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Abstract

Metabolites regulate protein function via covalent and noncovalent interactions. However, 

manipulating these interactions in living cells remains a major challenge. Here, we report 

a chemical strategy for inducing cysteine S-succination, a nonenzymatic post-translational 

modification derived from the oncometabolite fumarate. Using a combination of antibody-based 

detection and kinetic assays, we benchmark the in vitro and cellular reactivity of two novel 

S-succination “agonists,” maleate and 2-bromosuccinate. Cellular assays reveal maleate to be a 

more potent and less toxic inducer of S-succination, which can activate KEAP1-NRF2 signaling 

in living cells. By enabling the cellular reconstitution of an oncometabolite–protein interaction 

with physiochemical accuracy and minimal toxicity, this study provides a methodological basis for 

better understanding the signaling role of metabolites in disease.
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An emerging paradigm in cancer biology is that metabolism may function as an epigenetic 

signal in and of itself.1,2 A prototypical example of this phenomenon occurs in the genetic 

cancer syndrome hereditary leiomyomatosis and renal cell carcinoma (HLRCC). In this 

disorder, mutations in gene encoding the TCA cycle enzyme fumarate hydratase (FH) 

cause fumarate to accumulate to millimolar levels.3 These aberrant levels of fumarate are 

associated with chromatin hypermethylation and dysregulated gene expression;4,5 however, 

the molecular mechanisms by which this simple organic metabolite drives such profound 

changes in epigenetic signaling are not completely understood. Fumarate is unique among 

oncometabolites in that it has two physically distinct mechanisms by which it may alter 

post-translational modification (PTM) mediated signaling. First, fumarate can serve as a 

competitive inhibitor of 2-ketoglutarate (KG) utilizing enzymes, a mechanism it shares 

with other oncometabolites such as succinate and 2-hydroxyglutarate.6,7 Second, fumarate 

can react covalently with proteins to form the nonenzymatic modification cysteine S­

succination (Figure 1a).8 This nonenzymatic PTM occurs exclusively in HLRCC and a 

few other pathophysiological contexts.9–11 While the targets and stoichiometries of protein 

S-succination are incompletely defined, at least one consequence of this PTM appears to be 

stabilization of the antioxidant transcription factor NRF2 due to covalent S-succination of its 

regulatory E3 ligase KEAP1.12,13

Recently, we reported a chemoproteomic approach for characterizing protein S-succination 

in patient-derived HLRCC cell lines.14 Investigation of the local sequence preferences of 

FH-sensitive cysteine residues and kinetic analyses led to the surprising discovery that 

fumarate itself appears to be chemically inert toward thiol addition, only becoming reactive 

upon protonation to hydrogen and dihydrogen fumarate.15 This leads to a paradoxical 

influence of pH on S-succination. However, fumarate’s low reactivity raises a technical 

challenge: it is very difficult to induce cysteine S-succination in cells. Most studies that have 

sought to explore fumarate’s reactivity using exogenous S-succination reagents have used 

dimethyl fumarate (DMF), an ester derivative that implements a physiochemically distinct 

PTM and is at least ∼100-fold more reactive than endogenous fumarate.16,17 Methods to 

temporally control cysteine S-succination have the potential to decouple fumarate’s covalent 

and noncovalent epigenetic mechanisms and provide new insights into the role of this 

oncometabolite in biology and disease.

To develop a reagent for manipulating oncometabolite-associated S-succination, we 

envisioned two straightforward modifications to fumarate’s structure. First, given our 
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previous findings, we considered whether fumarate analogues with increased susceptibility 

to protonation may show coordinately increased cysteine reactivity. This led us to explore 

maleate, a cis isomer of fumarate (Figure 1b). Unlike fumarate, maleate has the unique 

ability to form an internal hydrogen bond upon protonation, leading to a substantial change 

in its pKa (maleic acid, pKa2 = 6.2; fumaric acid, pKa2 = 4.5).18 When present at equal 

concentrations in buffered solution, levels of electrophilic hydrogen maleate are over an 

order of magnitude higher than hydrogen fumarate, which would be expected to cause a 

concomitant increase in cysteine S-succination. Second, we hypothesized that the intrinsic 

electrophilicity of fumarate could be increased by replacing the α,β-unsaturated Michael 

acceptor with a bromoacetamide (Figure 1b). The cognate analogue, 2-bromosuccinate, has 

the potential to either label cysteines and form the desired PTM or undergo an elimination 

reaction to form electrophilically inert fumarate. Importantly, α-carboxyhaloacetamides 

have shown previous utility as cysteine labeling reagents in a number of settings.19–21

As an initial test of the ability of these oncometabolite analogues to induce S-succination, 

we incubated proteomes with fumarate, maleate, and 2-bromosuccinate and assessed 

covalent protein labeling using a recently developed anti-cysteine-S-succination antibody 

(Figure 2). Exposure of proteomes to maleate and 2-bromosuccinate led to protein 

S-succination that was detectable at concentrations as low as 0.5–1 mM (Figure 2b). 

In contrast, exposure of proteomes to fumarate at these low concentrations did not 

lead to detectable protein labeling, consistent with our previous studies. Comparison 

of the reagents revealed that maleate provided qualitatively greater protein labeling 

than 2-bromosuccinate when applied at an equivalent concentration (Figure S1). Both 

2-bromosuccinate and maleate hyper-S-succinated proteomes in a time-dependent manner, 

with signal intensities increasing over 24 h (Figure 2c). This suggests that both of these 

reagents are stable in solution over prolonged time periods in cell lysates. These results 

establish 2-bromosuccinate and maleate as novel synthetic reagents capable of inducing 

oncometabolite-associated PTM cysteine-S-succination.

Next, we aimed to quantitatively benchmark the reactivity of our chemical S-succination 

reagents. For these experiments, we incubated electrophiles (fumarate, maleate, or 2­

bromosuccinate) with a model thiol (thiophenol, pKa 6.6) and assessed product formation 

via quantitative UV- RP-HPLC (Figure 3).14 Thiophenol was chosen due to its enhanced 

nucleophilicity compared to cysteine, which facilitates measurement of its reaction with 

fumarate prior to significant oxidation. Consistent with immunoblotting,, these studies 

revealed that maleate S-succinates thiols much faster (∼30×) than fumarate at neutral 

pH (Table 1). Examining the influence of pH on thiol modification we verified that 

fumarate’s reactivity is increased under more acidic conditions. In contrast, maleate and 

2-bromosuccinate behave more like a conventional electrophile, with an increased reaction 

rate in neutral or mildly alkali solutions (Table 1). This suggests that unlike hydrogen 

fumarate (pKa 4.4), sufficient concentrations of hydrogen maleate (pKa 6.2) are present at 

neutral pH to enable thiol reactivity, the rate of which declines upon acidification due to 

reduced abundance of thiophenolate nucleophile.

The electrophilicity of maleate was less impacted by acidity (pH 5–6) than 2­

bromosuccinate, consistent with the ability of protonation to increase its intrinsic reactivity 
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(Table 1). To ensure that these trends were not an artifact of our kinetic analysis method, we 

performed equivalent pH-dependent labeling studies in whole proteomes and made identical 

observations for both fumarate and maleate (Figure S2). These studies define the chemical 

reactivity of the oncometabolite isomer maleate and quantitatively validate its utility as a 

rapid inducer of thiol S-succination.

Inactivation of the TCA cycle by FH mutation causes a multitude of cellular effects, only 

a subset of which may be related to protein S-succination. Previous studies have attempted 

to chemically induce this PTM to help isolate its influence on signaling but have been 

challenged by fumarate’s low reactivity and cell permeability.16,17 We wondered whether the 

hyper-reactivity of 2-bromosuccinate and maleate may overcome some of these challenges. 

To test this, we compared endogenous protein S-succination in FH-deficient cells (FH−/−) 

to that induced by treating an isogenic rescue (FH+/+) with 2-bromosuccinate, maleate, 

dimethyl fumarate, and ethyl fumarate (Figure 4, Figure S3). Analysis of treated cells 

revealed all four compounds were able to induce the PTM, as assessed by anti-S-succination 

immunoblotting (Figure 4c–f). However, notable differences were also observed. Dimethyl 

and ethyl fumarate led to only low levels of S-succination (Figure 4e,f). This is consistent 

with the chemical structures of these compounds, which would be expected to lead to 

the physiochemically distinct methyl- or ethyl-S-succination upon cysteine reaction.22,23 In 

contrast, 2-bromosuccinate and maleate modified a wide range of proteins, with a labeling 

pattern more akin to the endogenous modification found in FH−/− cells (Figure 4c,d). 

Interestingly, when dosed at equivalent concentrations, 2-bromosuccinate induced a stronger 

modification profile than maleate initially (3 h) but was superseded at extended time points. 

This may indicate that 2-bromosuccinate is metabolized or unstable in media over prolonged 

time periods.

During our cellular labeling studies, some treatments caused noticeable detachment of cells, 

suggesting toxicity. As cell death may introduce a variety of biological effects that are 

independent of protein S-succination, we compared the cytotoxicity of fumarate, dimethyl 

fumarate, ethyl fumarate, methyl fumarate, 2-bromosuccinate, and maleate. HEK-293T cells 

were used for these studies to avoid any confounding effects FH-deficiency may have on 

metabolism-dependent cell death assays. We confirmed the novel reagents investigated here, 

2-bromosuccinate and maleate, both cause S-succination in this cell model (Figure S4). 

Analyzing dose-dependent cytotoxicity of these reagents, we found dimethyl fumarate to be 

the most potent inhibitor of cell growth, with a submicromolar IC50 at 48 h (Table 2, Figure 

S5). This is consistent with previous studies indicating the highly electrophilic nature of this 

compound15,24 and provides further evidence that caution should be used when interpreting 

biological assays using this reagent as an oncometabolite mimetic. The monoalkyl ester 

derivatives of fumarate, as well as 2-bromosuccinate, displayed an intermediate degree 

of toxicity, while fumarate and maleate were nontoxic up to millimolar concentrations. 

These studies specify maleate as an optimized nontoxic reagent for manipulation of cellular 

S-succination profiles.

As indicated above, the structure and reactivity of maleate and 2-bromosuccinate differ 

in subtle—but important—ways from fumarate. Therefore, as a final metric, we set 

out to assess the effects of these two molecules on known covalent and noncovalent 
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oncometabolite targets. As a prototypical covalent target, we chose the E3 ligase KEAP1, 

whose covalent modification by fumarate has previously been shown to cause stabilization 

of the transcription factor NRF2, a master regulator of the antioxidant response.12,13 

Consistent with the hypothesis that maleate can recapitulate aspects of fumarate’s reactivity, 

incubation of HEK-293T cells with maleate induced higher levels of NRF2 (Figure 5a). 

To verify that this mechanism may be driven by maleate’s ability to covalently modify 

KEAP1, we overexpressed KEAP1 and subjected HEK-293T cells to different electrophile 

treatments. Transient transfection followed by lysis, KEAP1 immunoprecipitation, and 

anti-S-succination immunoblotting revealed detectable covalent modification of KEAP1 

upon addition of maleate (Figure 5b). 2-Bromosuccinate also was able to trigger NRF2 

stabilization and KEAP1 S-succination, although cytotoxicity was observed at the higher 

dosage (10 mM; Figure 5c). In contrast, DMF and fumarate itself did not induce detectable 

S-succination of KEAP1, presumably due to a lack of ester hydrolysis and cell permeability, 

respectively. Turning our attention to noncovalent targets of fumarate, it has previously been 

shown that inactivation of FH in HLRCC causes accumulation of the transcription factor 

HIF-1α, which is attributed to fumarate’s ability to competitively inhibit KG-dependent 

prolyl hydroxylases involved in HIF-1α degradation.6,7 In contrast to its effects on NRF2, 

incubation of HEK-293T cells with maleate (1–10 mM) for 24 h did not cause a substantial 

increase in HIF-1α levels. However, incubation with 2-bromosuccinate caused a detectible 

increase in HIF-1α levels (Figure 5a). This suggests that 2-bromosuccinate—or one of 

its metabolites—may function as a competitive inhibitor of prolyl hydroxylase activity, 

while maleate cannot. Previous crystallographic studies of prolyl hydroxylases complexed 

with KG-competitive ligands are more consistent with a trans-orientation near the Fe(II)­

KG reaction center, which cannot be accessed by cis-fumarate.25,26 Together, these data 

suggest the unique structure of maleate may in certain instances allow selective induction 

of fumarate’s signature nonenzymatic PTM (S-succination) while limiting its noncovalent 

effects on KG-dependent enzymes such as prolyl hydroxylases.

Recent advances in chemoproteomics have enabled the detection and comprehensive 

profiling of metabolite–protein interactions.27–31 Translating these data sets into mechanistic 

knowledge requires methods to manipulate these interactions in living cells but is challenged 

by the limited permeability and tempered reactivity of many metabolites. Here, we 

report a new approach for the induction of cysteine S-succination, a nonenzymatic PTM 

produced by the covalent oncometabolite fumarate. In contrast to previous methods that 

utilize fumarate esters, the approach reported here recapitulates the endogenous PTM 

(rather than an ester-linked version) and can be applied in living cells with limited 

toxicity. Furthermore, our initial studies indicate that in HEK-293T cells one of these 

reagents, maleate, is able to differentially induce covalent (KEAP1 S-succination/NRF2 

activation) versus noncovalent (PHD inhibition/HIF-1α stabilization) effects of fumarate. 

This property should be useful in studies seeking to define the relative influence of these 

two mechanisms on the plethora of biological phenomena in which fumarate has been 

implicated in HLRCC, which include altered gene expression, mitotic entry, and epithelial to 

mesenchymal transition.5,32,33 Finally, we note some limitations of our method as currently 

comprised. First, while maleate, 2-bromosuccinate, and fumarate induce the same PTM, 

they differ substantially in their reactivity and most notably show distinct pH-dependent 
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labeling profiles. Our previous studies have provided evidence that hydrogen or dihydrogen 

fumarate is the reactive species underlying covalent S-succination in HLRCC,14 and if 

the S-succination agonists reported here are reactive in the absence of protonation, this 

may alter their proteomic reactivity profile. Future comparisons of these reagents and 

fumarate in competitive chemoproteomic experiments will help define the similarity (or 

distinctiveness) of their cysteine reactivity landscapes. Another key difference between 

FH-deficiency and this exogenous S-succination strategy is that in the former fumarate 

diffuses out of the mitochondria, while in the latter electrophiles diffuse in through the 

plasma membrane. Targeted delivery of maleate or 2-bromosuccinate to the mitochondria 

may be required to enable the study of S-succination in this organelle.34,35 In the immediate 

future, we anticipate the less toxic maleate reagent will be useful for determining whether 

S-succination elicits a distinct gene expression response relative to other NRF2-inducing 

electrophiles,5 as well as in isotopic labeling strategies designed to assess S-succination 

stoichiometry.36 In the longer term, we envision that maleate’s unique status as an anion 

electrophile that is relatively insensitive to bulk pH may prove useful in the construction 

of covalent fragment libraries designed to interrogate the ligandability of distinct subsets of 

the proteome.37 By expanding our inventory of methods for the study of metabolite-derived 

PTMs, these studies provide a foundation for defining and manipulating the signaling role of 

metabolism in cancer.
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Figure 1. 
(a) Nonenzymatic modification of cysteines by fumarate causes protein S-succination. (b) 

Structures of endogenous and synthetic inducers of cellular S-succination.
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Figure 2. 
(a) Structure of nonenzymatic S-succination reagents. (b) Dose-dependent effects of 

fumarate, maleate, and 2-bromosuccinate on protein S-succination in cell lysates (t = 

15 h). (c) Time-dependent S-succination of proteomes upon the addition of maleate or 

2-bromosuccinate.
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Figure 3. 
(a) Model reaction to assess thiol S-succination reaction kinetics. (b) Comparison of pH­

dependent pseudo-first order rate constants for S-succination electrophiles.
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Figure 4. 
(a) Cellular evaluation of electrophilic inducers of S-succination. (b) Structure of 

electrophiles. (c) Cellular S-succination induced in UOK262 FH rescue (FH+/+) cells by 

maleate, (d) 2-bromosuccinate, (e) dimethyl fumarate, and (f) ethyl fumarate. Treatment 

time = 15 h.
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Figure 5. 
(a) Dose-dependent effects of maleate and 2-bromosuccinate on S-succination, NRF2, and 

HIF1-a in HEK-293T cells. Treatment time = 15 h. Loss of GAPDH in 2-bromosuccinate 

samples indicates increasing cell death. (b) Assay for assessing cellular S-succination of 

ectopically expressed FLAG-KEAP1. (c) Cellular S-succination of ectopically expressed 

KEAP1 by electrophiles (treatment time = 15 h). Br-succinate = 2-bromosuccinate. DMF = 

dimethyl fumarate.
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Table 2.

Toxicity of Electrophilic Fumarate Analogues and S-succination Agonist in HEK-293T Cells at 48 h.

fumarate 72 ± 11

maleate 11 ± 0.91

2-bromosuccinate 1.2 ± 0.44

ethyl fumarate 0.95 ± 0.31

methyl fumarate 0.91 ± 0.48

dimethyl fumarate 0.059 ± 0.011
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