1, …, n are independent and identically distributed (iid) draws of 

(TX, TY). Liu et al. (2018) have shown that Equation (1) can be presented as:

ρS /cρ = ETX, TY FX TX + FX TX
− − 1

FY TY + FY TY
− − 1

= ∫
0

∞∫
0

∞
FX(x) + FX x− − 1

FY (y) + FY y− − 1 F(dx, dy),

(2)

where cρ = Var FX(TX) + FX(TX
−) − 1 Var FY TY + FY TY

− − 1 −1/2
; and cρ = 3 when TX 

and TY are continuous. The right-hand side of (2) is the covariance of probability-scale 

residuals (PSRs) proposed and studied by Li and Shepherd (2012) and Shepherd et al. 

(2016) and defined as:

rX tX, FX = E sign tX − TX = Pr TX < tX
−Pr TX > tX = FX tX− + FX tX − 1,

where sign(tX − TX) is −1, 0, and 1 for tX < TX, tX = TX, and tX > TX, respectively. We can 

rewrite definition (2) in terms of survival functions:

ρS /cρ = ∫
0

∞∫
0

∞
1 − SX(x) − SX x−

1 − SY (y) − SY y− S(dx, dy) .
(3)

Right censoring causes serious challenges for nonparametric estimation of (3). First, 

nonparametric estimation of S(x, y) is challenging due to nonunique solutions of the 

nonparametric likelihood in the presence of censoring and the fact that even consistent 

estimators of S(x, y) may have negative mass for some x and y (Dabrowska, 1988; Pruitt, 

1991). Second, nonparametric estimation of SX(x), SY(y), and S(x, y) beyond the maximum 
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follow-up time(s) is not possible. To overcome the latter challenge, one could focus on 

estimating Spearman’s correlation inside Ω. Another possible approach is to focus on 

Spearman’s correlation for an altered but estimable joint distribution. Population parameters 

for these two nonparametric approaches are presented in the next two subsections. Section 

2.5 contains some examples.

2.3 | Spearman’s rank correlation in a restricted region

Suppose a researcher is interested in a rank correlation only inside a restricted region, 

denoted ΩR. This correlation can be computed as Spearman’s correlation defined 

conditionally on ΩR, which we denote as ρS ∣ ΩR. With failure time data, others have 

proposed and advocated the use of estimators in restricted regions including restricted mean 

survival times (Royston and Parmar, 2013) and limited region Kendall’s tau (Fan et al., 

2000).

A natural choice is ΩR = Ω = [0, τX) × [0, τY), to estimate the restricted rank correlation 

over the region for which estimation is possible; to avoid introducing new notation, in this 

section we will use ΩR = Ω. However, investigators can vary ΩR depending on their research 

question as long as ΩR ⊆ Ω; presumably ΩR would generally be a rectangle that includes the 

origin (0,0). The probability of double failure happening in this rectangle is

PR = Pr x < τX, y < τY = F τX−, τY−

= 1 − SX τX− − SY τY− + S τX−, τY− . (4)

We consider the conditional distribution over ΩR. An example of a conditional distribution is 

illustrated in the middle panel of Figure 1. Its probability mass function is

S dx, dy ∣ ΩR = S(dx, dy)/PR, (5)

and its marginal survival function on the X-axis is

SX x ∣ ΩR = 1 − FX x ∣ ΩR =
0 x ≥ τX

1 − F x, τY−

PR
x < τX

, (6)

where F x, τY− = 1 − SX(x) − SY τY− + S x, τY− . The marginal survival function on the Y-

axis, SY(y|ΩR), is similarly defined. Spearman’s correlation in the restricted region satisfies

ρS ∣ ΩR/cρ ∣ ΩR = ∬
ΩR

1 − SX x ∣ ΩR − SX x− ∣ ΩR

1 − SY y ∣ ΩR − SY y− ∣ ΩR S dx, dy ∣ ΩR ,
(7)

where cρ ∣ ΩR = Var 1 − SX(x ΩR) − SX(x− ΩR)  Var 1 − SY (y ΩR) − SY (y− ΩR) −1/2. Note 

that the population parameter, ρS ∣ ΩR, depends only on τX and τY and is invariant to the 

censoring distribution within ΩR.

Eden et al. Page 5

Biometrics. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Note that ρS ∣ ΩR and ρS are different population parameters. Therefore, it is not appropriate 

to use ρS ∣ ΩR to estimate ρS; rather, ρS ∣ ΩR can be of interest on its own. For example, Fan 

et al. (2000) suggested a limited region Kendall’s tau to estimate over time the correlation of 

time to appendicitis in twins; ρS ∣ ΩR can be used instead of the limited region Kendall’s tau 

for similar purposes.

2.4 | Spearman’s rank correlation with highest ranks

Suppose now that a researcher is interested in the overall rank correlation, but the 

observations are only available within a restricted region. This is a typical situation in 

studies with a bounded follow-up time or when measurements have an upper detection limit. 

In this case, SX(x), SY(y), and S(x, y) are only nonparametrically estimable inside the region 

Ω = [0, τX) × [0, τY), where τX < ∞ and τY < ∞. Since we are interested in a rank 

correlation, one approach would be to define any observation censored at τX as receiving the 

highest rank value for TX and any observation censored at τY as receiving the highest rank 

value for TY, which is the same as setting TX = min(TX, τX) and TY = min(TY, τY). Such an 

approach is sensible because these censored observations at τX and τY do have the highest 

rank values and there is no information to distinguish between these highest rank values 

without parametric modeling assumptions. Mathematically, this approach replaces S(dx, dy) 

with a probability mass function SH(dx, dy), which is, S(dx, dy) inside Ω and the left-over 

probability mass outside of Ω. That is,

SH(dx, dy) =

S(dx, dy) x < τX and y < τY ,
S τX−, dy x = τX and y < τY ,
S dx, τY− x < τX and y = τY ,
S τX−, τY− x = τX and y = τY ,

0 x > τX or y > τY .

(8)

The new probability mass function SH(dx, dy) is depicted in the right panel of Figure 1. The 

part of SH(dx, dy) inside Ω is the same as S(dx, dy) but its part outside of Ω is concentrated 

on the borders of Ω and at point (τX, τY). The corresponding population parameter for the 

rank correlation of this new distribution is ρS
H, which satisfies:

ρS
H /cρH = ∫

0

τX∫
0

τY
1 − SX

H(x) − SX
H x−

1 − SY
H(y) − SY

H y− SH(dx, dy),
(9)

where SX
H(x) and SY

H(y) are the marginal survival functions of SH(x, y), and

cρH = Var 1 − SX
H TX − SX

H TX
−

Var 1 − SY
H TY − SY

H TY
− −1/2 .

(10)
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In other words, ρS
H is Spearman’s correlation computed by setting TX = min(TX, τX) and TY 

= min(TY, τY). Note that the population parameter, ρS
H, depends only on τX and τY and is 

invariant to the censoring distribution within Ω.

For practical applications and intuitively, ρS
H can be viewed as the rank correlation computed 

for data with an upper detection limit, where all values above the detection limit are set to 

a common largest value. Note that although in general, ρS
H ≠ ρS (see examples in Section 

2.5), unlike ρS ∣ ΩR, parameter ρS
H is designed to take into account all observations including 

those outside of Ω. When the majority of the probability mass is within Ω, ρS
H can be viewed 

as an approximation of ρS. When τX = ∞ and τY = ∞, then ρS
H = ρS.

2.5 | A few examples

Here, we illustrate how the restricted region can affect ρS
H and ρS ∣ ΩR. Having a restricted 

region implies type I censoring. Although the figures in this section are generated with strict 

type I censoring, ρS
H remains the same for generalized type I censoring, as does ρS ∣ ΩR.

In some settings, ρS, ρS ∣ ΩR, and ρS
H will be quite similar. For example, the values of these 

parameters for the distribution shown in Figure 1 are 0.635, 0.549, and 0.634, respectively. 

However, these parameters may be very different in some settings.

Figure 2 shows ρS ∣ ΩR (left panel) and ρS
H (right panel) as a function of ρS for different 

τX and τY for Frank’s copula family. In this example, ρS and ρS
H are very similar. In 

contrast, ρS and ρS ∣ ΩR are very different, especially when ρS is negative and ΩR is small 

(e.g., region defined by 0 to the 0.5 quantiles). This is because in these settings, only 

a small fraction of the underlying distribution is inside ΩR, and therefore ρS ∣ ΩR shows 

a weak negative correlation. Figure 3 contains three additional examples; some of these 

distributions may not be realistic in practice, but are useful for illustrative purposes. The 

left panel shows an X-like distribution, for which ρS = 0, ρS ∣ ΩR = 0.69, and ρS
H = 0.06. 

Here, ρS
H is similar to ρS because ρS

H incorporates the probability mass in the upper left, 

upper right, and lower right regions. However, ρS ∣ ΩR is very different from ρS because ΩR 

only contains a positively correlated subset of the distribution. The middle panel of Figure 

3 shows a distribution with highly correlated values in ΩR, zero correlation in the upper 

right region, and no mass in the upper left and lower right regions. For this distribution, 

ρS = 0.66, ρS ∣ ΩR = 0.64, and ρS
H = 0.99. Here, ρS ∣ ΩR and ρS are similar because only the 

points in the restricted region are correlated. In contrast, ρS
H is quite high because the large 

probability mass of the upper right region is concentrated on a single highest-rank point 

when computing ρS
H, which pulls its value upwards considerably. The right panel of Figure 

3 shows a distribution with a highly negative overall correlation, for which ρS = −0.90, 
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ρS ∣ ΩR = − 0.39, and ρS
H = − 0.74. Here, ρS

H and ρS are fairly different because although 

the probability mass of censored observations outside of ΩR are taken into account, there is 

some loss of information with the highest rank assignment. The parameter ρS ∣ ΩR is very 

different from ρS because only a small fraction of the negatively correlated mass is included 

in ΩR. Note that parametric or semiparametric approaches also struggle with many of these 

settings because they effectively use the information from the restricted region to impute 

what is occurring outside the restricted region. For example, ρIMI (see Schemper et al., 

2013) for the middle panel is approximately 0.95.

3 | NONPARAMETRIC ESTIMATION

3.1 | Estimation of ρS ∣ ΩR under generalized type I censoring

We estimate ρS ∣ ΩR using a plug-in estimator for Equation (7):

ρS ∣ ΩR/cρ ∣ ΩR = ∑
i:xi < τX

∑
j:yj < τY

1 − SX xi ∣ ΩR − SX xi− ∣ ΩR

× 1 − SY yj ∣ ΩR − SY yj− ∣ ΩR S dxi, dyj ∣ ΩR ,

where

cρ ∣ ΩR = VarX ⋅ VarY
−1/2,

VarX = ∑
i:xi < τX

1 − SX xi ∣ ΩR − SX xi− ∣ ΩR

− ∑
i:xi < τX

1 − SX xi ∣ ΩR − SX xi− ∣ ΩR SX dxi ∣ ΩR

2
× SX dxi ∣ ΩR ,

(11)

and VarY  is computed similarly. The conditional survival curves, SX x ∣ ΩR , SY y ∣ ΩR , and 

S x, y ∣ ΩR  are estimated using plug-in estimators for (4), (5), and (6).

For S(dx, dy) we use the estimator of Dabrowska (1988). The marginal distributions of 

Dabrowska’s estimator, S x  and S y , are Kaplan–Meier estimators. There are other choices 

for nonparametrically estimating S(dx, dy), including the estimators proposed by Prentice 

and Cai (1992), van der Laan (1997), Campbell (1981), and Lin and Ying (1993), to name 

a few. We considered the estimators of Campbell (1981) and Lin and Ying (1993) because 

of their computational simplicity, but ultimately chose Dabrowska’s estimator because it is 

consistent for S(dx, dy), straightforward to compute, and tended to result in estimates of 

Spearman’s correlation with better performance (see Section 4). The confidence interval 

(CI) of ρS ∣ ΩR is estimated using the bootstrap. Because of the consistency and asymptotic 

normality of Dabrowska’s estimator, ρS ∣ ΩR is consistent for ρS ∣ ΩR and asymptotically 

normal when ρS ∣ ΩR ∈ ( − 1, 1) (see Theorem A1 in the Appendix).
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A few problems can arise in practice when computing ρS ∣ ΩR, all due to negative mass 

at some points in S(dx, dy). First, in some extreme cases (e.g., small sample sizes, strong 

positive or negative correlation, and heavy censoring), |ρS ∣ ΩR| may exceed 1; if this 

happens, our software sets it to Sign ρS ∣ ΩR  and generates a warning. Second, negative 

mass can also lead to problems computing cρ ∣ ΩR in (11) because VarX or VarY  may be 

negative because SX dx ∣ ΩR  or SY dy ∣ ΩR  is negative at some points. If this happens, 

we correct the guilty conditional marginal probability mass estimator by assigning negative 

values to 0, and by normalizing the rest of the probability mass values; specifically, the 

corrected probability mass is SX* dx ∣ ΩR = max 0, SX dx ∣ ΩR /∑xmax 0, SX dx ∣ ΩR . 

Third, negative mass may lead to a negative estimate of PR, the probability of both events 

occurring in ΩR (see Equation (4)); when this occurs, ρS ∣ ΩR is not defined.

Although the number of points with negative mass does not decrease as the sample size 

increases (Pruitt, 1991), the amount of negative mass at each point does go to zero, which 

therefore reduces the possibility of these problems occurring. Also, the tendency of having 

negative mass is lower when a lower proportion of observations are singly or doubly 

censored. To give a sense of the magnitude of these problems, for a sample size of 50 with 

70% bivariate censoring, VarX or VarY  was negative for 1.3% of 1000 simulations, and PR
was less than zero in 2.4% of simulations. With a sample size of 100 and 70% bivariate 

censoring, these problems occurred in 0% and 0.8% of simulations, respectively.

3.2 | Estimation of ρS
H under generalized type I censoring

Equation (9) provides a straightforward way of estimating ρS
H, given a nonparametric 

estimate of the bivariate survival surface, S(dx, dy):

ρS
H/cρ

H = ∑
i*

∑
j*

1 − SX
H xi* − SX

H xi*−

1 − SY
H yj* − SY

H yj*− SH dxi*, dyj* ,

where i* enumerates all the events for X plus τX, j* enumerates all the event for Y plus 

τY, and SH dxi, dyj  and cρ
H are the plug-in estimators for (8) and (10), respectively. As 

before, we compute S(x, y) using Dabrowska’s estimator. The CI of ρS
H is estimated using 

the bootstrap. Again, ρS
H is consistent for ρS

H and asymptotically normal when ρS
H ∈ ( − 1, 1)

(see Theorem A2 in the Appendix). In practice, for some extreme cases similar to those 

mentioned in Section 3.1 for ρS ∣ ΩR, pS
H  may exceed 1; when this occurs, we set it to 

Sign ρS
H , and our software generates a warning.
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3.3 | Estimation of ρS under unbounded censoring

The estimator ρS
H may also be used to estimate ρS with unbounded censoring. Under 

unbounded censoring, τX = τY = ∞ by definition, and one would naturally estimate ρS
by plugging S(x, y), SX(x), and SY (y) into (3) in a manner similar to that described above. 

However, if the maximum value of X, for example, is a censored event (i.e., ΔX = 0), then 

S(dx, dy) will not sum to 1 resulting in improper integration when using plug-in estimators in 

(3). A workaround is to assign the remaining mass (which is typically very little) to a point 

just beyond the largest observed event time of X and set τX to this point. We then estimate 

ρS with ρS
H. Although in this setting, τX is no longer fixed but unbounded, estimation of ρS 

in this manner performs well (see Section 4). Under unbounded censoring, ρS
H is consistent 

for ρS and asymptotically normal when ρS ∈ (−1, 1) (see Theorem A3 in the Appendix).

4 | SIMULATIONS

4.1 | Simulation set-up

We performed several simulations to investigate the finite sample performance of our 

estimators. The random variables TX and TY were simulated using various choices of 

copula families and parameters. Specifically, following Fan et al. (2000), we simulated 

dependent random uniform variables, U and V, from Clayton’s and Frank’s copula families; 

both copulas are defined by a single parameter, θ. The dependence between U and V was 

specified by choosing the parameter θ in such a way that the true Spearman’s correlation 

varied among no correlation (ρS = 0), moderate correlation (ρS = −0.2 and 0.2 for Frank’s 

family and 0.2 for Clayton’s family), and strong correlation (ρS = −0.6 and 0.6 for 

Frank’s family and 0.6 for Clayton’s family). (Clayton’s family does not permit negative 

correlation.) We then set TX = −log(1 − U) and TY = −log(1 − V) such that TX and TY were 

exponentially distributed with mean 1.

Four types of censoring scenarios were implemented: (1) unbounded univariate, (2) 

unbounded bivariate, (3) generalized type I univariate, and (4) generalized type I bivariate. 

Each censoring scenario was implemented for censoring proportions PC = {0.3, 0.7}. 

Bivariate unbounded censoring times CX and CY for each observation were simulated 

independently from an exponential distribution, Pr(CX ≤ t) = Pr(CY ≤ t) = 1 − e−λt, with 

λ = PC/(1 − PC). The event times TX and TY were censored if TX > CX and TY > CY, 

respectively. Univariate unbounded censoring was implemented in a similar manner except 

only one censoring event was generated per (TX, TY) pair. For generalized type I censoring, 

CX*  and CY*, were first simulated as described above with probability PC and then CX and 

CY were defined as (CX* , τX) and (CY*, τY), respectively, with τX = τY set at the median 

survival time, SX
−1(0.5) = SY

−1(0.5). The resulting censoring proportions for generalized type 

I censoring were therefore higher than PC: for example, for generalized type I bivariate 

censoring with PC = 0.3 and 0.7, the outcomes were censored for approximately 56% and 

73% of observations, respectively.
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We evaluated the performance of ρS
H and ρS ∣ ΩR in the presence of unbounded and 

generalized type I censoring using a sample size of 200 for strong, moderate, and no 

correlation. For unbounded censoring, the population parameter of ρS
H is the same as ρS. For 

generalized type I censoring, the population parameters of ρS
H and ρS ∣ ΩR were the same as 

ρS for Clayton’s family. For Frank’s family with the overall Spearman’s correlation of −0.6, 

−0.2, 0.2, and 0.6, the population parameters of ρS ∣ ΩR were −0.098, −0.042, 0.058, and 

0.261; and the population parameters of ρS
H were −0.512, −0.173, 0.180, and 0.545. These 

population parameters were empirically estimated with a sample size of 106.

The bias, root mean squared error (RMSE), type I error rate, and power, computed as the 

proportion of times that bootstrap CIs (based on 1000 bootstrap samples) did not include 

zero, were also evaluated for sample sizes of 100 and 200 under unbounded censoring for 

moderate and no correlation. The performance of ρS
H was compared to estimator ρIMI

proposed by Schemper et al. (2013) for these simulation scenarios. We also evaluated the 

performance of ρS
H as an estimator of ρS using survival surfaces proposed by Lin and Ying 

(1993) and Campbell (1981).

Lastly, we did some additional comparisons of ρS
H to semiparametric estimators ρIMI and 

ρS
MLE (maximum likelihood estimator assuming Frank’s copula dependency structure). 

These comparisons were made in the context of a well-behaved dependency structure 

induced by Frank’s copula and in the context of a complex dependency structure, a mixture 

of 60% highly negatively correlated data (ρS = −0.8, Frank’s copula with θ = −8) and 

40% perfectly correlated data (ρS = 1) with the overall Spearman’s correlation being about 

−0.0813. This simulation scenario was loosely motivated by data from site B in our real 

data analysis presented in Section 5; Supplementary Figure S5 shows the scatter plot of the 

uncensored data. Sample sizes of 200, 500, and 1000 were used and unbounded univariate 

censoring with PC = 0.5 was applied as described above. The goal of these comparisons 

was to show better efficiency of ρS
MLE compared to ρS

H under a correctly specified model 

and to demonstrate greater accuracy of ρS
H compared to ρIMI and ρS

MLE under model 

misspecification.

All simulations used 1000 replications.

4.2 | Simulation results

Figure 4 shows the mean point estimates and the 0.025th and 0.975th quantiles of estimators 

ρS
H under unbounded censoring (row 1), the semiparametric estimator ρIMI proposed by 

Schemper et al. (2013) under unbounded censoring (row 2), ρS
H under generalized type I 

censoring (row 3), and ρS ∣ ΩR under generalized type I censoring (row 4). The sample 

size was 200, the censoring was bivariate with varying censoring proportions, and ρS
H and 

ρS ∣ ΩR were computed using Dabrowska’s survival surface estimator.
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For Clayton’s and Frank’s families under unbounded censoring (row 1), the mean of ρS
H

was very close to the true population parameter verifying the consistency of ρS
H for ρS. 

When data were generated under Frank’s copula, the semiparametric estimator, ρIMI (row 

2), was similarly unbiased for unbounded censoring, and it tended to be less variable than 

ρS
H. However, when data were generated using Clayton’s copula, ρIMI was biased for ρS, 

also noted by Schemper et al. (2013).

Supplementary Tables S1 and S2 provide more details and additional comparisons between 

ρIMI and ρS
H under unbounded censoring for different sample sizes and censoring 

proportions in terms of bias, RMSE, type I error rate and power. In short, the bias of ρS
H for 

ρS was low, even with fairly small numbers of events; both the bias and RMSE decreased as 

the number of events increased. In general, ρS
H compared favorably to ρIMI.

Under generalized type I censoring (the third and fourth rows of Figure 4), the means 

of ρS
H and ρS ∣ ΩR are very close to their true population parameters, suggesting with 

n = 200, these estimators are essentially unbiased for ρS
H and ρS ∣ ΩR respectively. The 

variance of our estimators naturally increased as the probability of censoring increased. 

The variance of ρS ∣ ΩR was greater than that of ρS
H under generalized type I censoring 

(rows 3 and 4), presumably because ρS ∣ ΩR only uses the events inside Ω = ΩR, whereas 

ρS
H assigns probability mass to values outside of Ω. Note that the variance of ρS

H under 

unbounded censoring was slightly larger than that under generalized type I censoring in spite 

of the lighter censoring. This is probably because under generalized type I censoring, the 

probability mass, SH(dx, dy), calculated outside of Ω is concentrated on the same points, 

making its variance smaller compared to the case of unbounded censoring. Results for 

univariate censoring were very similar to those for bivariate censoring, except the estimators 

were slightly less variable (see Supplementary Figure S1).

With unbounded censoring of 50% and n = 200, the correctly specified semiparametric 

ρS
MLE was more efficient than ρS

H (relative efficiency in terms of variance ranging from 

1.19 (for ρS = 0) to 1.60 (for ρS = 0.6), Supplementary Figure S4); both approaches 

yielded unbiased estimates of ρS. In contrast, when data were generated using a mixture of 

positively and negatively correlated bivariate distributions, the misspecified semiparametric 

estimators ρS
MLE and ρIMI were substantially biased and this bias did not decrease with 

increasing sample size. On the other hand, the nonparametric ρS
H was unbiased for ρS (see 

Supplementary Figure S6). In this more complicated setting, estimates of ρS ∣ ΩR with ΩR 

being defined using the median survival times were also unbiased (Supplementary Figure 7).

The simulations reported above incorporated 1000 bootstrap replications; in general, CI 

coverage and width were stable and adequate with as few as 200 bootstrap replications (see 

Supplementary Figure S8).
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We also evaluated the performance of ρS
H with survival surfaces of Campbell (1981) for 

univariate and bivariate censoring and of Lin and Ying (1993) for univariate censoring only 

(see Supplementary Figures S2 and S3). With univariate censoring, using the estimator of 

Lin and Ying (1993) resulted in unbiased estimation although with larger variance than that 

using Dabrowska’s estimator. Estimator ρS
H computed using the survival surface estimator of 

Campbell (1981) was visibly biased for the sample size of 200 under heavy censoring.

5 | APPLICATION

We apply our methods to a study of 6691 HIV-positive adults starting ART in Latin 

America. We are interested in estimating the correlation between two right-censored 

variables: (1) the time from ART initiation to viral failure and (2) the time from ART 

initiation to major regimen change. Patients experience viral failure when the amount of 

virus circulating in their blood (their viral load) is above a certain threshold, which may 

make them infectious and vulnerable to HIV-related diseases. Viral failure may be caused 

by many factors including poor adherence or drug resistance; it often triggers changing a 

patient’s ART regimen. However, patients may also change their ART regimens for reasons 

other than viral failure (e.g., poor tolerability, discovery of a simpler regimen, or patient/

provider choice).

Our study uses data from the Caribbean, Central, and South America network for HIV 

Epidemiology (CCASAnet). The definitions of viral failure and regimen change were the 

same as those used in a prior CCASAnet study (Cesar et al., 2015; CCASAnet, 2020). In 

short, viral failure was defined as a single viral load > 1000 copies/mL or two viral loads 

> 400 copies/mL after a person’s virus had been suppressed or they had been on ART long 

enough that it should have been suppressed (i.e., 6 months). Regimen change was limited to 

major changes such that the patient switched drug classes or changed multiple drugs. Each 

study subject may have had one, both, or neither of these events. Follow-up ended at the 

last clinic visit; censoring was univariate. Our analysis data set includes patients from Brazil, 

Chile, Honduras, Mexico, and Peru; sites have been anonymized for presentation. After a 

median follow-up of 4.1 years (ranging from 1 day to 18.2 years), 1916 persons (28.6%) 

had a viral failure and 1895 persons (28.3%) changed regimens. Approximately 16.1% of 

patients had both events over the follow-up period, 12.2% changed regimens but did not 

have viral failure, 12.5% had viral failure but did not change regimens, and 59.1% were 

not observed to have either event. The upper left panel of Figure 5 shows Kaplan–Meier 

estimates for the marginal probabilities of viral failure and regimen change as a function 

of time since ART initiation. Ten years after ART initiation, the estimated probability of 

not having viral failure was 0.58 and the estimated probability of remaining on the initial 

regimen was 0.51. The upper right panel shows the estimated joint bivariate probability mass 

function, SH(dx, dy), based on Dabrowska’s estimator; estimated marginal probability mass 

functions, SX
H(dx) and SY

H(dy), are also included. Note that because a large proportion of 

patients experienced only one or neither event, a large amount of mass has been assigned to 

τX = 18 and τY = 17 years.
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The estimated highest rank correlation, ρS
H, between time to viral failure and time to 

regimen change was 0.35 with a 95% CI based on 1000 bootstrap replications of 0.27 

to 0.44. This result is fairly similar, albeit with a wider CI, to the estimator of Schemper et 

al., ρIMI, that imputes censored values: 0.37, 95% CI = [0.33, 0.41].

The estimated rank correlation over the restricted region, ρS ∣ ΩR, with ΩR = [0, 15) × 

[0, 15) was substantially higher, 0.65, with a wide 95% CI = [0.30, 0.97]. This can be 

explained by a careful look at the conditional probability mass over ΩR (lower left plot 

of Figure 5). Notice that there are several points in the upper right corner of this surface 

with large probability mass. Large amounts of mass are assigned to these points because 

a few events occurred at later follow-up times when there were fairly small numbers of 

patients remaining in the risk set. This is also seen in the Kaplan–Meier estimates, where 

relatively large drops in the marginal survival curves are noted between 10 and 15 years. 

These points pushed the probability mass function closer to the diagonal, leading to a larger 

estimated rank correlation. In addition, since there were only a few points with substantial 

probability mass, their inclusion/exclusion in various bootstrap samples led to wide variation 

in CIs. This example serves as a nice illustration of the potential perils of estimating rank 

correlations over restricted regions that include tail areas with small numbers of events. 

Perhaps a more reliable rank correlation would be over the restricted region, ΩR = [0, 10) 

× [0, 10), in which case ρS ∣ ΩR was 0.26 (95% CI = [0.17, 0.36]); the lower right plot of 

Figure 5 shows the conditional probability mass over this smaller region.

In addition to showing estimates of overall correlation, Table 1 shows estimates based on sex 

and study site. For the most part, ρS
H is fairly close to ρIMI, except for those sites with small 

sample sizes (i.e., A, B, and D). Rank correlations over the restricted region, ρS ∣ ΩR with ΩR 

= [0, 15) × [0, 15) were generally more variable and typically higher than those over ΩR = 

[0, 10) × [0, 10).

6 | DISCUSSION

We have proposed two nonparametric methods of quantifying correlation with bivariate 

right-censored data. One estimator, ρS ∣ ΩR computes Spearman’s correlation within a 

restricted region. The other estimator, ρS
H, computes Spearman’s correlation for an estimable 

bivariate distribution, which is analogous to assigning data censored beyond the estimable 

region to the highest rank values. Under unbounded censoring, ρS
H is consistent for the 

overall Spearman’s correlation. Under generalized type I censoring, with the majority of 

events happening in the restricted region, ρS
H can be viewed as an approximation of the 

overall Spearman’s correlation. Because our methods assume neither marginal nor joint 

parametric distributions, they have potential advantages over parametric and semiparametric 

methods.

The main limitations of our estimators stem from challenges with nonparametrically 

estimating the bivariate survival surface. The first challenge is that with generalized type 
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I censoring, the bivariate survival surface, and hence Spearman’s rank correlation ρS, cannot 

be identified beyond the region of data support without parametric assumptions. Hence, our 

inference targets were the estimable parameters, ρS ∣ ΩR and ρS
H. Although under generalized 

type I censoring they do not equal the overall Spearman’s correlation, both parameters 

have sensible interpretations. The alternative, using parametric and semiparametric models 

to estimate Spearman’s correlation—an inherently nonparametric statistic— has other 

limitations. Parametric and semiparametric approaches assume a dependency structure; and 

as seen in our simulations, semiparametric estimators such as ρIMI proposed by Schemper 

et al. (2013), may be biased when the dependency structure is misspecified. In addition, 

they implicitly assume that the dependency structure outside the region of observation is the 

same as that seen inside the observation region. Although in the real data example, ρIMI
appeared more stable than our nonparametric estimators, particularly for small sample sizes, 

with complex real data there is a real possibility of model misspecification. As with most 

statistics, there may be settings where one might prefer the nonparametric estimators over 

the semiparametric estimators, or vice versa.

The second challenge is that even in regions where the bivariate survival curve is 

identifiable, nonparametric estimators of the survival surface may have negative mass, which 

leads to potential downstream problems with estimation of ρS ∣ ΩR and ρS
H. Researchers have 

grappled with nonparametric approaches to avoid negative mass, for example, van der Laan 

(1996). Thankfully, in our simulations, only a minor proportion of our estimates encountered 

problems due to negative mass, the problems go away as the numbers of events increase, and 

there are typically workaround solutions that appear to behave reasonably.

In our approach we considered a rectangular restricted region, [0, τX] × [0, τY]. An 

anonymous associate editor correctly pointed out that the top right corner of this rectangle 

is not always identifiable nonparametrically. Alternatively, one could consider defining 

estimators using the identifiable region ΩR = {(tX, tY) : TX,i ≥ tX, TY,i ≥ tY for some subject 

i} (see Prentice and Zhao, 2019). Although this idea is intriguing, we decided to keep the 

definition of ΩR as [0, τX] × [0, τY] due to easier interpretation. Note that Dabrowska’s 

estimator can be computed and is consistent for all points inside [0, τX] × [0, τY].

Another limitation of our method is its computational time complexity, up to O mn2 , where 

n is the sample size and m is the number of bootstrap samples. For example, on a MacBook 

Air with 1.7 GHz Intel Core i7, the computational time for n = 100, 200, 500, 1000 and m = 

200 is approximately 0.2, 0.7, 5.1, and 30.8 min, respectively.

Although not studied here, our approaches can be directly applied to settings where only 

one of the variables is right censored. This special case allows nonparametric estimation of 

the bivariate survival surface without negative mass (Stute, 1993). In future work, we plan 

to study semiparametric methods for estimating covariate-adjusted partial and conditional 

Spearman’s correlation for bivariate survival data.
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APPENDIX

Theorem A1.

Under uninformative and generalized type I censoring and for a nonempty rectangular 

region ΩR such that ΩR ⊆ Ω, ρS ∣ ΩR is a consistent estimator of ρS ∣ ΩR. When 

ρS ∣ ΩR ∈ ( − 1, 1), estimator ρS ∣ ΩR is also asymptotically normal, and the bootstrap 

estimation of its variance is asymptotically valid.

Proof.

The consistency of ρS ∣ ΩR follows from the consistency of Dabrowska’s estimator S(x, y)

in Ω under uninformative and generalized type I censoring and the fact that S x, y ∣ ΩR
is a continuous function of S(x, y). To prove asymptotic normality, we note that under 

uninformative and generalized type I censoring, S(x, y), SX(x), and SY (y) are Hadamard 

differentiable estimators that converge to Gaussian processes; see Dabrowska (1989) and 

van der Vaart and Wellner (1996). Because estimator ρS ∣ ΩR is a continuous function 

of S(x, y), SX(x), and SY (y), it follows from the chain rule that it is also Hadamard 

differentiable and, therefore, it is asymptotically normal by the functional delta method 

(van der Vaart and Wellner, 1996). In addition, its bootstrap estimator converges to the same 

Gaussian process as ρS ∣ ΩR, justifying the use of the bootstrap to construct CIs (van der 

Vaart and Wellner, 1996). □

Theorem A2.

Under uninformative and generalized type I censoring, estimator ρS
H is consistent. When, 

ρS
H ∈ ( − 1, 1) it is also asymptotically normal, and the bootstrap estimation of its variance is 

asymptotically valid.

Proof.

Similar to Theorem A1. □
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Theorem A3.

Under uninformative and unbounded censoring, ρS
H is a consistent estimator of the overall 

Spearman’s correlation, ρS. Estimator ρS
H is also asymptotically normal when ρS ∈ (−1, 1), 

and the bootstrap estimation of its variance is asymptotically valid.

Proof.

When the maximum of X and Y are observed events, then SH(x, y) = S(x, y), so the 

consistency of ρS
H for ρS follows from the consistency of Dabrowska’s estimator and 

the continuous mapping theorem. When the maximum of either X or Y is censored, the 

plug-in estimator of (9), ρS
H, can be defined as a sum of four terms A, B, C, and D 

that are functions of the joint and conditional survival surface estimators (Theorem A.1, 

Supplementary Appendix). Because of Lemma A.1 (Supplementary Appendix), B, C, D p 0

and A p ρS. The proofs of the asymptotic normality and bootstrap validity are similar to 

Theorem A1. □
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FIGURE 1. 
Illustration of bivariate distributions underlying the three population parameters. Left: 

Original distribution over [0, ∞) × [0, ∞), which has Spearman’s correlation ρS. Middle: 

Conditional distribution over ΩR = Ω, which has Spearman’s correlation ρS ∣ ΩR. Right: 

Mixture-like distribution SH over region Ω ∪ [0, τX] × τY ∪ τX × [0, τY], which has 

Spearman’s correlation ρS
H
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FIGURE 2. 
Restricted Spearman’s correlation, ρS ∣ ΩR (left panel), and highest rank Spearman’s 

correlation, ρS
H (right panel), for Frank’s copula family for different restricted regions 

defined by τX and τY (τX = τY): 0.5th (50% censored), 0.6th (40% censored), 0.8th (20% 

censored) quantiles. A diagonal gray line is added for reference. Although the plots are 

generated based on data under strict type I censoring, the population parameters are the 

same for generalized type I censoring and are invariant to the rate of censoring within the 

restricted region
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FIGURE 3. 
Example of bivariate distributions and their population parameters ρS with no censoring, and 

ρS
H and ρS ∣ ΩR with strict type I censoring with ΩR = [0, τX) × [0, τY). The proportions 

of observed double events in the left, middle, and right panels are 25%, 43%, and 7%, 

respectively. Drawn are 1000 points randomly selected from the underlying distributions. 

Although the plots are based on strict type I censoring, the population parameters are the 

same for generalized type I censoring and are invariant to the rate of censoring within ΩR
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FIGURE 4. 
Point estimates (X-axis) vs population parameters (Y-axis) under different bivariate 

censoring scenarios. The top and second rows are ρS
H and ρIMI as estimators of the overall 

Spearman’s correlation, ρS. The third row is ρS
H as an estimator of ρS

H. The bottom row is 

ρS ∣ ΩR as an estimator of ρS ∣ ΩR. The columns represent Clayton’s and Frank’s copulas. 

The population parameters for Clayton’s family are 0, 0.2, and 0.6 for all estimates. For 

Frank’s family, the population parameters of ρS are −0.6, −0.2, 0.2, and 0.6; the population 

parameters of ρS
H are −0.512, −0.173, 0.180, and 0.545; the population parameters of ρS ∣ ΩR

are −0.098, −0.042, 0.058, and 0.261. The dots are the mean point estimates based on 1000 

simulations. The shaded areas represent the 0.025th and 0.975th quantiles. For generalized 

type I censoring, the restricted region, ΩR, was defined by the median survival times
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FIGURE 5. 
Upper left: Kaplan–Meier curves for time to viral failure and time to regimen change, where 

time is measured in years. Upper right: bivariate probability mass function for the mixture-

like distribution, SH(dx, dy). Lower left: conditional bivariate probability mass function for 

15-year follow-up. Lower right: conditional bivariate probability mass function for 10-year 

follow-up. For probability mass functions, the bars on the left and on the bottom represent 

histograms of the univariate survival mass for each event. The probability mass function 

was computed from the Dabrowska’s survival surface and then aggregated over half-year 

bivariate time periods. After aggregation, any negative values were set to 0. Lighter shade 

represents smaller values
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