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Abstract

Corals are experiencing unprecedented decline from climate change-induced mass
bleaching events. Dispersal not only contributes to coral reef persistence through de-
mographic rescue but can also hinder or facilitate evolutionary adaptation. Locations
of reefs that are likely to survive future warming therefore remain largely unknown,
particularly within the context of both ecological and evolutionary processes across
complex seascapes that differ in temperature range, strength of connectivity, network
size, and other characteristics. Here, we used eco-evolutionary simulations to exam-
ine coral adaptation to warming across reef networks in the Caribbean, the Southwest
Pacific, and the Coral Triangle. We assessed the factors associated with coral persis-
tence in multiple reef systems to understand which results are general and which are
sensitive to particular geographic contexts. We found that evolution can be critical in
preventing extinction and facilitating the long-term recovery of coral communities in
all regions. Furthermore, the strength of immigration to a reef (destination strength)
and current sea surface temperature robustly predicted reef persistence across all
reef networks and across temperature projections. However, we found higher initial
coral cover, slower recovery, and more evolutionary lag in the Coral Triangle, which
has a greater number of reefs and more larval settlement than the other regions. We
also found the lowest projected future coral cover in the Caribbean. These findings
suggest that coral reef persistence depends on ecology, evolution, and habitat net-
work characteristics, and that, under an emissions stabilization scenario (RCP 4.5),

recovery may be possible over multiple centuries.
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1 | INTRODUCTION

Rapidly increasing temperatures are threatening coral populations
around the world through mass bleaching events that have in-
creased in frequency and severity in recent decades (Hughes et al.,
2018). Although projections of coral persistence into the future are
often dire (Hoegh-Guldberg et al., 2017), recent work highlights
potential evolutionary mechanisms that may facilitate coral adap-
tation to warming waters (Bay et al., 2017; Kleypas et al., 2016).
This is particularly relevant in the context of networks or metapop-
ulations because each reef's adaptive capacity is constrained by
the balance between selection and migration (Lenormand, 2002).
Subpopulations experience selection to adapt to their local environ-
ment, yet can also receive immigrants adapted to different environ-
ments. While there is an increasing recognition for the contribution
of evolution to coral persistence under future conditions (Logan
et al., 2014; Matz et al., 2018, 2020; Walsworth et al., 2019), there
is less understanding of the interactions between evolutionary po-
tential and reef characteristics on coral survival within regional-scale
reef networks.

From a demographic perspective, larval dispersal links coral reefs
within a network. Connectivity matrices describe the probabilities of
viable larvae reaching one reef from another through dispersal and
are typically generated from ocean circulation models (Kool et al.,
2011; Treml et al., 2008; Watson et al., 2010) or population genetics
data (Davies et al., 2015; Galindo et al., 2010; Matz et al., 2018). An
important metric of connectivity is destination strength, which is the
sum of incoming connection probabilities into a particular patch and
is associated with a greater probability of reef survival (McManus
et al., 2020). While modeling studies have explored the ecological
importance of particular sites within a metapopulation (Kininmonth
et al., 2019; Watson et al., 2011), few papers examine the combined
ecological and evolutionary consequences of connectivity that are
likely to be important across metapopulations (but see Matz et al.,
2020).

In addition, the relative importance of connectivity to coral per-
sistence as compared to local factors such as baseline temperature
and warming remains unclear. For example, bleaching records sug-
gest that reefs that have experienced warm temperatures in the past
are less likely to bleach in the future (Guest et al., 2012). Because
temperatures are rising, coral populations in cooler conditions will
likely benefit from receiving larvae that are pre-adapted to warmer
environments while relatively warm reefs are susceptible to the ar-
rival of maladapted larvae (Norberg et al., 2012). In addition, tem-
perature changes are likely to vary from one location to another (e.g.,
Ban et al., 2012). Generally, populations that experience a faster
rate of environmental change are less likely to adapt (Lindsey et al.,
2013), suggesting variation in extinction susceptibilities across reef
networks. Due to evidence of thermal adaptation and heritability
of heat tolerance in corals (Dixon et al., 2015; Dziedzic et al., 2019;
Kirk et al., 2018), metrics that quantify the relative temperature of a
patch and overall temperature change may be consequential deter-
minants of individual reef persistence. In fact, in a recent modeling

study of corals in the Indo-West Pacific, both the proportion of
recruits immigrating from warmer locations and the present-day
temperature were found to be useful factors in determining corals’
projected adaptive response (Matz et al., 2020). Therefore, from an
evolutionary perspective, larval dispersal facilitates the exchange of
traits across a network.

Climate change is impacting reefs across the world, but the rates
of temperature change (McClanahan et al., 2019) and the structure
of dispersal networks (Wood et al., 2014) differ substantially across
regions. While most modeling work addressing coral adaptation has
focused on the Indo-West Pacific region (Kleypas et al., 2016; Matz
et al.,, 2018, 2020), corals exist around the world, including through-
out the Pacific and in the Caribbean (Veron, 1995). Comparisons
among reef systems are important for understanding which re-
sults are general and which are sensitive to particular geographic
contexts. Here, we implemented a dynamic eco-evolutionary
metacommunity model for years 1870-2300 on three spatially re-
alistic reef networks: the Caribbean, Southwest Pacific (SWP), and
Coral Triangle (CT). To simulate the response of a coral community
to climate change, we modeled the dynamics of two competing
coral types with contrasting life-history strategies: a fast-growing,
temperature-intolerant species (“fast coral”) and a slow-growing,
temperature-tolerant species (“slow coral”; Baskett et al., 2014;
Darling et al., 2012; Walsworth et al., 2019). In addition to important
regional differences, we find that across all three regions, reefs with
higher destination strength (larger numbers of immigrating larvae)
and lower relative ocean temperatures were most likely to adapt
successfully to future warming and that these metrics outperformed
other potential predictors of reef persistence.

2 | MATERIALS AND METHODS

2.1 | General overview

We simulated the cover of two coral types through time during a
historical period (1870-2018) and two future sea surface tempera-
ture (SST) projections (2018-2300) that followed either RCP 4.5, an
emissions reduction and climate stabilization scenario, or RCP 8.5,
a scenario without emissions reductions and with continuous and
greater warming (Pachauri et al., 2015). Within each region, coral
subpopulations exchanged larvae based on previously published
biophysical model outputs (Schill et al., 2015; Thompson et al., 2018;
Treml et al., 2008) and evolved in response to changing tempera-
tures. To explore the role of ecological versus evolutionary dynamics
on regional and local coral populations, we simulated metapopula-
tion dynamics with different levels of standing genetic variation,
which sets evolutionary potential (McManus et al., 2021; Norberg
et al., 2012; Walsworth et al., 2019). Finally, we constructed general
linear models to interpret the influence of patch-level metrics on the
minimum coral cover experienced on a reef. Doing so facilitated the
identification of temperature and connectivity factors that constrain
reef persistence under changing environmental conditions.



MCMANUS ET AL.

2.2 | Eco-evolutionary model
We applied an eco-evolutionary model (McManus et al., 2021) forced
with temperature projections and larval connectivity patterns in
the Caribbean, SWP, and CT coral reef regions. Because reefs are
typically considered as distinct habitat patches, we incorporated a
novel extension to a continuous-space metapopulation dynamics
framework to allow for immigration during the larval phase accord-
ing to a connectivity matrix D that quantifies dispersal connections
in each region (described below). The connectivity matrix was based
on output from biophysical simulations of coral larval dispersal.
We simulated a coral reef metacommunity with the two compet-
ing coral types, “fast coral” and “slow coral” (Darling et al., 2012).
Furthermore, growth and mortality rates of each species were af-
fected by the difference between the experienced ocean tempera-
ture and an evolving trait called the optimal growth temperature.
On each reef patch a, change in coral cover and mean optimal
growth temperature were given by

d_;“ = giaNig+haFa+ 5V az;a Nigs (o))

[Changein coral cover| = [population growth]
+ [larvalimmigration]

+ [geneticload]

and

dz; I 0g;
d:a = (Yi,a_zi,a) <,\}i> Fa+qiv 0;

ia

2=Ziq

[Change in optimal growth temperature| = [gene flow]

+ [stabilizing selection]

where N, ; was the proportion of cover of coral species i at site a and
z;, was the optimum growth temperature (also referred to here as the
“mean trait value”). The change in coral cover (Equation 1) for each
species was affected by the local population's growth rate, Siw the pro-
and the
additive genetic variance, V. The additive genetic variance is the her-

portion of free space on the patch, F, the larval input rate, Im,
itable component of phenotypic variance and can be calculated as the
product of narrow-sense heritability and the total phenotypic variance
(Falconer, 1996). While genetic variance can decrease due to strong
selection (Klausmeier et al., 2020), we assume here that those effects
are relatively small or counteracted by mutations and other processes
that we did not explicitly model. As such, V can be considered roughly
constant (Lande, 1976). In general, higher V enables rapid evolution but
also increases genetic load, which is the reduction in the fitness of a
population due to phenotypic variation around the mean trait value
(Kirkpatrick & Barton, 1997). Thus, genetic load was greater at higher
V and the corresponding term was either negative or zero due to the

S i ey

shape of the fitness curve. The change in optimum growth tempera-
ture (Equation 2) was also a function of the mean population-weighted
trait value of immigrants (Hanski et al., 2011), Vi and of g, which re-
duced the effect of selection at very low coral cover (Norberg et al.,
2012). The resident trait was subtracted from the mean trait of the
immigrants and scaled by the fraction of cover represented by newly

settled larvae, l,.ya/N and by free space. Therefore, incoming larvae

ia’
exerted a stronger effect on the average trait value if they represented

a large fraction relative to the current cover of the species and if there
98ia
z
Equation (2) acted to match the optimum growth temperature to the

was free space for settlement. Finally, stabilizing selection, q;V ==, in
local temperature and this evolutionary potential was stronger with
increasing V. Overall, this term was positive or negative depending on
whether local temperature exceeded (positive) or was below (negative)
the mean trait value, which led to an increase or decrease in the mean
trait, respectively. At very low cover where we considered the popu-
= 107%), g, reduced the effect of se-
lection and enhanced the numerical stability of our model (Equation 3).

lation as functionally extinct (N, ;,

N_.
g =max|{0,1- ———™ ). (3)
max (Npin, 2N;)
In this framework, the local population growth rate or fitness
(Equation 4) was determined by the intrinsic growth rate, ;g Mor-

tality rate, m.

@ and competitive interactions encoded in the species

interaction matrix a, where o; was the competitive effect of species
jon speciesi. In our case, competitive interactions between the fast
and slow coral were symmetric such that each species exerted the
same effect on the other and intraspecific competition was stronger
than interspecific competition (Table S1).

8ia =Tia (1 - Z aiij,a> - Mjg. “)
j

Intrinsic growth (Equation 5) and mortality (Equation 6) were
Gaussian and exponential functions, respectively, of the local tem-
the width of thermal

tolerance, w;, and a growth scaling factor, ry;. In our formulation,

perature T, the local average trait value, Z,
2/w;2 is a measure of the strength of selection (Lande, 1976). In other
words, selection strength is inversely proportional to the square of
the thermal tolerance width and is greater in the fast coral than the
slow coral. Following Walsworth et al. (2019) and the skewed shape
of many thermal performance curves (Deutsch et al., 2008), we im-
posed additional mortality when the current local temperature ex-

ceeded the optimum growth temperature, T, > z, (Equation 6).

2
) (T. -z
()
27w? v
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In addition to population dynamics, change in coral cover
through time was affected by the dispersal of coral larvae across the
network. Our model differed from previous frameworks because we
incorporated spatially explicit dispersal among patches (McManus
et al., 2021) instead of a diffusion approximation (Norberg et al.,
2012; Walsworth et al., 2019). Overall, there was higher settlement
when there was more free space (i.e., F, >> 0, see Equation 1) and a
patch without free space (F, = 0) had a settlement rate of zero. Free
space was the portion of the patch not covered by coral (Equation
7). We note that because we tracked fractional cover, free space can
also be interpreted as the total habitable space for both fast and
slow corals (maximum free space = carrying capacity = 1).

Fa=1- YNy )

Larval input (I,.Ya) was calculated from the effective fecundity rate
p and from the connectivity matrix D in which element D, was the
probability of reaching patch a from patch b. Here, the effective fe-
cundity rate can be interpreted as the amount of new coral produced
per unit time and per unit of existing coral (coral cover is dimension-
less since we are tracking fractional cover). We also accounted for
differences in area (A ) among patches such that a small fraction of
the reproductive output from a large patch had a disproportionately
large effect on a small receiving patch (assuming that there was free

space in the latter):

Ii,a =

> AyDapNip. 8
b

m)>|~Q

In Equation (2), the change in mean optimal growth temperature
was governed in part by gene flow (first term). The mean incoming

trait value for each species (y; ) was calculated as:

_ ,% 2 bADasNipZip B > ADapNipzip

v = _ . )
" lia 2pADapNip

A summary of parameter definitions and values used for simula-

tions is presented in Table S1.

2.3 | Potential connectivity

Each region contained many spatially discrete reef patches (423 in
Caribbean; 583 in SWP; 2083 in CT), as defined by three unique larval
exchange connectivity matrices obtained from previously published
biophysical simulations (Caribbean, Schill et al., 2015; Coral Triangle,
Thompson et al., 2018; Southwest Pacific, Treml et al., 2008). All
connectivity matrices were generated based on simulated larval dis-
persal for a coral-like species. However, there were differences in
the biological assumptions that underlay the creation of each matrix,
including a longer pelagic larval duration in the SWP and the absence
of larval mortality in the CT (see Table S2 for more details). Although

beyond the scope of this study, differences in these key assumptions
may have affected the final matrix output. For example, a longer pe-
lagic duration and the lack of larval mortality will tend to increase

the number of rare long-distance dispersal events.

2.4 | Seasurface temperatures

To simulate historical and future ocean warming, spatially explicit
SST trajectories were obtained by applying the delta method
(Fowler et al., 2007; Hay et al., 2000; Ramirez-Villegas & Jarvis,
2010) to statistically downscale coarser (1 x 1 degree latitude and
longitude) reconstructions from HadISST1 SST for years 1870-2018
(Rayner, 2003) and projections from GISS E2 H for years 2018-2300
(Schmidt et al., 2014) with a climatology created from the higher res-
olution (0.25 x 0.25 degree) historical NASA OISST V2 from 1982 to
2010 (Reynolds et al., 2007). We created SST trajectories for each
region under RCP 4.5, an emissions reduction and climate stabiliza-
tion scenario and RCP 8.5, a scenario without emissions reductions
and with continuous and greater warming. Overall, the SST trajecto-
ries began in 1870 and ran to 2300, where the reconstruction and
projection periods were 1870-2018 and 2018-2300, respectively.
Each reef patch experienced a unique thermal environment based
on the changing temperature at their location within a grid cell in

these trajectories (Figure S1).

2.5 | Simulations

Parameters (Table S1) were chosen to allow coexistence of the fast
and slow coral species (Tekwa et al., 2020), which corresponds to
empirical observations across the globe (Darling et al., 2012). To fa-
cilitate comparison within and among the three regions, all reefs had
equivalent parameter values except for area, potential connectivity,
and SST time series. To impose a trade-off between the two corals,
we set a relatively high growth rate and a narrow thermal tolerance
for the fast coral while the slow coral had a lower growth rate and a
wider thermal tolerance (Baskett et al., 2014; Darling et al., 2012). At
the beginning of the hindcast run (1870), reefs were initialized such
that each coral species started with a cover of 0.25 at every patch
(Figure S2). To examine the effect of evolution on coral persistence,
we tested three different levels of additive genetic variance to ap-
proximate zero (V = 0), low (V = 0.01) and high (V = 0.1) evolution-
ary potential. The analyses focused on simulations with an effective
fecundity (B) of 0.5, although we also calculated trajectories for
B =0and g =0.05 as a sensitivity test (see Supporting Information;
Alvarez-Noriega et al., 2016).

2.6 | Model summaries

We sought to understand whether relatively simple connectivity
and temperature metrics could help identify patches that maintained
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high versus low coral cover. For each region, patch-level explanatory
variables included the change in SST over the 2018-2300 projection
period (ASST), average SST from 2008 to 2018 (iSST), the probability
of self-connection relative to outgoing connections (local retention,
LR), the probability of self-connection relative to incoming connec-
tions (self-recruitment, SR), the sum of all incoming connections
(destination strength, DS), the difference in mean SST (2008-2018)
between the source patches and destination patch of incoming lar-
vae (initial temperature mismatch, ITM), the proportion of incoming
connections from patches that are at least 0.5°C warmer (pr05), and
patch area (see Supporting Information for equations). We present
a summary of hypothesized ecological and evolutionary effects of
each metric in Table 1.

To quantify the relative association of patch-level character-
istics with coral cover, we fit generalized linear models with bino-
mial errors to the minimum fractional coral cover of each patch
in a region between 2018 and 2300 (Burnham et al., 2002; Zuur
et al., 2009). We applied a log transformation to LR, SR, DS, pr05,
and area (log(x + 0.001)), and a log-modulus transformation for
ITM (sign(x)*log(]x| + 1)) to minimize skew. We centered and scaled
all variables (mean = 0, SD = 1) after transformations. In addition

to exploring the full statistical model, the model average, and the

S i ey

model with the lowest Akaike information criterion (AIC; Burnham
& Anderson, 2004), we created statistical models for three hypothe-
ses: (1) Connectivity-only with LR, SR, and DS; (2) Temperature-only
with ASST and iSST; and (3) Warm-adapted gene flow with prO5 and
DS. Inferences regarding the influence of each of these variables on
coral cover were made based on the coefficients of each explanatory
variable in the full statistical model. To help avoid issues with ap-
plying statistical methods to simulated data (White et al., 2014), we
limited the interpretation of these results to a qualitative compari-
son of effect size among our metrics and did not conduct statistical
significance testing.

3 | RESULTS

3.1 | Future coral cover

Across all regions, we found that evolution was critical in maintain-
ing coral cover through warming. Corals persisted under both mild
(RCP 4.5) and severe (RCP 8.5) warming scenarios with high genetic
variance (V = 0.1; Figure 1a-c; Table S3). With intermediate genetic
variance (V = 0.01), corals managed to persist under mild warming

TABLE 1 Description of hypothesized ecological and evolutionary effects of site characteristics on coral cover

Covariate

Delta SST (ASST)

mortality?® (v)
Initial SST (iSST) N/A

Local retention (LR)
persistence? (X)

Self-recruitment (SR) N/A

Destination strength (DS)
facilitate rescuef (v)

Initial temperature mismatch (ITM) N/A

Proportion of DS from locations that ~ N/A
are at least 0.5°C warmer (pr05)

Area (m?) (<) Smaller populations

disproportionately benefit from
immigration (Equation 8) (v')

Hypothesized ecological effects

(=) Rising temperatures are associated
with bleaching events and coral

(+) Higher LR increases population

(+) High levels of demographic input

Hypothesized evolutionary effects

(-) Populations are less likely to adapt under faster rates of
changeb )

(-) Cooler reefs receive beneficial warm-adapted larvae
while warmer reefs receive detrimental cold-adapted
larvae® (V)

N/A

(+) High SR (i.e., low immigration) reduces the influence of
gene flow and facilitates local adaptation® ()

(+) High DS facilitates beneficial gene flow if incoming
larvae are pre-adapted to the environmental optimum,
and detrimental otherwise (V)

(+) High ITM signifies the input of warmer-adapted larvae
that can facilitate adaptation® (X)

(+) High pr05 signifies the input of warmer-adapted larvae
that can facilitate adaptation (like ITM)? (v)

(+) Larger populations are less susceptible to gene swamping
and are more likely to locally adapt but also benefit less
from potentially favorable gene flow® (Equation 9) ()

Note: (+) and (-) indicate a positive or negative effect on coral cover, respectively. (V) and (X) indicate that the hypothesis was supported or

unsupported, respectively.
?Hoegh-Guldberg et al. (2017).
PLindsey et al. (2013).

“Norberg et al. (2012).

9Botsford et al. (2009).
€Lenormand (2002).

fBrown and Kodric-Brown (1977).
EMatz et al. (2020).
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FIGURE 1 Mean total coral cover (sum of both functional types) (a-c) and mean trait values with sea surface temperatures (d-f) averaged
across all reefs in the Caribbean, Southwest Pacific, and Coral Triangle under RCP 4.5 (solid lines) and RCP 8.5 (dashed lines). Trajectories are
shown at three levels of additive genetic variance: V = 0 (violet), V = 0.01 (blue-green), and V = 0.1 (yellow-green). Error bounds refer to the
25th and 75th percentiles among reefs. Mean SSTs across each network are shown in gray (d-f)

(RCP 4.5) in the Caribbean and CT but not under strong warming
(RCP 8.5), while in the SWP, corals maintained a small amount of
cover even under severe warming (RCP 8.5; Figure S3). For moder-
ate genetic variance (V = 0.01), warming was projected to cause coral
declines until 2050, followed by slow recovery that did not reach his-
torical levels by 2300 (Figure 1). In general, higher genetic variance
(V) led to higher minimum and final coral cover across each region
(Figure 1). The Coral Triangle retained the highest coral cover while
the Caribbean had the lowest cover across all V.

Across regions, substantial spatial variation in coral cover was
apparent under mild warming (Figure 2; Figures S4 and S5). In
the Caribbean, the sites with the highest coral cover were found
near the Bahamas and south of Cuba. In the Southwest Pacific,
the high cover reefs were near American Samoa and the area be-
tween Papua New Guinea and the Solomon Islands. In the Coral
Triangle, the highest cover reefs were near the Paracel Islands in
the South China Sea and the Greater Sunda Islands in Indonesia.
However, spatial patterns were different by the end of the more

severe warming scenario (RCP 8.5) in the Caribbean and the Coral
Triangle (Figure S4). In the Caribbean, only Bermuda and two sites
off the coast of South America had surviving corals, while in the
Coral Triangle, only sites near Hainan, China, and in the southern
Great Barrier Reef maintained coral cover by the end of the projec-
tion (Figure S4 b,d,f). Sensitivity testing without larval fecundity or
with lower fecundity (g = 0 or g = 0.05, respectively) revealed that
higher fecundity (in effect, increased larval production) increased
the variation of minimum coral cover values across each network
(Figure Sé6).

We also found a strong temporal correlation in coral cover
across all regions such that reefs with higher cover in 2018 tended
to also have a higher minimum cover and a higher final cover. We
found that initial and final coral cover was highly correlated with
coefficients of 0.89,0.95, and 0.85 for the Caribbean, SWP, and CT,
respectively (Figure S7a). Initial and minimum cover (Figure S7b)
and final and minimum cover (Figure S7c) were similarly highly
correlated.
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The simulations predicted time-dependent shifts in coral compo-
sition in response to warming. Slow-growing, temperature-tolerant
corals were relatively more abundant during the initial projection
period and when coral cover was lowest across regions (Figure 3a-
). In contrast, fast-growing corals with narrower thermal tolerance
recovered faster and were more abundant later in the simulation pe-
riod (Figure 3a-c; Table S3). Slow-growing, stress-tolerant corals had
more variable cover among reefs for all regions throughout the time
series, even when they were less abundant than fast-growing corals
(Table S3). Fast-growing corals were able to adapt to local tempera-
tures by 2300 across regions, whereas slow-growing corals contin-
ued to have optimal temperatures that were lower than experienced
temperatures (Figure 3d-f). In other words, the mismatch between
optimal trait and temperature was better tolerated initially by slow-
growing corals, but higher evolutionary rates in fast-growing corals
were ultimately advantageous because they were able to match
their optimal trait values to the local environment.

3.2 | Predictors of patch-scale coral cover
The strongest predictor of minimum coral cover across regions and
levels of additive genetic variance was an individual reef's destina-
tion strength (DS; Figure 4a). This network metric, which corre-
sponds to the sum of a reef's incoming dispersal links, was positively
correlated with minimum cover across all regions, levels of V, and
warming scenarios (Figure 4; Figures S8 and S9). Minimum coral
cover was also negatively associated with the initial sea surface tem-
perature (iSST) across all regions, levels of V, and warming scenarios
(Figures S8 and S9). This latter pattern was in agreement with our
evolutionary hypothesis that initially hot reefs generally received
maladapted (colder adapted) larvae from connected reefs and were
less able to adapt to warming temperatures (Table 1).

Certain predictors had a strong association with minimum
cover in one region, but not in the others. For example, prO5 was
strongly positively correlated with minimum coral cover in the
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SWP, moderately correlated in the Caribbean only with no addi-
tive genetic variance, and only weakly positively associated in the
CT (Figure 4). In the Caribbean, self-recruitment (SR) was strongly
negatively correlated with minimum cover but was only weakly neg-
atively correlated in the SWP and had a near-zero effect size in the
CT (Figure 4). Across all metrics, the effect sizes for all covariates
decreased as Vincreased (Figure 4).

Some predictors differed in their frequency distributions across
regions (Figure S10). For example, the Caribbean had higher local re-
tention of larvae than the CT and SWP. The SWP had a wider range
of ASST and iSST than the other two regions, and subsequently, a
higher proportion of cold sites. The CT had substantially higher DS,
and a greater number of rare, extremely small sites.

As a sensitivity test, we also performed simulations with no
effective fecundity (p=0) which meant that there was no dispersal
among reefs. In this scenario, only within-reef ecological and evo-
lutionary processes were important. Unsurprisingly, connectivity
metrics had weak and inconsistent associations with minimum cover
across regions without dispersal (Figure 4b). In addition, the negative

iSST effect disappeared at low fecundity, supporting mechanistic
hypotheses that the iSST effect was mediated by dispersal of lar-
vae among sites, rather than being a result of within-site dynamics
(Table 1).

By comparing alternate statistical models based on three hy-
potheses, (1) Connectivity-only with LR, SR, and DS; (2) Temperature-
only with ASST and iSST; and (3) Warm-adapted gene flow with pr05
and DS), we found that the Warm-adapted gene flow model per-
formed better than the Temperature-only and Connectivity-only mod-
els across all regions based on AAIC and R? values (Tables S4-56).

4 | DISCUSSION

Reefs around the world are projected to experience frequent severe
bleaching and mortality events during this century (Donner, 2009;
Frieler et al., 2013; Logan et al., 2014; van Hooidonk et al., 2013). In
this study, we implemented climate change projections across the
Caribbean, Southwest Pacific, and Coral Triangle, and we explored
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(based on iSST). Results are for RCP 4.5 and g = 0.5 in part (a) and for V =

a suite of temperature- and connectivity-based reef patch charac-
teristics to assess their relative impact on coral adaptive potential.
Despite differences in dispersal and SST patterns among the re-
gions, we find that several important general conclusions emerged.
First, our model provides further evidence of corals’ capacity to evo-
lutionarily adapt, but that such recovery would not be possible with-
out evolution (Bay et al., 2017; Matz et al., 2020; Walsworth et al.,
2019). Coral populations in our model collapsed with no additive
genetic variance (V = 0), and we found that the declines were less
severe under more rapid evolution. Second, differences in minimum
coral cover were associated with both connectivity and tempera-
ture, including the proportion of incoming larvae and relative SST,
which can help inform conservation strategies designed to maintain

coral cover. Lastly, we explicitly modeled the dynamics of two coral

0.01 for part (b)

life-history strategies and found that an initial loss of fast-growing
corals over the coming century may be offset by their faster recov-
ery if thermal conditions stabilize.

We examined whether temperature and larval connectivity
characteristics were useful for explaining which reefs would persist
with high cover and which would not. Analyses of past bleaching
events have found that temperature-based metrics, including mean
SST, temporal variability of SST, and degree heating weeks (a mea-
sure of thermal stress) are strong predictors of past coral bleaching
and mortality at specific sites (Hughes et al., 2018; McClanahan &
Maina, 2003; Safaie et al., 2018; Sully et al., 2019; Welle et al., 2017).
Studies that link larval connectivity patterns to marine population
persistence typically focus on the network scale and calculate cen-
trality metrics to identify sites which disproportionately contribute
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to metapopulation growth (Kininmonth et al., 2019; Treml & Halpin,
2012; Watson et al., 2011). Our work focused on integrating these
two types of metrics with additional site-specific connectivity mea-
sures such as destination strength (Thompson et al., 2018), self-
recruitment, and local retention (Burgess et al., 2014; Hastings &
Botsford, 2006), as several previous studies have asserted that lar-
val settlement and recruitment rates directly limit the local popula-
tion size (Caley et al., 1996; Hughes, 1990; Menge et al., 2003). This
comprehensive assessment not only highlighted the independent
contributions of temperature and connectivity to coral persistence
and adaptation but also the importance of their interactions for fu-
ture reef persistence when there is potential for an evolutionary
response.

While evolution has a broadly positive effect on coral per-
sistence at all sites and across all regions, variation exists among
sites’ resilience to ocean warming due to differences in temperature
and connectivity. We found a consistently positive effect of a reef's
destination strength and a consistently negative effect of initial SST
on minimum cover during warming, regardless of region or level of
genetic variance. The positive effect of destination strength likely
operated through the ecological effects of larval immigration, im-
plying that the demographic benefits of connectivity outweighed
the potential negative evolutionary effects of gene swamping
(Lenormand, 2002). Furthermore, the negative effect of initial SST
was likely due to warmer reefs receiving cold-adapted larvae: as the
network warmed, cold-adapted larvae arriving in relatively warm
reefs counteracted evolutionary adaptation (McManus et al., 2021;
Norberg et al., 2012).

Recently, Matz et al. (2020) found that pre-warming SST and the
fraction of recruits immigrating from sites that were at least 0.5°C
warmer (prO5) were strong predictors of reef persistence in the
Indo-West Pacific. Larvae that were pre-adapted to warmer condi-
tions strongly benefited cooler reefs, consistent with genetic the-
ory (Norberg et al., 2012). Our results support some of Matz et al.’s
findings: we found that initial SST and prO5 were relatively effec-
tive predictors in our model, although neither was as effective as
destination strength. There are a few potential reasons for this dis-
crepancy. Matz et al. (2020) used an individual-based model based
on forward genetic simulations, which was fundamentally different
to our metapopulation approach with mean-field local interactions,
and also included fewer predictors in their statistical model. Matz
et al. also explicitly included a “juvenile” coral stage where locally
maladapted individuals may have experienced mortality before re-
production, whereas in our model, immigrants were immediately in-
corporated into the local population. Nevertheless, our study adds
robust support for the importance of relative SST and the quantity
and traits of incoming larvae on future coral cover, as these findings
were consistent across (1) all three regions with different connectiv-
ity matrices (with different underlying assumptions) and unique SST
trajectories and (2) multiple eco-evolutionary models (this study and
Matz et al., 2020). These ecological and evolutionary interactions
highlight the importance of considering both sets of processes to
understand future reef states.

Previous studies also projected spatial variation in coral de-
clines. Couce et al. (2013) implemented a statistical habitat suitabil-
ity model to project global coral habitat suitability in response to
ocean warming and acidification for years 2010, 2040, and 2070.
They found the greatest declines in the Western Pacific Warm Pool,
which corresponds to much of the Coral Triangle and northern SWP
in our model where we also found marked declines in cover. The
regions projected to maintain high suitability for corals in the Couce
et al. model also correspond to most of the regions which maintain
cover in our model (e.g., Southern Great Barrier Reef in both the CT
and SWP regions, Greater Sunda Islands, South China Sea in the CT,
American Samoa, and the Solomon Islands in the SWP). However,
the Couce et al’s model projects that the entire Caribbean will main-
tain high suitability, or even increase in suitability, while our model
projects severe declines in cover throughout much of the region.
Differences in our results are expected due to the imperfect cor-
relation between habitat suitability and abundance, as the former
ignores all biological processes, as well as the coarser resolution of
their model inputs (1 x 1 degrees). Matz et al. (2020) projected a
similar spatial distribution of declines across the Coral Triangle as
seen in our model and the Couce et al. results, with the highest de-
clines occurring in near equatorial reefs and higher maintenance of
coral cover in northwestern and southeastern reefs away from the
equator. However, the Matz et al.’s study projected less severe coral
cover declines in both warming scenarios as compared to our model.
This could be attributed to differences in the way that reproduction,
dispersal and genetic variation were specified in our two models, as
well as the combination of parameter values used in the simulations.
Overall, our work provides additional support for several projected
geographic patterns of coral persistence that have been previously
reported, despite the application of vastly different approaches.

Our results indicate that shifts in coral community composition
in response to increasing temperatures should be expected and
may be reversed during coral population recovery. In our simula-
tions, the fast-growing coral with a narrow temperature tolerance
(with stronger strength of selection) experienced greater initial
declines but also exhibited a higher capacity for adaptation rela-
tive to the slow-growing species. Our fast-growing coral closely
resembles branching corals from the family Acroporidae (Darling
et al., 2012). While this may imply that acroporid populations in
the Caribbean can eventually recover when warming stabilizes, we
note that the observed declines in real populations are primarily
attributed to disease (Aronson & Precht, 2001), herbivore die-
offs (Lessios, 2016) and local stressors (Cramer et al., 2020), all
of which we did not model, in addition to thermal stress (Hughes,
1994). We also do not model the possibility of range expansion in
response to increases in temperature, which has been observed in
the acroporid fossil record (Baird et al., 2012; Precht & Aronson,
2004; Yamano et al., 2011). Additionally, genomic analyses indi-
cate that acroporids experienced a period of population decline
following the Mid-Pleistocene Transition (global cooling), and then
a period of rapid diversification and population growth following
the Northern Hemisphere Glaciation (global warming and sea-level
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rise; Mao et al., 2018). While our model indicates that acroporids
may be more sensitive to short-term (years to decades) shifts in
temperature than other scleractinian families, their fossil record
and genome indicate that they may be poised for long-term range
expansion in a warmer climate, given their survival.

Several regional differences in population dynamics were ap-
parent in our simulations. For example, there was higher initial coral
cover, slower recovery, and more evolutionary lag (a larger mismatch
between coral traits and local temperature) in the Coral Triangle,
which has a larger number of reefs and greater rates of potential
larval recruitment. The lowest minimum coral cover occurred in
the Caribbean, which had fewer reefs and high local retention of
larvae. The Caribbean also experienced the longest pre-recovery
period. The Southwest Pacific had the least evolutionary lag and
correspondingly recovered to near-historical levels of coral cover by
2300. The SWP experienced the least warming on average, had the
greatest variation in temperature and warming across the network,
and had a higher proportion of cool sites, all of which may have con-
tributed to the region's recovery.

To our knowledge, no other study has modelled multiple regional
coral networks under an eco-evolutionary framework, and thus the
regional differences suggested by our model stand to be tested. The
observed regional differences in population dynamics are likely due
to intrinsic differences in temperatures and dispersal among the
regional networks, but may also be due, in part, to methodological
differences in the models used to generate the connectivity relation-
ships in our model (Schill et al., 2015; Thompson et al., 2018; Treml
et al., 2008). These results suggest that future research and manage-
ment should consider the unique characteristics of each region and
that there is a need for additional regional comparison studies. While
difficult to implement, consistent dispersal simulation approaches
across regions would assist with these comparisons.

Although destination strength and initial SST had consistent ef-
fects across all regions, we also found that the types of reefs most
likely to survive future warming differed among regions in important
ways. For example, self-recruitment had a stronger negative associ-
ation with cover in the Caribbean, and area had a stronger negative
effect in the Coral Triangle. Self-recruitment is an indication of the
“openness” of a reef, or the amount of larval input from the rest of
the network relative to the contribution from the reef itself. In other
words, reefs with high self-recruitment received a lower proportion
of larvae from locations other than their own. The Caribbean's pre-
vailing surface currents tend to move larvae from warm sites to cold
sites or other warm sites, but rarely from cold to warm (Carrillo et al.,
2015; Chollett et al., 2012). Thus, open reefs in the Caribbean gen-
erally received evolutionarily neutral or beneficial larvae and only
rarely received maladapted larvae. Relatively closed reefs in this
region did not experience the synergistic benefits of demographic
support and beneficial gene flow from warm-adapted larvae. Next,
the stronger negative association of area with minimum cover in
the Coral Triangle was likely due to the wider range of reef areas
in this region, including the presence of extremely small sites that
were much less abundant in other regions. Therefore, this region

S ey

was more likely to contain connections between sites with a large
difference in area. Because the quantity of larvae dispersing in our
model scaled with both reef area and coral cover, larger sites were
more likely to demographically support smaller sites than vice versa,
leading to a strong association between reef size and minimum cover
in the CT. Again, these results suggest that future research and man-
agement would benefit from considering the unique characteristics
of each region.

Evolution mitigated the impact of the environmental variation
among sites in each regional network. As additive genetic variance
decreased, the magnitudes of coefficients associated with all net-
work factors increased. In other words, with reduced evolutionary
capacity, the local temperature and connectivity of each site had
a greater effect on its coral cover. In contrast, all sites tended to
have higher cover if evolutionary capacity was high. Thus, the main-
tenance of genetic variation in coral networks would help support
coral persistence across a range of environments. With little evolu-
tionary potential, we can expect that well-connected small reefs in
colder microclimates are most likely to persist under warming.

Our projections contained a number of important assumptions.
We assumed that within-reef coral dynamics were identical among
reefs and regions, except for temperature and network connectiv-
ity. This assumption allowed us to investigate evolutionary, network,
and environmental effects on coral cover, holding other character-
istics constant. In reality, coral communities in different regions are
composed of different species (beyond our model of fast and slow
corals) that have varied responses to environmental stress (Darling
et al., 2012). We also assumed that the corals’ thermal optima and
growth rate were not correlated to other traits which affect fitness;
however, the rate of adaptation seen in our model may not be possi-
ble if thermal tolerance trades-off with other traits affecting fitness
(Etterson & Shaw, 2001). In addition, we only tracked coral cover
in two dimensions, which ignored three-dimensional reef struc-
tural complexity that plays a prominent role in ecosystem services
(Darling et al., 2019). Some coral communities may also exhibit eco-
logical alternative stable states when interactions with macroalgae
are included (Mumby et al., 2007). In this study, we did not include
non-coral species and chose to parameterize the model to ensure
coexistence, rather than alternative stable states between the corals
(Tekwa et al., 2020). While this choice allowed for outcomes that
were not as sensitive to initial conditions, one interesting avenue for
future investigation would be the interaction of evolution with eco-
logical alternative stable states. Eco-evolutionary feedbacks have
been linked to alternative community compositions in lake systems
(Strauss, 2014; Walsh et al., 2012) and may have similar impacts on
coral reefs (Mumby et al., 2007). Another caveat is that the times-
cale of initial decline in coral cover and subsequent recovery can
only be interpreted qualitatively. Our results suggest that eventual
recovery is possible with evolution, but it is not possible to infer
from our model when recovery will occur. That is because recovery
timescales are affected by both growth rates and additive genetic
variance, which are difficult to measure and may vary greatly across
species and regions (but see Anderson et al., 2017; Carilli et al., 2010;
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D’Croz & Maté, 2004; Edmunds, 2005; Jokiel & Coles, 1977 for es-
timates of coral growth rates; Dziedzic et al., 2019; Kirk et al., 2018;
for estimates of additive genetic variance). Lastly, we note that our
results are limited to assessing the response of individual reefs to
warming; the impact of any particular reef on the network is beyond
the scope of this work.

Based on our results, some general strategies are likely benefi-
cial for coral conservation under warming. First, limiting greenhouse
gas emissions and hence warming will facilitate coral adaptation,
as demonstrated by the stark differences in coral cover between
RCP4.5 and RCP8.5. Second, evolutionary potential is critical for
mitigating coral loss and facilitating recovery of corals around the
world, both during and after warming. Thus, policies that maintain
genetic diversity are likely to have important long-term benefits.
For example, implementing protection across environmentally dis-
tinct sites can maintain relatively high additive genetic variance
at the network scale by preserving populations that are locally
adapted to different thermal regimes (Baums et al., 2019; Howells
et al., 2013). Because higher genetic variance also leads to per-
sistence at local scales, genotyping approaches to quantify local
genetic variation can help inform conservation and restoration ef-
forts (e.g., protecting sites with high diversity; Baums et al., 2019).
Third, our results identify the characteristics of reefs that are likely
to maintain coral cover versus those that will likely experience sig-
nificant coral declines. For example, relatively cool reefs with high
larval input may have a greater chance of coral cover maintenance
or recovery in response to conservation measures that aim to mit-
igate external stressors such as reductions in local sedimentation
(Bégin et al., 2016; Dubinsky & Stambler, 1996) and nutrient input
(Dubinsky & Stambler, 1996). On the other hand, warm reefs with
low larval input may benefit the most from larval supplementation
(Cruz & Harrison, 2017) or restoration efforts (Baums et al., 2019;
Ladd et al., 2018) since they are predicted to have less recovery
potential overall. This finding also has implications for reef manag-
ers in terms of site selection criteria for management interventions.
Managers could intentionally aim to include some cooler reefs and
those with high larval settlement (resistant reefs), as well as some
hotter reefs and those with low larval settlement (vulnerable reefs)
within the managed network. Including a portfolio of reef types
within a managed network helps to facilitate multiple means of ad-
aptation to warming, including evolutionary and demographic res-
cue, in addition to local adaptation (Mumby et al., 2011; Walsworth
etal., 2019).

Our projections suggest that a future for corals is possible if
warming is limited. Maintaining evolutionary potential and habi-
tat connectivity are both important for the continued existence of
coral populations. While we predict a sharp decline in reef cover,
we also expect recovery with sufficient genetic variability under a
less severe warming scenario. In this work, we linked individual reef
characteristics to coral cover response in three major reef networks.
Future work can build on these results to investigate how conser-
vation strategies could harness adaptive potential across the reef
network as a whole under climate change.
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