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ABSTRACT: Background: Despite evidence for the
role of human leukocyte antigen (HLA) in the genetic
predisposition to Parkinson’s disease (PD), the com-
plex haplotype structure and highly polymorphic fea-
ture of the major histocompatibility complex (MHC)
region has hampered a unified insight on the genetic
risk of PD. In addition, a majority of the reports
focused on Europeans, lacking evidence on other
populations.
Objectives: The aim of this study is to elucidate the
genetic features of the MHC region associated with PD
risk in trans-ethnic cohorts.
Methods: We conducted trans-ethnic fine-mapping of
the MHC region for European populations (14,650 cases
and 1,288,625 controls) and East Asian populations
(7712 cases and 27,372 controls). We adopted a hybrid
fine-mapping approach including both HLA genotype
imputation of genome-wide association study (GWAS)
data and direct imputation of HLA variant risk from the
GWAS summary statistics.

Results: Through trans-ethnic MHC fine-mapping, we
identified the strongest associations at amino acid posi-
tion 13 of HLA-DRβ1 (P = 6.0 × 10−15), which explains
the majority of the risk in HLA-DRB1. In silico prediction
revealed that HLA-DRB1 alleles with histidine at amino
acid position 13 (His13) had significantly weaker binding
affinity to an α-synuclein epitope than other alleles
(P = 9.6 × 10−4). Stepwise conditional analysis suggested
additional independent associations at Ala69 in HLA-B
(P = 1.0 × 10−7). A subanalysis in Europeans suggested
additional independent associations at non-HLA genes in
the class III MHC region (EHMT2; P = 2.5 × 10−7).
Conclusions: Our study highlights the shared and distinct
genetic features of the MHC region in patients with PD
across ethnicities. © 2021 The Authors. Movement Disor-
ders published by Wiley Periodicals LLC on behalf of
International Parkinson and Movement Disorder Society
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Parkinson’s disease (PD; Online Mendelian Inheritance
inMan: 168600) is one of themost common neurodegener-
ative diseases with its characteristic motor symptoms
described as parkinsonism and nonmotor symptoms. The
core pathology is the progressive loss of dopaminergic neu-
rons in the substantia nigra with deposition of protein
aggregates containing α-synuclein.1 Aberrant functioning
of the immune system in the nervous system has been pro-
posed as a critical contributor to the pathogenesis of PD.2

Consistently, some of genetic loci identified by genome-
wide association studies (GWAS) are related to immune
function.3-6 Among them, the human leukocyte antigen
(HLA) genes in the major histocompatibility complex
(MHC; 6p21.3) have been implicated in the pathogenesis
of PD.7,8 For example, HLA molecules bind to α-synuclein
and trigger T cell activation, and its reactivities might
depend on the variations in HLA alleles.7 Thus, the elucida-
tion of the risk-associated HLA variants should contribute
to further understanding of its pathogenesis.
The association of a variant in the HLA region with PD

was first reported in 2010, which was a noncoding variant
influencing the expression of HLA-DR and HLA-DQ.9

Since then, different studies have reported the associations
in various aspects, including haplotypes and regulatory
variants,10 single nucleotide polymorphisms (SNPs) along
with smoking history,10 and specific combinations of
amino acid polymorphisms in HLA-DRB1.11 Although
they contributed to the elucidation of etiological involve-
ment of HLA on PD, there lacks unified insight on risk-
associated genetic factors derived from a comprehensive
MHC region-wide investigation using large cohorts. In
addition, themajority of the reports have focused on Euro-
pean populations, and the evidences for other populations
are scarce.12,13 The reason behind these should be not only
sample size but also complex sequence variations and
population-specific linkage disequilibrium (LD) structures
of the MHC region that differ substantially among
ethnicities.14,15

HLA allelic imputation has successfully contributed to
the fine-mapping of causal risk variants of human com-
plex traits within the MHC region.16-19 By using a
population-specific reference panel, it has achieved high
imputation accuracies not only for classical HLA alleles
but also for amino acid polymorphisms.20 Furthermore,
MHC fine-mapping for a trans-ethnic cohort can boost
its power of revealing genetic features that affect complex
diseases beyond ethnicities by removing confounding by
linkage.21,22 We performed trans-ethnic MHC fine-
mapping of PD using GWAS data in European and East
Asian populations and identified that specific amino acid
positions of HLA-DRβ1 and HLA-B were independently
associated with PD risk across ethnicities. Furthermore,
the risk-associated alleles of HLA-DRB1 presented vari-
able binding affinity to a known α-synuclein epitope in in
silico prediction, suggesting their functional role to the
pathogenesis of PD.

Methods
Study Design

A summary of the participants and workflow of our
study is shown in Figure 1. First, we applied HLA
imputation to individual GWAS genotype data of the
UK Biobank (UKB) cohort and conducted association
analysis of HLA variants with PD risk (1599 PD cases
and 352,325 controls).23,24 Then we conducted direct
imputation of PD risk statistics of the HLA variants
from the PD GWAS summary statistics of European
populations obtained from 23andMe, Inc. (14,650 PD
cases and 1,288,625 controls; nStudy = 4)4,6,25 and those
of East Asian populations (7712 PD cases and 27,372
controls; nStudy = 2 from Japanese and other East
Asians).5,26 Finally, we performed trans-ethnic MHC
fine-mapping using in total seven GWAS summary sta-
tistics of European and East Asian populations (22,362
PD cases and 1,315,997 controls; nStudy = 7).

Participants of UKB
TheUKB comprises health-related information and geno-

type data of approximately 500,000 individuals who were
recruited from across the United Kingdom in 2006 to
2010.23 Among them, we used GWAS data from 1599 PD
cases and 352,325 controls of British genetic ancestry
enrolled in UKB. The detailed sample and genotype quality
control (QC) process are described elsewhere.22,24 In the
current study, we selected individuals who had a history of
a diagnosis of PD in hospital records (International Classifi-
cation of Diseases, Tenth Revision code G20 in UKB data-
field code of 41,202 and 41,204) as the PD cases. The con-
trols were selected as individuals who did not have histories
of PD in the hospital records or in the self-reported diagno-
ses (coding of 1262 in UKB data-field code of 20,002). In
addition, we excluded individuals who had records of auto-
immune diseases or some infectious diseases and malignant
tumors that have clear associations in theMHC region19,27

from the controls (the full lists of excluded diseases are
shown in Tables S1 and S2).16

Fine-Mapping of the MHC Region on UKB PD
GWAS Data

We defined the HLA variants as single nucleotide var-
iants (SNVs) in the MHC region and classical two-digit
and four-digit biallelic HLA alleles of class I and II
HLA genes (HLA-A, HLA-C, HLA-B, HLA-DRB1,
HLA-DQA1, HLA-DQB1, HLA-DPA1, and HLA-
DPB1) along with biallelic HLA amino acid polymor-
phisms corresponding to the respective residues and
multiallelic HLA amino acid polymorphisms for each
amino acid position. We performed the MHC fine-
mapping in the same process as our previous study.16

We prephased the GWAS data with Eagle (version 2.3).
Then we applied DEEP*HLA, a multitask
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convolutional deep-learning method for HLA allelic
imputation, to determine classical two-digit and four-
digit biallelic HLA alleles.22 We used the Type 1 Diabe-
tes Genetics Consortium (T1DGC) reference panel as
an imputation reference panel (n = 5225). The dosages
of biallelic HLA amino acid polymorphisms were deter-
mined according to the imputed four-digit classical
allele dosages. As postimputation filtering, we removed
the biallelic alleles of which the r2 in 10-fold cross-
validation were lower than 0.7. The SNVs in the MHC
region were imputed using minimac3 (version 2.0.1).
We applied stringent postimputation QC filtering of the
variants (minor allele frequency ≥ 0.01 and imputation
score r2 ≥ 0.7).
We evaluated the associations of the HLA variants

with risk of PD using a logistic regression model assum-
ing additive effects of allele dosages on a log-odds scale
as described elsewhere.19,22 To robustly account for
potential population stratification, we included the top
10 principal components (PCs) obtained from the
GWAS genotype data (not including the MHC region)
as covariates in the regression model. The PCs were cal-
culated using the smartpca program of EIGENSTRAT
with default settings.28 We also included age, sex, ascer-
tainment center, and genotyping chip of individuals as
covariates. To conduct a conditional analysis, we
included a target variant to the regression model as a
covariate. When conditioning on a specific amino acid
polymorphism, we included all the alleles in the target
position.

PD GWAS Summary Statistics Used in Our
Study

For the European data, we obtained the PD GWAS
summary statistics within the MHC region deposited in
23andMe, including the studies of Nalls et al in 2014
(866 PD cases and 32,538 controls, and 3261 cases
and 29,499 controls, separated by the genotype
platforms),25 Chang et al (6476 PD cases and 302,042
controls),4 and post-Chang (2448 PD cases and
571,411 controls).6 We did not use a publicly available
result of meta-analysis conducted by Nalls et al6 in
2019 considering the sample overlaps and heterogeneity
in analytical methods (it includes a result of GWAS-by-
proxy for the UKB individuals). For the East Asian
data, we used the PD GWAS summary statistics of the
Japanese population (988 PD cases and 2521 con-
trols)26 and the GWAS meta-analysis result of the East
Asian population (6724 PD cases and 24,851
controls).29

Fine-Mapping of the MHC Region on PD
GWAS Summary Statistics

TheMHC fine-mapping from the GWAS summary sta-
tistics was performed based on the inference from the
approximation of z scores to multivariate normal distri-
bution using the DISH software.30 This kind of analytical
method uses a regularization term λ to prevent inflation
due to statistical noises.30,31 We set a small value
(λ = 0.05) to prevent false negatives and consider the

FIG. 1. The participants and workflow of our study. We conducted the trans-ethnic human leukocyte antigen (HLA) fine-mapping of the Parkinson’s dis-
ease (PD) risk. Our study included in total seven PD genome-wide association studies (GWAS) from European and east Asian populations (22,362 PD
cases and 1,315,997 controls). UKB, UK Biobank. [Color figure can be viewed at wileyonlinelibrary.com]
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denoising nature of meta-analysis. As the LD reference
data of the MHC region specific for individual
populations, we used that of T1DGC reference panel for

European ancestries (n = 5225),20,32 which was
implemented in DISH. In addition, we generated the LD
information of Japanese and other East Asian ancestries
from our Japanese reference panel (n = 1120),19 and Pan-
Asian reference panel (n = 530),32,33 respectively. Before
imputation, we removed indel and multi-allelic SNPs and
aligned the strand of SNVs between the GWAS summary
and the reference data according to the same criteria as
SNP2HLA.20 For further stringent QC, we removed the
SNVs of which the frequency of minor alleles in the
GWAS summary were higher than 0.5 in the reference or
the difference in allele frequencies between the GWAS sum-
mary and reference were higher than 0.2. We applied strin-
gent postimputation QC filtering of the variants (minor
allele frequency ≥ 0.01 and imputation score r2 ≥ 0.7).
Conditional analysis of the summary statistics was

performed using GCTA COJO with default parame-
ters.34 The effects (β coefficients) and standard errors of
imputed alleles for the analysis were calculated from
the z scores in a manner described previously.35 We
used the HLA reference data according to individual
populations.

Trans-Ethnic Meta-Analysis for Fine-Mapping
We meta-analyzed the association signals of the vari-

ants shared among all the HLA reference panels used in
the target studies. In trans-ethnic meta-analysis, consid-
ering the disparity in allele frequency of SNVs among
the different populations, we removed all the palin-
dromic SNVs to correctly align the strands. The
z scores in the association tests of each variant were
meta-analyzed using the sample size–based meta-
analysis method, considering the heterogeneity in the
distributions of β coefficients and standard errors
among studies.36 For trans-ethnic fine-mapping, we per-
formed conditional meta-analysis by integrating the
individual results of the conditional analysis. We
applied a forward stepwise conditional analysis for the
HLA variants. In each conditional step, we additionally
included the associated variants as covariates and per-
formed the individual analyses and meta-analysis until
no variants satisfied the significance in the meta-analy-
sis. We used not only a genome-wide significance
threshold of P = 5.0 × 10−8 as a strict criterion but also
a study-wide significance threshold of P = 3.3 × 10−6

based on Bonferroni correction of the total number of
the HLA variants typed in the reference panels used in
this study (= 0.05/15,000) to avoid missing weak but
meaningful associations.

In Silico Prediction of Binding Affinity of HLA-
DRB1 Alleles to α-Synuclein

We tested the binding affinity ofHLA-DRB1 alleles to a
candidate epitope derived from α-synuclein peptide with
amino acid residue Y39 (KTKEGVLYVGSKTKE) using

FIG. 2. Regional association plots of the human leukocyte antigen (HLA) var-
iants with Parkinson’s disease. Diamonds represent −log10 (P values) for the
tested HLA variants, including single-nucleotide variants (SNVs), classical
alleles, and amino acid (AA) polymorphisms of the HLA genes. The dashed
black horizontal lines represent the study-wide significance threshold of
P = 3.3 × 10−6. The physical positions of the HLA genes on chromosome
6 are shown at the bottom. Each panel shows the association plot in the pro-
cess of stepwise conditional regression analysis in the trans-ethnic meta-
analysis: (a) nominal results, (b) results conditioned on HLA-DRβ1 AA posi-
tion 13, and (c) results conditioned on HLA-DRβ1 AA position 13 and HLA-B
AA position 69. Each panel shows the association plot in the meta-analysis
in the European populations: (d) nominal results and (e) results conditioned
on HLA-DRβ1 AA position 13 and HLA-B AA position 69. (f) The association
plot in the meta-analysis in the East Asian populations. [Color figure can be
viewed at wileyonlinelibrary.com]
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NetMHCIIpan 4.0 with BA option and default settings.37

The difference in the binding affinity (nM) between allelic
groups were analyzed using theMann-WhitneyU test. We
targeted all four-digitHLA-DRB1 alleles typed in any ref-
erence panels and supported inNetMHCIIpan 4.0.

Results
Overview of the Trans-Ethnic HLA

Fine-Mapping of PD Risk
As illustrated in Figure 1, we adopted a hybrid fine-

mapping approach including both HLA genotype impu-
tation of PD GWAS data and direct imputation of HLA
variant risk from the PD GWAS summary statistics. We
first performed the MHC fine-mapping of the UKB
cohort (1599 PD cases and 352,325 controls)23,24 through
HLA genotype imputation of the UKB PD GWAS data
using theDEEP*HLA software.22We also conducted direct
imputation of PD risk statistics of the HLA variants from
the PDGWAS summary statistics of Europeans (13,051 PD
cases and 936,300 controls; nStudy = 4)4,6,25 and East Asians
(7712 PD cases and 27,372 controls; nStudy = 2)5,26 based
on the approximation inference of z scores using the DISH
software.30 Finally, we performed trans-ethnic MHC fine-
mapping bymeta-analyzing in total seven GWAS summary
statistics (22,362 PD cases and 1,315,997 controls;
nStudy = 7).

Classes I and II HLA Genes Confer PD
Susceptibility

Through the trans-ethnic HLA fine-mapping analysis, we
found the strongest signals at histidine at amino acid posi-
tion 13 (His13) in HLA-DRβ1 (P = 6.0 × 10−15; Fig. 2a).
The equivalent associations were observed at the HLA-
DRB1*04 allele and its corresponding amino acid polymor-
phisms of asparagine or histidine at amino acid position 33
(Asn/His33) in HLA-DRβ1 (P = 6.1 × 10−15). Since His13
in HLA-DRβ1 is strongly tagged with HLA-DRB1*04
(r2 = 0.9995), our results were consistent with the previous
studies reporting the protective effect of HLA-
DRB1*04.10,38 To further elucidate PD risk–associated var-
iants independently of theHLA-DRB1 region, we robustly
conducted a conditional analysis on all the amino acid poly-
morphisms of HLA-DRβ1 position 13. Then, the associa-
tion signals in HLA-DRB1 remarkably weakened
(P > 0.01), suggesting that the amino acid position 13
explains themajority of PD risk ofHLA-DRB1.
Apart from HLA-DRB1, we observed the most sig-

nificant independent association at alanine at amino
acid position 69 (Ala69) in HLA-B (P = 1.0 × 10−7;
Fig 2b), which satisfied the study-wide significance
threshold. After conditioning on all the amino acid
polymorphisms of HLA-DRβ1 position 13 and HLA-B
position 69, no variants in the MHC region satisfied
the region-wide significance threshold (P > 3.3 × 10−6;

Fig 2d). All of the risk-associated variants obtained by
trans-ethnic meta-analysis are summarized in Table 1
and Table S3.

Ethnically Shared and Distinct PD Risk of the
HLA Variants Between Europeans and

East Asians
Although trans-ethnic fine-mapping is more suitable to

detect genetic features associated with the etiology in a
robust manner,21,22 additional investigations of the
responsible variants separately within each ancestry could
provide insights into population-specific genetic back-
grounds of the phenotypes. We thus additionally con-
ducted HLA fine-mapping analyses of PD risk separately
for individual populations of Europeans and East Asians.
The European meta-analysis (14,650 PD cases and

1,288,625 controls) revealed the most significant asso-
ciations at His13 in HLA-DRβ1 (P = 2.3 × 10−14;

FIG. 3. Risk-associated amino acid polymorphisms and in silico
predicted binding affinity of HLA-DRB1 alleles to an α-synuclein epi-
tope. (a) The results of in silico predicted binding affinity of HLA-DRB1
alleles to the Y39 epitope of α-synuclein are shown in boxplots and
compared between alleles with and without His (left) and Arg (right) in
position 13 of HLA-DRβ1. His13 in HLA-DRβ1 is almost consistent with
HLA-DRB1*04, and HLA-DRB1*15:01 has Arg13 in HLA-DRβ1. (b)
Three-dimensional ribbon models of the human leukocyte antigen (HLA)
proteins associated with Parkinson’s disease (PD) risk. The protein
structures of HLA-B and HLA-DR are based on Protein Data Bank
entries 2BVP and 3PDO, respectively, which were displayed using
UCSF Chimera version 1.14. Residues at the PD risk-associated amino
acid positions are colored red (arrows). Arg, arginine; His, histidine.
[Color figure can be viewed at wileyonlinelibrary.com]

1810 Movement Disorders, Vol. 36, No. 8, 2021

N A I T O E T A L

http://wileyonlinelibrary.com


Fig 2e) as well as its tagged SNP in strong LD
(rs3104413; P = 1.3 × 10−16; r2 = 0.97). When condi-
tioning on all of the amino acid polymorphisms of
HLA-DRβ1 position 13 and HLA-B position 69 in the
same manner as the trans-ethnic analysis, we identified
additional independently associated variants that satis-
fied the study-wide significance threshold at non-HLA
genes within the class III MHC region as well
(rs535586 at EHMT2; P = 2.5 × 10−7; Fig. 2f). We
were not able to evaluate the association of this SNP in
trans-ethnic fine-mapping since rs535586 was not avail-
able in trans-ethnic fine-mapping because of the limited
coverages of the SNVs shared among the HLA refer-
ence panels of diverse ancestries.
In the East Asian meta-analysis (7712 PD cases and

27,372 controls), the strongest associations were
observed at the class I MHC regions of HLA-A and
HLA-B. The top signals were at HLA-A*33:03 (risk;
P = 2.9 × 10−5) and serine at amino acid position 67
(Ser67) in HLA-B (protective; P = 3.2 × 10−5), but
slightly not satisfying the study-wide significance
threshold (P < 3.3 × 10−6; Fig 2g). Since Ser67 in
HLA-B is moderately tagged with Ala69 in HLA-B
(r2 = 0.30 and 0.17 in Pan-Asian and Japanese refer-
ence panels, respectively), its signal might reflect the pri-
mary signal of Ala69. In contrast, HLA-A*33:03 allele
did not demonstrate nominal association with PD risk
in the European meta-analysis (P = 0.92), possibly
because of the lower allele frequencies in Europeans
(= 0.019) than in East Asians (= 0.10).18 Although the
cohort of East Asian meta-analysis showed a nominally
significant protective effect of His13 in HLA-DRβ1
(P = 0.0086), its association was not observed in the
Japanese cohort (P = 0.69). These results demonstrated
the ethnically shared and distinct HLA genetic architec-
ture of PD between and within Europeans and East
Asians.

The Risk-Associated HLA-DRB1 Alleles Might
Alter the Binding Affinity to α-Synuclein

A previous study suggested that α-synuclein–derived
epitopes, especially two peptides involving amino acid
positions Y39 and S129, could induce variable T cell
responses according to class II HLA alleles in patients
with PD.7 HLA-DRB1*15:01 was highlighted because
it had the strongest binding affinity to the Y39 epitope
and patients with PD who responded to the Y39 epi-
tope were more likely to have HLA-DRB1*15:01.
HLA-DRB1*15:01 presented a suggestive association
with PD risk in the current study (P = 4.1 × 10−6).
Since the number of HLA-DRB1 alleles assayed in the
previous study was limited, we comprehensively evalu-
ated in silico–predicted binding affinities of HLA-
DRB1 alleles to the Y39 epitope using NetMHCIIpan
4.0.37 As a result, HLA-DRB1*15:01, which has

arginine at amino acid position 13 (Arg13), exhibited
the strongest binding affinity (97 nM) in concordance
with the previous results of an in vitro assay (Table S4).
Interestingly, HLA-DRB1 alleles with His13 and Arg13,
the protective and risk allele in this position (Table 1),
had significantly weaker and stronger binding affinity
than others, respectively (P = 9.6 × 10−4 and 1.0 × 10−3,
respectively; Fig 3a). These results might suggest that
amino acid polymorphisms of position 13 are associated
with PD risk through altering the antigen presentation of
α-synuclein–derived epitopes and successive immune
responses. We did not test the S129 epitope because T cell
responses induced by the S129 epitope were only
observed with phosphorylation.7

Discussion

We conducted trans-ethnic MHC fine-mapping of PD
risk in European and East Asian populations. We iden-
tified the most significant association signals at the pro-
tective risk of His13 of HLA-DRβ1 along with the
equivalent association in HLA-DRB1*04. The amino
acid position 13 is located in the floor of the peptide-
binding groove of the HLA-DR molecule and is thus
well positioned to directly interact with bound peptides
(Fig. 3b). As noted previously, our result is also consis-
tent with the inverse epidemiologic correlation between
PD and rheumatoid arthritis, of which susceptibility
risk is strongly associated with His13 in HLA-
DRβ1.38-41 Whereas a recent study reported the associ-
ation with “shared epitopes” of HLA-DRB1,39 their
associations satisfied neither study-wide significance
(P > 3.3 × 10−6) nor even nominal significance when
conditioned on the amino acid position 13 (P > 0.05;
Table S3). In addition, we have first identified indepen-
dent suggestive associations between PD risk and the
class I HLA gene of HLA-B Ala69. HLA-B Ala69 also
composes the border of the peptide-binding groove of
the HLA-B molecule (Fig. 2b). A previous study
reported that a haplotype including HLA-B*07:02
might confer the PD risk in Europeans.10 HLA-B*07:02
has moderate LD with Ala69 in Europeans (r2 = 0.35),
suggesting that the previously reported HLA-B*07:02
risk might have reflected the primary risk of Ala69 in
HLA-B.
Although the pathogenic roles of HLA molecules in

the pathogenesis of PD have not been fully elucidated,
recent studies suggested that α-synuclein peptides can
induce different T cell reactivity associated with HLA
alleles.7 The same authors also reported that this reac-
tion might occur before the onset of PD, suggesting the
etiologic role of immune responses mediated by HLA.42

The two major regions involving Y39 and phosphory-
lated S129 were suggested as candidate epitopes. Our
results of the in silico prediction revealed that the HLA-
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DRB1 alleles with His13 (ie, HLA-DRB1*04 subtypes)
and Arg13 have weaker and stronger binding affinity
than others. This observation supports the hypothesis
that His13 or HLA-DRB1*04 exhibit a protective effect
on the development of PD through the reduced binding
affinity to α-synuclein epitopes. Although the phosphor-
ylated S129 epitope was featured in relation to the
higher binding affinity of HLA-DQB1*04:02 and HLA-
DQB1*05:01 in the previous study,7 the current study
could not confirm the associations of both alleles with
PD risk. The phosphorylated S129 epitope is also
important since phosphorylated S129 residues are pre-
sent in high levels in Lewy body with a significant role
in the pathophysiology of PD by causing toxicity.43,44

Therefore, a more comprehensive analysis focusing on
the difference in immunologic responses to this epitope
among different HLA alleles might be helpful in further
elucidation of the immunologic pathophysiology of
PD. The same study suggested that HLA-A*11:01 also
activated T cell responses through the presentation of
the Y39 epitopes; however, HLA-A:11:01 was not sig-
nificantly associated with the risk in the current study.
On the other hand, our study suggested the association
of a particular amino acid position of HLA-B with PD
risk; thus, experimental validation of the epitope pre-
sentation of HLA-B molecules to α-synuclein peptides
might contribute to the further understanding of the
role of class I HLA genes in the PD etiology.
Several neurodegenerative diseases have been

reported to be associated with different HLA vari-
ants.45,46 The risk of Alzheimer’s disease (AD) was
observed at HLA-DRB1*15:01, HLA-DQA1*01:02,
and HLA-DQB1*06:02 and the haplotype composed of
them (DR15),46 but they were not associated with PD
risk even in the study-wide significance level
(P > 3.3 × 10−6). In contrast, the AD protective variants
of HLA-DQA1*03:01 and HLA-DQB1*03:02 were sig-
nificantly associated with a protective effect on PD in our
study (P < 5.0 × 10−8). However, their protective effects on
each of the diseases diminished when conditioned on the
most risk-associated variants, respectively.
Our results also suggested additional independent

association signals at the class III MHC region where no
HLA genes are located (6p21.33) in the European popu-
lation. The lead variant (rs535586) was observed at a
variant of EHMT2. Sugeno and colleagues reported that
α-synuclein in the nucleus might activate H3K9 via the
EHMT2 protein, and such an epigenetic effect could
affect a neural cell adhesion molecule and a
synaptosomal-associated protein, leading to the synaptic
dysfunction occurring in PD.47 We note that rs535586
was not included in the HLA imputation panels of East
Asians and thus not evaluated in the trans-ethnic meta-
analysis. Since independent PD risk of non-HLA variants
was suggested by our study, our next step should focus
on the fine-mapping of this region using a densely typed

reference panel for a larger multiethnic cohort.21 Since
the MHC class III region is known to harbor indepen-
dent risk from HLA genes on a variety of complex
human traits,48 further fine-mapping should provide
novel insights into the genetics of PD.
Interestingly, the magnitude of the effect sizes in clas-

ses I and II HLA genes were heterogeneous between the
European and East Asian populations. Of note, the
effect sizes of the core risk-associated variants (His13 in
HLA-DRβ1 and Ala69 in HLA-B) were relatively weak
in the Japanese population. In addition, HLA-A*33:03,
which is too rare to evaluate in Europeans, might have
risk in East Asians. Although we cannot rule out the
possibility that the observed risk heterogeneity could be
attributable to a lack of statistical power because of the
relatively small sample sizes in the Asian populations,
the differences might reflect the population-specific
gene–gene or gene–environment interactions. To further
investigate this issue, an investigation with more partici-
pants from Asian populations should be warranted.
As an additional potential limitation of the analytical

methods, we applied a sample size–based meta-analysis
of the z score in the trans-ethnic meta-analysis rather
than an effect size–based meta-analysis, which made it
difficult to quantify model heterogeneity among cohorts
consisting of diverse ancestries. In conditional analyses
on the summary statistics, the sample sizes of the Asian
reference panels could not be enough to robustly main-
tain the reliability of COJO.34 These limitations derived
from limited access to the individual genotype data of
the PD GWAS, and the development of a secure data-
sharing scheme should be warranted.49 As for fine-map-
ping, our approach of focusing on classical HLA alleles
and amino acid polymorphisms is currently standard;
however, we cannot deny the possibility that some vari-
ants have an expression quantitative trait loci (eQTL)
effect on HLA genes, contributing to the etiology of
PD. Because of the difficulty in quantification of HLA
gene expressions,50 there is no reliable eQTL database
especially for multiethnic populations. A future hybrid
approach that also incorporates eQTL information
might expedite our understanding of a functional role
of variations in the MHC region on the etiology.
In summary, our study suggested that amino acid

position 13 in HLA-DRβ1 explains the majority of PD
risk in HLA-DRB1, and an amino acid polymorphism
of HLA-B might also independently confer PD risk.
Considering diverse antigen-presentation abilities
among different alleles, our findings might contribute
to identification of future therapeutic targets. Further-
more, independent suggestive associations of the non-
HLA variants located in the class III MHC region were
observed in Europeans. Considering the potential inter-
ethnic differences in the risk-associated genetic features,
MHC fine-mapping in a larger multiethnic cohort will
provide further insight.
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Data Availability

The analysis of UK Biobank genome-wide association
study (GWAS) data was conducted via the application
number 47821 (https://www.ukbiobank.ac.uk/). The
Type 1 Diabetes Genetics Consortium human leukocyte
antigen (HLA) reference panel can be download at a
National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK) central repository with a request
(https://repository.niddk.nih.gov/studies/t1dgc-special/).
The Japanese HLA data have been deposited at the
National Bioscience Database Center Human Data-
base (research ID hum0114). Pan-Asian HLA refer-
ence data can be downloaded at the SNP2HLA
download site (http://software.broadinstitute.org/mpg/
snp2hla/). The GWAS summary statistics from 23andMe
can be obtained under an agreement that protects the pri-
vacy of 23andMe research participants (https://research.
23andme.com/dataset-access). The access of GWAS sum-
mary statistics of the Japanese and East Asian populations
is considered upon request to the researchers of the indi-
vidual original studies.

Code Availability

We provide concise scripts to perform major histo-
compatibility complex fine-mapping using summary
statistics in the same manner as the current study in the
GitHub repository (https://github.com/tatsuhikonaito/
Trans-ethnic_MHC_fine-mapping_SS).

Acknowledgments: We thank all of the participants involved in this
study. We also thank 23andMe for providing the Parkinson’s disease
genome-wide association study summary statistics.
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