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Abstract

Interest in analyzing X chromosome single nucleotide polymorphisms (SNPs) is
growing and several approaches have been proposed. Prior studies have compared
power of different approaches, but bias and interpretation of coefficients have
received less attention. We performed simulations to demonstrate the impact of
X chromosome model assumptions on effect estimates. We investigated the coef-
ficient biases of SNP and sex effects with commonly used models for X chromo-
some SNPs, including models with and without assumptions of X chromosome
inactivation (XCI), and with and without SNP-sex interaction terms. Sex and SNP
coefficient biases were observed when assumptions made about XCI and sex dif-
ferences in SNP effect in the analysis model were inconsistent with the data-
generating model. However, including a SNP-sex interaction term often eliminated
these biases. To illustrate these findings, estimates under different genetic model
assumptions are compared and interpreted in a real data example. Models to
analyze X chromosome SNPs make assumptions beyond those made in autosomal
variant analysis. Assumptions made about X chromosome SNP effects should be
stated clearly when reporting and interpreting X chromosome associations. Fitting
models with SNP X Sex interaction terms can avoid reliance on assumptions,

eliminating coefficient bias even in the absence of sex differences in SNP effect.
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1 | INTRODUCTION silenced than the other (Heard & Disteche, 2006). Also,
approximately 9%-14% of X-linked genes escape from
X chromosome inactivation (XCI) is an epigenetic pro- XCI and both copies are expressed (Carrel &

cess that leads to inactivation of one of the two X chro-
mosomes in females (Ross et al., 2005). It prevents
females from having twice as much X chromosome gene
expression as males, who only have one X chromosome.
Generally, XCI is believed to be random, but research has
shown that XCI can be skewed in some individuals,
meaning that one chromosome is more likely to be

Willard, 1999). These complexities have implications for
modeling X chromosome variant effects on phenotypes
and have resulted in the X chromosome often being ex-
cluded from genome-wide association study (GWAS)
analyses (Wise et al., 2013).

Sex differences in prevalence or clinical presentation
have been observed in many diseases including autoimmune
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disorders, cardiovascular diseases, cancer, and psychiatric
disorders (Appelman et al., 2015; Dong et al., 2020; Erol
et al., 2015; Riecher-Rossler, 2017; Voskuhl, 2011), leading to
hypotheses that X chromosome genetic variation may con-
tribute to some of these differences. Therefore, interest in
analyzing X chromosome variants is growing and re-
searchers are beginning to incorporate X chromosome var-
iants into GWAS (Chang et al, 2014; Khramtsova
et al., 2019; MacArthur et al., 2017; Stahl et al., 2019).
However, often, little attention is paid to XCI biology when
analyzing X chromosome genotype data (Chen et al., 2020;
Wang et al., 2017). A number of approaches have been
proposed to analyze single nucleotide polymorphisms (SNPs)
on the X chromosome, and several studies have compared
different approaches (Clayton, 2008; Gao et al., 2015; K&nig
et al., 2014; Ozbek et al., 2018; Wang et al.,, 2014; Xu &
Hao, 2018). Most studies have focused on power when
presenting results and comparing approaches, whereas bia-
ses and the interpretability of coefficients have not been well
investigated and discussed. As risk prediction methods such
as polygenic risk scores (PRS) increase in popularity
(Lambert et al., 2019; Lloyd-Jones et al., 2019), a focus on the
properties of SNP effect estimates, including coefficient bia-
ses and concerns regarding interpretability, will become
more important to integrate X chromosome variants into
these predictive models.

We previously proposed using an XCI-robust approach
for X chromosome genetic variant analysis, by including a
sex—SNP interaction term, which allows for different effects
of the genetic variants between males and females, and thus,
increases the flexibility of the model. We used this approach
in a study of bipolar disorder (Jons et al., 2019); but as with
other methodological approaches, discussion of the utility of
the model primarily focused on power to detect effects.
In this study, we performed simulations to examine the
impact of model assumptions and SNP coding scheme on
biases of model coefficients, in scenarios with and without
sex differences in SNP effect, and using models with and
without SNP X Sex interaction terms in the analysis. We also
illustrate our key findings through an example of an X
chromosome SNP previously shown to be associated with
body mass index.

2 | METHODS

21 | Common SNP coding schemes

Because of the underlying biological process of XCI,
two genotype coding schemes are commonly used in
the analysis of X chromosome SNP data; one corre-
sponds to an assumption of “XCI” (formerly referred to
as “Clayton”) (Clayton, 2008) while the other is

consistent with escape from XCI (“eXCI,” formerly
referred to as “PLINK”) (Purcell et al., 2007). Denoting
the two alleles at a SNP as “a” and “A,” assuming
additive allele effects, both XCI and eXCI coding
schemes code “aa”, “aA” and “AA” female genotypes

[Tl

as 0, 1, 2. For males, XCI coding assigns genotype “a” a
value of 0 and “A” a value of 2, while eXCI assigns “a”
and “A” genotypes values of 0 and 1, respectively. It
should be noted that the choice of coding “a” or “A” as
the effect allele may impact the coefficient estimates
beyond just a change in sign, particularly for eXCI
coding which codes the male genotypes on a smaller
scale relative to females; therefore, it is important to

include sex as a covariate (Chen et al., 2019).

2.2 | Simulation: Data generation

Data were simulated under a variety of scenarios in-
cluding assuming a locus undergoing XCI or escaping
from XCI, as well as with and without SNP X Sex in-
teractions. The simulated variables were sex (female
and male), SNP genotype (aa, Aa, or AA for females; a
or A for males) and outcomes (0,1). Each simulated
data set consisted of roughly 500 females and 500
males, with female taken as the reference level
(sex =0) and male sex coded as 1. The frequencies of
the minor allele was set at 0.3 and 0.5, and random XCI
was assumed.

After simulating the sex and genotype data, binary
outcomes were randomly generated using a logistic
model conditional on sex and genotypes; specifically, two
sets of outcomes were generated corresponding to the
assumptions of a locus undergoing or escaping from XCI
(referred to as “XCI” and “eXCI”) based on XCI
(Clayton) and eXCI (PLINK) coded genotypes, respec-
tively. For data generated under both the XCI and eXCI
assumptions, outcomes were generated in two ways,
using models with and without SNP X Sex interaction
terms (i.e., in the absence and presence of sex differences
in SNP effect).

Table la,b shows the data-generating models con-
sidered in the absence of sex differences in SNP effects.
Specifically, a binary outcome Y was generated from a
model with only main effects of sex and SNP, using the
equation:

logit (Y) = intercept + B, X sex + Bgyp X SNP

where SNP was coded assuming XCI or eXCI. The
intercept was fixed at 0, and five combinations of fgex
and Bgnp coefficients were used (Table 1a,b). We
generated 100 data sets under each parameter
combination.
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TABLE 1 Data-generating models in the absence of SNP X Sex interaction effects using (a) XCI (Clayton) coding and (b) eXCI (PLINK)

coding
OR for effect
Coding Model coefficients of sex
Sex # Copies of effect allele Bgex Bsnp ORg., (e**¥)

(a) XCI (Clayton) coding

(I} 1 2 0 0.75 e’
M 0 2 NA 01 0.5 e
F 0 1 2 0.2 0.2 e’?
0.5 0.1 e’
0.75 0 e””?
(b) eXCI (PLINK) coding
(I} 1 2 0 0.75 e’
M 0 1 NA 01 0.5 e
F 0 1 2 0.2 0.2 e’?
0.5 0.1 e’
0.75 0 e””?

ORs for effect of SNP, given sex  Prevalence

ORSNPlM 0RSNP|W1 ORSNPlWZ

(e%FSNP) (eFSNP) (e?NP)  Overall Female Male
e’ e™”® e? 0.664  0.668  0.660
e' e e' 0.628  0.618  0.638
et e’? et 0.574  0.550  0.598
e’? e e™? 0.585  0.514  0.646
e’ e’ e’ 0.589  0.500  0.678
e™”® e™”® e? 0.629  0.668  0.590
e e e 0.602  0.618  0.586
e’? e’? et 0.562  0.550  0.574
et et e®? 0.579  0.524  0.634
e’ e’ e’ 0.589  0.500  0.678

Note: With the coding scheme used when generating the data specified on the left, we give how SNPs are coded within sex under each coding scheme. The
“Model” column provides the five coefficient combinations we used to generate the data in this simulation study. We then calculated the odds ratio for the
effect of sex and for the effect of SNP given sex. ORg refers to the odds ratio for the effect of sex with female as the reference level and male equal to 1. ORgnpm
refers to the odds ratio for the effect of SNP, either comparing SNP =0 with SNP =2 in XCI (Clayton) or with SNP =1 in eXCI (PLINK) coding, given

sex = male. ORgnpiw1 refers to the odds ratio for the effect of SNP comparing SNP = 0 with SNP =1 and ORgnpjw> refers to the odds ratio for the effect of SNP
comparing SNP = 0 with SNP = 2, given sex = female. In the “Prevalence” column, we calculated the proportion of cases in the overall population (1000 cases),

in females (500 cases), and in males (500 cases).

Table 2a,b shows the data-generating models con-
sidered in the presence of sex differences in SNP effects,
introduced by including a Sex X SNP interaction term
when we generated the data. The general form of the
equation is:

logit (Y) = intercept + 3

sex

+ By X Sex X SNP

X Sex + Bgyp X SNP

Again, the intercept was fixed at 0, and either XCI or
eXCI coding was used for the SNP variable. Three combi-
nations of By, Bsnp, and Sy Were chosen (Table 2a,b), and
100 data sets were generated under each combination.

2.3 | Simulation: Data analysis
The simulated data were analyzed in multiple ways using
XCI (Clayton) or eXCI (PLINK) coding and with and with-
out SNP X Sex interaction terms. For each generated data set,
regardless of whether the outcome was generated assuming
XCI or eXCI, we fit four different models (Table 3).

We first fit models including only main effects for sex
and SNP. Among them, the first model used the XCI

coding for the SNP variable (Model 1), while the second
model used the eXCI coding for the SNP variable
(Model 2). These models allowed us to study the coefficient
estimates and p-values when the coding scheme used to
generate data (reflecting assumptions about XCI) is incon-
sistent with the coding scheme used to fit data (i.e., the
genotype-phenotype model), as well as when they are con-
sistent. We coded sex =0 for females and sex =1 for males,
and coded the SNP genotypes in terms of the same allele as
in the data generation. We stored the coefficients and p-
values for each model, and then calculated the bias of the
coefficients (fitted value minus true value).

We also fit additional models that included interac-
tion terms between sex and SNP (Models 3 and 4 in
Table 3). Both the main effect SNP term and the inter-
action term used the same SNP coding within a model. In
addition to assessing bias and p-values of the individual
model terms, we conducted likelihood ratio )(z-tests
(LRT). First, we compared all models with the model
“logit (Y) =intercept + PBsex X Sex” to test the overall ef-
fect of the SNP coefficients; this would be either a one or
2-df likelihood ratio y*-test depending on which model
we are testing (e.g., df=1 for testing SNP effects in
Model 1, but df =2 for jointly testing SNP and SNP X Sex
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TABLE 3 Logistic regression models
fit to each of the simulated data sets, using
either XCI (Clayton) or eXCI (PLINK) 2
coding for the SNP effects, and with and

without SNP X Sex interaction terms

1 Logit (Y) = intercept + Ssex X SeX + Bsnp X SNPxc1
Logit (Y) = intercept + Bsex X Sex + Bsnp X SNPexcr

Logit (Y) = intercept + fsex X Sex + Bsnp X SNPxcr + Bint X Sex X SNPxcr

4 Logit (Y) = intercept + fsex X Sex + Bsnp X SNPexcr + Bint X Sex X SNPexcy

interaction effects in Model 3). Second, for the models
with interaction terms we performed a 1-df likelihood
ratio y’-test comparing to a model “logit (Y)=
intercept + Bsex X Sex + fsnp X SNP” (comparing Model 3
with Model 1 and comparing Model 4 with Model 2), to
test for sex differences in SNP effect.

For all combinations of data generation scenarios and
analysis methods, we plotted the estimated coefficients/bias
and p-values using boxplots, and plotted the proportions of
p-values from likelihood ratio x* tests below a prespecified
significance threshold to display power using bar-plots.

In addition to the coefficient combinations shown in
Tables 1a,b and 2a,b, we also assessed additional scenarios
with lower prevalence or a negative interaction term (Sup-
porting Information Material). In the following sections, we
will focus on results with MAF =0.5 and with coefficient
combinations and prevalence shown in Tables 1a,b and 2a,b.
Key findings from additional scenarios will be discussed,
without showing detailed results.

2.4 | Simulation: Nonrandom XCI

We also considered how the presence of XCI skewness
or, in other words, nonrandom XCI, impacts coefficient
biases when the genetic model is misspecified because it
does not account for skewness. As shown previously,
nonrandom/XCI skewness is equivalent to a genetic
model that includes a dominance deviation (Chen
et al., 2019). Therefore to generate data consistent with
XCI skewness, we added a dominance variable (D) coded
as (0, 1, 0) for female genotypes (aa, Aa, AA) and (0, 0)
for male genotypes (a, A). The coefficient for this non-
additive effect term D was set to be less than the additive
effect (SNP term coefficient) to mimic the situation of
skewness. The general form of the equation is:

logit (Y) = intercept + ., * sex + Bgyp * SNP
+ By * D, and
logit (Y) = intercept + S,

ex ¥ 5€X + Boyp ¥ SNP
+ Bint * sex * SNP + B, * D.
The coefficient combinations of sex and SNP terms
were the same as above (Tables 1a,b and 2a,b) and the

coefficient of the dominance effect term was set at 0.1 for

all scenarios. As above, we fit Models 1-4 (Table 3)
without adding a nonadditive effect term and performed
likelihood ratio y* tests. Results were summarized similar
to the scenarios without dominance effects.

2.5 | Application to genetic associations
with obesity

We sought to examine the observed changes in coefficient
estimates from the four genetic models that were fit in si-
mulations in the context of an applied example. Previously,
the minor T allele of rs1316982, an X chromosome SNP in
an intron of the gene IL13RA1, was identified as significantly
associated with body mass index (BMI) in a GWAS
(Hoffmann et al., 2018). Using data from the UK Biobank,
we re-analyzed the relationship between this SNP and obe-
sity (defined as BMI > 30) in a sample of N = 173,557 males
and N = 201,630 females of European ancestry. Genotyping,
imputation, and quality control procedures have been pre-
viously described (Hoffmann et al., 2018). We fit the four
logistic regression models described in Table 3. For each
model, we also included additional covariates for age, as-
sessment center, genotyping batch, and the first 20 principal
components to capture population stratification. We also fit a
model with sex and the additional covariates, but without a
SNP or SNP X Sex interaction term.

3 | RESULTS
3.1 | Part 1: Data generated in the
absence of sex differences in SNP effect

3.1.1 | Fitting models without SNP X Sex
interaction

Figure 1 displays results for data generated in the absence of
sex differences in SNP effect (Table 1a,b) and analyzed using
either XCI (Clayton) (Model 1) or eXCI (PLINK) coding
(Model 2) with no SNP x Sex interaction term (Figure 1 and
Table S1) for situations with MAF = 0.5; results for MAF =
0.3 were similar (Figures S1.1-S1.6). As expected, we ob-
served biases in the SNP and sex coefficients when there was
model misspecification (i.e., inconsistency in the coding
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schemes used to generate and fit the data, e.g., generate data
under XCI coding, but use eXCI coding to fit, or vice versa).
The biases were greatest when the true effect of SNP (i.e., the
magnitude of true SNP coefficient) was greatest. The direc-
tion of the bias (positive or negative) depends on how the
variables are coded, in particular the chosen reference levels.
As we stated previously, we fixed allele frequencies at 0.5
and coded female as 0 and male as 1. Under such circum-
stances, for data sets generated using eXCI coding, we ob-
served negative biases (fitted < true) in both SNP and sex
coefficients when analyzed using XCI coding. For data sets
generated using XCI coding, we observed positive biases
(fitted > true) in both sex and SNP coefficients when ana-
lyzed with eXCI coding. Notably, we also observed false-
positive tests of the sex effects along with the coefficient
biases, while the tests for the SNP effect had no type 1 error
inflation.

When we changed the prevalence to be below 50%, as
opposed to above 50% shown in Tables 1a,b and 2a,b, we
observed the same patterns but with a change in the
direction of the biases (Figures S2.1-S2.6).

3.1.2 | Fitting models with SNP X Sex
interaction terms

Figure 2 displays results for data generated in the ab-
sence of sex differences in SNP effect (Table 1a,b) and

Data generated using PLINK
Biases of sex coefficient Biases of SNP coefficient

10+ 10-

FEEY JFT

Bias (Fitted-True)

Bias (Fitted-True)
_@_
_._

o o o o
True coefficient combinations. True coefficient combinations

Sex p-value SNP p-value

g H
2
° .

& %
EH 3
Sos Sos
g g
& 3 &
oG
= 1i :
000~ - 0.00 g el el
s° » & o & S » & » &
. £ < S < ¢ < S
,f S 5 3 o g 8 3 S ¢
> & S & » ok & & & >
L o < b & < < o
True coefficient combinations True coefficient combinations
Coding scheme B8 Cisyton wio interaction Coding scheme - Clayton wio interaction

used in the
fitted model

used in the

B PLK o eracton madinthe B puskwomsadon

Bias (Fitted-True)

analyzed using either XCI (Clayton) coding (Model 3)
or eXCI (PLINK) coding (Model 4) with a SNP X Sex
interaction term. When an interaction term was in-
cluded in the model to fit the data, the coefficients (and
corresponding p-values) for sex and SNP were un-
biased regardless of whether the SNP coding was cor-
rectly specified in the model (Figure 2 and Table S2).
However, we observed biases in the interaction terms if
there was an inconsistency between the coding
schemes used to generate the data and to fit the data,
especially in the scenarios with a stronger SNP effect.
The p-values for interaction terms in those models
were also significantly lower than expected under the
null hypothesis of no interaction, leading to false-
positive interaction signals under misspecification of
the SNP coding.

Although false-positive evidence for interaction terms
from the 1-df test was observed when the SNP coding was
misspecified, the p-values from the 2-df test (joint test of
SNP and SNP-sex interaction) were the same for both
coding schemes (Figure 32a), even under misspecification,
and the power estimates based on a p-value threshold of
0.01 (Figure 3b) were similar as well, as expected.

Again, when we changed the prevalence to be below
50%, the biases in the coefficient for interaction term has
the opposite direction from what we show below
(Figures S2.1-S2.6). We also had more significant p-values
and higher powers due to the coefficient combinations we

Data generated using Clayton

Biases of sex coefficient Biases of SNP coefficient

10~ 10~

WQQ%%%ﬁﬁ#%%

Bias (Fitted-True)

o of of o o
True coefficient combinations True coefficient combinations.
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Y

o o o o o
True coefficient combinations True coefficient combinations

Coding scheme B ciey

used in the
fited model B PUNKwo
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used in the . 4
fitted model

B3 PUNK wio interaction

FIGURE 1 Bias and p-values of sex and SNP coefficients when generating data in the absence of sex differences in SNP effect and fitting
models without SNP-sex interaction terms. Top row: Boxplots of bias (Y-axis; estimate minus true coefficient) of sex and SNP coefficients
across 1000 simulation runs for various simulation settings (X-axis) when data is generated using eXCI (PLINK) coding (left) or XCI
(Clayton) coding (right). Bottom row: Boxplots of p-values (Y-axis) of sex and SNP coefficients across 1000 simulation runs for various
simulation settings (X-axis) when data is generated using eXCI coding (left) or XCI coding (right). Color indicates the model that was fit
(Model 1 or Model 2, XCI or eXCI coding without a SNP-sex interaction term)



SONG ET AL.

583

Data generated using PLINK
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FIGURE 2 Bias and p-values of sex and SNP coefficients when generating data in the absence of sex differences in SNP effect and fitting
models with SNP-sex interaction terms. Top row: Boxplots of bias (Y-axis; estimate minus true coefficient) of sex and SNP coefficients across
1000 simulation runs for various simulation settings (X-axis) when data is generated using eXCI (PLINK) coding (left) or XCI (Clayton)
coding (right). Bottom row: Boxplots of p-values (Y-axis) of sex and SNP coefficients across 1000 simulation runs for various simulation
settings (X-axis) when data is generated using eXCI coding (left) or XCI coding (right). Color indicates the model that was fit (Model 3 or

Model 4, XCI or eXCI coding with a SNP-sex interaction term)

selected in the simulations with lower prevalence (i.e., fur-
ther from 0).

3.2 | Part 2: Data generated in the
presence of sex differences in SNP effects

3.2.1 | Fitting models without SNP x Sex
interaction terms

When we generated data under the assumption of sex
differences in SNP effects (Table 2a,b), both SNP and sex
coefficients were biased in all models without interaction
terms (Figure 4 and Table S3). When the data was gen-
erated assuming XCI (Table 2a), biases were greater
among models with SNP coding misspecification (Model
2, analyzed using eXCI (PLINK) coding). Interestingly, in
our scenarios with data generated using eXCI coding
(Table 2b), the biases of the SNP and sex coefficients
when analyzed using XCI coding (Model 1, misspecified
SNP coding) were smaller than the biases observed when
analyzed using eXCI coding (Model 2, consistent SNP
coding). Additionally, we observed false-positive sex and
SNP effects in all models without interaction terms, ex-
cept for the sex coefficient when data was generated with
eXCI coding, but analyzed using XCI coding. The
p-values also were smaller (i.e., false-positive rates were

larger) when the true interaction term coefficients were
bigger.

Biases with opposite directions were observed when
data was generated with prevalence less than 50%
(Figures S2.1-S2.6), but the patterns are preserved. When
the interaction term coefficients were changed from po-
sitive to negative (Figures S3.1-S3.3), we observed that
analyzing using eXCI coding had lower biases in both sex
and SNP coefficients regardless of data generation as-
sumption (XCI or eXCI, misspecified or consistent)
compared to lower biases using XCI coding when we had
positive interaction terms as shown in Figure 4. We also
had larger p-values due to smaller effect sizes arising
from the negative interaction terms.

3.2.2 | Fitting models with SNP X Sex
interaction terms

When the data was generated under SNP X Sex interac-
tions (Table 2a,b) and the model was fit with an inter-
action term (Models 3 and 4), there were no biases in the
sex coefficient regardless of whether the SNP coding was
misspecified (Figure 5 and Table S4). The SNP coeffi-
cients were also unbiased given that female was coded as
the sex reference level (sex=0). However, there were
biases in the interaction terms when the SNP coding was
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FIGURE 3 Two degree-of-freedom F tests for SNP coefficients for data generated in the absence of sex differences and fitting
models with SNP-sex interaction terms. (a) Boxplots of p-values (Y-axis) of df = 2F tests across 1000 simulation runs for various simulation
settings (X-axis) when data is generated using eXCI (PLINK) coding (left) or XCI (Clayton) coding (right). (b) Power defined as the
proportion of p < 0.01 (Y-axis) across 1000 simulation runs for various simulation settings (X-axis) when data is generated using eXCI coding
(left) or XCI coding (right). Color indicates the model that was fit (Model 3 or Model 4, XCI or eXCI coding with a SNP-sex interaction term)

misspecified, with coefficients biased in the same way as
Part 1.b. In general, the amount of bias in interaction
term coefficients increases as the true value of interaction
term coefficients increases.

The findings (Figure 6) from the 2-df likelihood
ratio y* test for the SNP effect were similar to those
observed in Part 1.b. The power, or proportion of
p-values less than 0.01, for models with inconsistency
in coding schemes was the same as those without
inconsistency.

When we lowered the prevalence to below 50%, the
direction of biases of the interaction term coefficients
changed, as expected (Figures S2.1-S2.6). When we
changed the interaction term coefficients to negative
(Figures S3.1-S3.3), biases for the interaction term were
minimal even when the SNP coding is miss-specified.
Generally, p-values were also higher than for the posi-
tive interactions, and there are less “false positives”; but
also the power for the 2-df likelihood ratio tests were

lower.
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FIGURE 4 Bias and p-values of sex and SNP coefficients when generating data in the presence of sex differences in SNP effect and

fitting models without SNP-sex interaction terms. Top row: Boxplots of bias (Y-axis; estimate minus true coefficient) of sex and SNP

coefficients across 1000 simulation runs for various simulation settings (X-axis) when data is generated using eXCI (PLINK) coding (left) or
XCI (Clayton) coding (right). Bottom row: Boxplots of p-values (Y-axis) of sex and SNP coefficients across 1000 simulation runs for various
simulation settings (X-axis) when data is generated using eXCI coding (left) or XCI coding (right). Color indicates the model that was fit
(Model 1 or Model 2, XCI or eXCI coding without a SNP-sex interaction term)
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FIGURE 5 Bias and p-values of sex and SNP coefficients when generating data in the presence of sex differences in SNP effect and

fitting models with SNP-sex interaction terms. Top row: Boxplots of bias (Y-axis; estimate minus true coefficient) of sex and SNP coefficients
across 1000 simulation runs for various simulation settings (X-axis) when data is generated using eXCI (PLINK) coding (left) or XCI
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(Model 3 or Model 4, XCI or eXCI coding with a SNP-sex interaction term)
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3.3 | Part 3: Exploration of dominance
deviations from an additive genetic model

When we considered skewness in our data generation, we
observed similar results as when data were generated under
random XCI (Figures S4.1-S4.6), although the biases ob-
served in the sex coefficient were greater. The inclusion of
the interaction term in our model reduced the biases in both
sex and SNP terms when there is coding scheme mis-
specification. The p-values from the 2df likelihood ratio
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)’ test were also the same regardless of coding scheme
consistency or misspecification, and the power estimates
based on a p-value threshold of 0.01 were similar as well.

34 |
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Part 4: Real data application to

Results of the four models evaluating the association of
obesity with the X chromosome SNP rs1316982 are
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FIGURE 6 Two degree-of-freedom F tests for SNP coefficients for data generated in the presence of sex differences and fitting
models with SNP-sex interaction terms. (a) Boxplots of p-values (Y-axis) of df = 2 F tests across 1000 simulation runs for various simulation
settings (X-axis) when data is generated using eXCI (PLINK) coding (left) or XCI (Clayton) coding (right). (b) Power defined as the
proportion of p <0.01 (Y-axis) across 1000 simulation runs for various simulation settings (X-axis) when data is generated using eXCI
(PLINK) coding (left) or XCI (Clayton) coding (right). Color indicates the model that was fit (Model 3 or Model 4, XCI (Clayton) or eXCI

(PLINK) coding with a SNP-sex interaction term)
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shown in Table 4. In the UK Biobank data, males have a
higher rate of obesity (defined as BMI > 30) compared to
females (odds ratio [OR] = 1.118; 95% confidence interval
[CI] =1.101-1.135; p < 2E—16). In all four SNP models,
the association between sex and obesity is evident for
participants homozygous for the major allele (SNP = 0),
where OR's for the sex effect range from 1.116 to 1.129,
with the model using eXCI coding without SNP X Sex
interaction having the highest OR. As expected, OR for
the sex effect given SNP =0, as well as the OR for the
SNP effect given sex are equivalent in the two models
with SNP X Sex interactions regardless of the coding
scheme. In both of these models, the OR for the SNP
effect is closer to the model with XCI coding and no
SNP X Sex interaction, where the OR in males (1.099) is
more similar to the OR for the female rare homozygotes
(OR =1.082) than the OR for the female heterozygotes
(OR =1.040), consistent with XCI. Note that the SNP
effect estimate for the model using XCI coding without
SNP X Sex interaction is similar to both models including
SNP X Sex interaction. This is consistent with prior stu-
dies showing that the gene IL13RA1 (where rs1316982
resides) undergoes XCI across most tissues (Balaton
et al., 2015) (Tukiainen et al., 2017). Taken together,
these results support that the coding assuming XCI is
most appropriate. Under this coding, the SNP X Sex in-
teraction term is not statistically significant, indicating
no evidence of sex differences in SNP effect on obesity
assuming XCI. When assuming XCI and no SNP X Sex
interaction, the minor T allele of rs1316982 is sig-
nificantly associated with increased rate of obesity at the
genome-wide level (p =1.15E—13).

4 | DISCUSSION

In this simulation study, we investigated the coefficient
biases of the SNP and sex effects under commonly used
models and coding schemes for X chromosome SNPs,
including the previously introduced “XCI-Robust Ap-
proach” that includes a SNP-sex interaction term (Jons
et al., 2019). By including a SNP-sex interaction term in
the model, it becomes more flexible, requiring no prior
knowledge about whether the SNPs are in a region of
inactivation or escape from XCI. We focused on the in-
terpretation of the results and explored how we can
overcome issues including biases in coefficients and
false-positive tests of SNP and sex effects.

We demonstrated sex and SNP coefficient biases in
several situations, particularly if the assumptions about
XCI made by the coding scheme used and the assump-
tions made about sex differences in SNP effect of the
fitted model were incorrect. When data were generated

assuming no sex differences (i.e., no interaction), biases
arose when the fitted models did not include interaction
terms and used a different coding scheme from the XCI
assumptions of the true model; if the coding scheme in
the fitted models was correctly specified regarding
assumptions about XCI, no biases were observed
(as expected). However, if the fitted model included an
interaction term, all biases in the sex and SNP coeffi-
cients were eliminated regardless of the misspecification
of coding schemes. This is because we coded female
sex = 0; thus under an interaction model, the SNP coef-
ficient represents the SNP effect in females, which is not
dependent on XCI (Clayton) versus eXCI (PLINK) cod-
ing. Of note, if we reverse how sex is coded and use males
as the reference, biases in the SNP coefficients with
misspecification are observed as expected. For analysis of
X chromosome SNPs, coding females as the reference is a
strategic choice because the SNP coding for females is the
same regardless of whether we assume XCI or eXCI, and
the SNP coefficient can be interpreted as the effect of one
allele in females regardless of potential XCI model
misspecification.

If the data-generating model assumed sex differences
in SNP effect, then there were biases in all models
without interaction terms. Interestingly, we also ob-
served smaller biases when we generated data assuming
eXCI, but analyzed assuming XCI (Model 1, coding
misspecification), than when we analyzed assuming
eXCI (Model 2, coding consistency). Upon examining the
data-generating model from Table 2b, this is not sur-
prising. The particular interactions that we generated
under eXCI coding had the property that ORgypp Was
close to ORgnpiw2, Which is the assumption of the XCI
model without interaction (Model 1); and therefore,
Model 1 fit the generated sex differences in SNP effect in
a similar way as the true Model 4. We could also interpret
this observation as the cancellation of biases caused by
SNP coding misspecification and misspecification of in-
teraction, conditional on how sex is coded. Here the
biases due to the effect of misspecification (SNP coding
or interaction) may be offset by how we coded sex in the
fitted model (i.e., female sex = 0); of note, if we reverse
how sex is coded and use males as the reference, biases
with misspecification are observed as expected. Similarly,
this would also explain the smaller biases we get when
analyzing using eXCI coding compared to using XCI
coding regardless of the XCI/eXCI assumption we made
when generating the data when we lowered the pre-
valence to below 50% or when we changed the interac-
tion term coefficients to negative.

We also observed large interaction term coefficient
biases and related false-positive tests of sex-SNP inter-
action effects. Two degree-of-freedom tests for SNP and
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interaction terms overcome this issue. Therefore, inter-
action terms are important to include to avoid biased
coefficients in sex and SNP variables. However, the sex
and SNP coefficients themselves are not interpretable
from these models, and it is necessary to report sex-
specific odds ratios/estimates and the results for the 2 df
tests. Furthermore, multiple statistical models (e.g., with
and without SNP-sex interaction) and SNP coding
schemes (e.g., assuming XCI or eXCI) can capture the
same odds ratios across male and female genotypes, as
was observed above for the models we simulated under
eXCI with SNP X Sex interaction that were similar to a
model under XCI with no SNP X Sex interaction. There-
fore in addition to reporting the sex-specific genotype
ORs, it is important to report assumptions that were
made by the model and coding.

As with any statistical analysis, it is critical to inter-
pret results of SNP analyses (autosomal and X chromo-
some) in the context of the model that was used to
analyze the data. This is especially critical for X chro-
mosome analyses, particularly regarding the XCI as-
sumptions underlying the chosen SNP coding and
presence of a SNP-sex interaction effect on the pheno-
type. The biases and type 1 error inflations that we ob-
served may not be errors or biases when considered in
the context of the model assumptions. For instance, if
SNP coding assumes that the phenotypic difference be-
tween “A” and “a” males is the same as the phenotypic
difference between “AA” and “aa” females (i.e., XCI
Clayton coding) and this coding scheme yields a sig-
nificant SNP-sex interaction term, this indicates that
there is a departure from the assumption that the phe-
notypic difference between “A” and “a” males is the
same as the phenotypic difference between “AA” women
and “aa” females. This could suggest that (1) there is a
sex-difference in SNP effect for a SNP in a region of XCI
(i.e., XCI coding and the SNP-sex interaction are cor-
rect), or (2) the SNP is in a region not undergoing XCI,
leading to the departure from the expected phenotypic
effects under XCI (i.e., XCI coding is not correct). This
suggests that multiple models with differing assumptions
may need to be considered to gain insight into the find-
ings. A comparison of effect estimates under the different
models may be informative about XCI status. Potentially
this observation could be used to develop a formal test of
XCI assumptions, although this needs to be investigated
further.

These observations are further supported by our real
data example, where exploration of different models gave
us additional insight into the genetic association between
rs1316982 and BMI/obesity beyond what was previously
reported, where effect size estimates were reported
without context to the analyzed genetic model

(Hoffmann et al., 2018). Comparison of ORy., and ORgyp
across the models combined with the SNP residing
within a gene thought to undergo inactivation suggest
that the assumption of XCI is most appropriate. Unlike
the model under XCI coding, the SNP X Sex interaction
term is statistically significant under the model with
eXCI coding, which may falsely lead to a conclusion of
the presence of sex differences in SNP effect that may
better reflect a deviation from the eXCI model.

This study underscores that the coding scheme se-
lected when modeling the SNP effect, whether XCI or
eXCI coding, should be carefully chosen since they re-
present different underlying XCI assumptions. Often in
published analyses of X chromosome SNPs, these choices
are not explicitly stated or are given without explanation
of the underlying assumptions. It is important that the
SNP coding scheme, details of the fitted model, and
assumptions being made about the process of XCI are
reported, as these are critical when interpreting SNP ef-
fects as well as for reproducibility or validation of
findings.

Many of the observations we described are supported
by recent work from Chen et al (Chen et al., 2019), which
also noted the importance of carefully specifying the
model and coding schemes when X-chromosome is
included in the GWAS. Theoretical justifications and insights
are provided for several points we highlight, such as that sex
should always be included as a covariate since it is an con-
founder for analysis involving X-chromosome SNPs with
traits that have sexual differences. They also highlighted the
value of the inclusion of gene-sex interaction terms which
statistically eliminates the differences resulting from the
choices of baseline allele and XCI assumption when a 2-df
LRT is performed, while it also has advantages in terms of
power (Chen et al., 2019).

We also considered the impact of nonrandom XCI or
XCI skewness in our simulations. XCI skewness towards
one parental allele is a property of the individual female
(i.e., some females have higher degrees of skewness than
others), and can even vary across the cells and tissues
within a female (e.g., some cells/tissues may be skewed
towards the paternal allele whereas others towards the
maternal allele). XCI skewness in some females and in
some cells and tissues adds additional variability that
cannot be properly assessed with GWAS genotype data
alone, and requires additional information regarding ei-
ther DNA methylation or gene expression to determine
the particular degree of skewness within an individual.
However, if the XCI skewness has an impact on the
phenotype at the population level, this is equivalent to a
nonadditive or dominance genetic model, as noted in
Chen et al (2019). It should be noted that in our study we
only considered a single scenario when the nonadditive
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effect is smaller than the additive effect, but more sce-
narios should be considered in future research. In our
analysis, the biases for the SNP term were quite small
and the sex term captured most of the additional biases
from not including a nonadditive/dominance term in our
fitted model. If we increase the nonadditive effect, we
expect to see higher biases in all sex, SNP, and interac-
tion terms. However, the inclusion of the interaction
term should reduce the magnitude of biases when there
is a coding scheme misspecification in the model. Fur-
ther data simulated under a dominant genetic model
would likely lead to additional situations of biases similar
to those observed with autosomal SNPs. To overcome
these issues, Chen et al suggests modeling a dominance
deviation parameter in addition to the SNP X Sex inter-
action term that we suggested here. Consideration of
these issues are an important point for future research.

In some GWAS that include X chromosome SNPs, sex-
stratified analyses are conducted, followed by meta-analysis
of the results (Magi et al.,, 2010). Investigation of this ap-
proach was beyond the scope of this study, and we have not
directly compared this approach to fitting the models we
describe here, although previous studies have shown that
analyzing males and females separately may result in a loss
in power (Loley et al., 2011). Importantly, the meta-analysis
approach still depends on the choice of SNP coding in males
and females, and makes the critical assumption that the
estimated SNP effect is the same in males and females, so the
potential biases and challenges with interpretation that we
have identified here will likely still apply. This approach also
does not allow for estimating the sex effect. We also ac-
knowledge that the number of scenarios we considered was
limited. Results from additional scenarios with a change of
MAF, prevalence, or direction in interaction term when
generating the data were shown in Supporting Information
Material. Of those, we observed similar results and our main
conclusions remained the same as discussed earlier in the
paper.

Unlike most prior literature on analysis of X chromo-
some SNP data, which focused on the power to detect X
chromosome SNP effects (Konig et al, 2014; Ozbek
et al., 2018; Wang et al., 2014; Xu & Hao, 2018), this study
focused on interpretation of X chromosome SNP effects. As
polygenic methods, and in particular, PRS approaches, be-
come more commonplace, it becomes increasingly im-
portant to consider the properties of the coefficient estimates
themselves. Currently, PRS methods exclude SNPs from the
X chromosome due to the complexity in modeling these
effects. To be able to incorporate X chromosome SNPs into
PRS models, we need to understand potential biases in SNP
effect estimates and modeling strategies that can overcome
these biases. The work here is a first step in this direction.
Standard PRS approaches (Choi & O'Reilly, 2019; Lloyd-

Jones et al., 2019; Vilhjalmsson et al., 2015) do not include
interaction terms. Because our work suggests that models
including SNP-sex interaction terms may be most appro-
priate for modeling X chromosome SNPs, these standard
PRS approaches would need to be adapted to accommodate
estimates from models with SNP X Sex interaction terms.

In summary, this is the first study to examine the
coefficient biases that may result from model mis-
specification of X chromosome SNP effects. Assumptions
made about the X chromosome SNP effects should be
made clear when reporting and interpreting X chromo-
some associations. Fitting SNP X Sex interaction terms
can avoid coefficient bias regardless of whether or not
there are true sex differences in SNP effect, which should
be incorporated into future models of polygenic risk
prediction including X chromosome SNPs.
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