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Abstract

Background: Ionizing radiation is an established carcinogen, but risks from low-dose exposures are controversial. Since the
Biological Effects of Ionizing Radiation VII review of the epidemiological data in 2006, many subsequent publications have
reported excess cancer risks from low-dose exposures. Our aim was to systematically review these studies to assess the mag-
nitude of the risk and whether the positive findings could be explained by biases. Methods: Eligible studies had mean cumula-
tive doses of less than 100 mGy, individualized dose estimates, risk estimates, and confidence intervals (CI) for the dose-
response and were published in 2006-2017. We summarized the evidence for bias (dose error, confounding, outcome ascer-
tainment) and its likely direction for each study. We tested whether the median excess relative risk (ERR) per unit dose equals
zero and assessed the impact of excluding positive studies with potential bias away from the null. We performed a meta-
analysis to quantify the ERR and assess consistency across studies for all solid cancers and leukemia. Results: Of the 26 eligi-
ble studies, 8 concerned environmental, 4 medical, and 14 occupational exposure. For solid cancers, 16 of 22 studies reported
positive ERRs per unit dose, and we rejected the hypothesis that the median ERR equals zero (P = .03). After exclusion of 4
positive studies with potential positive bias, 12 of 18 studies reported positive ERRs per unit dose (P =.12). For leukemia, 17 of
20 studies were positive, and we rejected the hypothesis that the median ERR per unit dose equals zero (P = .001), also after
exclusion of 5 positive studies with potential positive bias (P =.02). For adulthood exposure, the meta-ERR at 100 mGy was
0.029 (95% CI = 0.011 to 0.047) for solid cancers and 0.16 (95% CI = 0.07 to 0.25) for leukemia. For childhood exposure, the
meta-ERR at 100 mGy for leukemia was 2.84 (95% CI = 0.37 to 5.32); there were only two eligible studies of all solid cancers.
Conclusions: Our systematic assessments in this monograph showed that these new epidemiological studies are character-
ized by several limitations, but only a few positive studies were potentially biased away from the null. After exclusion of these
studies, the majority of studies still reported positive risk estimates. We therefore conclude that these new epidemiological
studies directly support excess cancer risks from low-dose ionizing radiation. Furthermore, the magnitude of the cancer risks
from these low-dose radiation exposures was statistically compatible with the radiation dose-related cancer risks of the
atomic bomb survivors.
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The evidence for cancer risks provided by epidemiological stud-
ies of low-dose ionizing radiation exposure is of key relevance
to radiation protection because a large fraction of the popula-
tion is exposed to low doses of ionizing radiation from diagnos-
tic medical procedures or occupationally, in addition to natural
background radiation. Careful and sophisticated interpretation
of the results from these studies is required, however, because
the risks are likely to be small compared with those associated
with nonradiation risk factors, studies may have power below
80% (the conventional threshold of adequacy in this respect),
dose estimation may be limited and/or retrospective, and stud-
ies may suffer from biases typical of observational studies such
as confounding.

The last major US review of the epidemiological and experi-
mental evidence for cancer risks from low-dose exposures
(which we denote as <100 mGy) in 2006 concluded that “the
available scientific evidence is consistent with a linear dose-
response relationship between ionizing radiation and the devel-
opment of cancer in humans” (1). This conclusion was largely
based on studies of populations exposed to higher doses com-
bined with experimental data. Subsequent to 2006, several new
epidemiological studies of populations exposed primarily to low
doses have been published, and several existing studies have
reported new results from extended follow-up. Most of these
new publications report excess cancer risks from low-dose radi-
ation exposures. The aim of this monograph is to systematically
evaluate whether there is direct human evidence of excess can-
cer risks from low-dose (<100 mGy) radiation exposure, and if
so, what the magnitude of the risk is and whether the positive
findings could be explained by biases.

Here, we provide a synthesis from our in-depth systematic
assessments of the methodology for the eligible studies pub-
lished during 2006-2017 that we evaluated and the associated
potential for the risk estimates to be biased because of dose er-
ror, confounding, selection bias, or outcome misclassification
(2-5). We assess for each study the direction of the biases from
any of these sources. As a general evaluation of whether the
studies support cancer risks from low-dose ionizing radiation,
we conducted a sign test for whether the median of the excess
relative risks (ERRs) equals zero and then calculated the impact
of excluding the positive studies identified as being biased away
from the null. Finally, to quantify the magnitude of the esti-
mated risks, we conduct a meta-analysis for all solid cancers
and for leukemia from childhood or adulthood exposure to low-
dose ionizing radiation.

Methods

We included epidemiological studies published since the
Biological Effects of Ionizing Radiation VII report in 2006 (1) and
before 2018. Studies were eligible for inclusion if they were
based on human populations exposed to low-dose, predomi-
nantly low-linear energy transfer, radiation (mean cumulative
dose < 100 mGy). We required individualized dose estimates for
the study participants and that the publications provided risk
estimates and confidence intervals (CI) for the dose-response
for cumulative radiation dose. For a full description of the eligi-
ble studies, see the overview paper in this monograph (6). In
brief, we used the results of the methodological assessments
conducted in this monograph [dosimetry (2), confounding (5),
outcome (4)] to derive, for each aspect, an assessment of the po-
tential for bias in the risk estimate and the direction of the bias.
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Summarizing the evaluations of the different study aspects
was as follows. We assessed the strengths and weaknesses of
dosimetry systems with respect to the directness, complexity,
and completeness of the dosimetry, the dosimetric uncertainty,
and the validity of dose estimates (2). This process identified
studies with a known or suspected bias in dose estimates and
the likely direction of the bias in the risk estimate.

In assessing the evidence for confounding and selection
bias, we summarized methods to control confounding and
assessed the likelihood of uncontrolled confounding as well as
its direction (5). This assessment was based on available data
from the eligible studies and related publications including
some examples of quantitative bias assessment to examine the
potential magnitude of the bias.

The outcome evaluation paper in this monograph reviewed
the possible impact of differential outcome ascertainment
across radiation dose levels (4). The evaluation also considered
loss to follow-up, under- or overascertainment of cancer out-
comes, misclassification of outcomes, and changing classifica-
tions over time. The main objective was to identify studies
whose outcome ascertainment was differential regarding expo-
sure level and, hence, to bias the relative risk estimate.

We then performed a summary of the assessments of differ-
ent biases for each study and carefully considered both the di-
rection of the observed effect and the direction of the bias. For
our general question of whether the studies overall support ex-
cess cancer risks (as opposed to the question of the magnitude
of the risk), our priority was to identify the positive studies with
bias in the positive direction or bias of uncertain direction. If
there were several biases acting in different directions, or it was
not possible to determine the potential direction, we classified
these studies as potentially biased away from the null. Because
the magnitude of bias is difficult to determine from the pub-
lished reports, we conservatively counted any study with a neg-
ative ERR estimate as negative regardless of any potential for
bias. We also indicated whether the estimated power (if avail-
able) was low (<50%) or reasonable (>50%) (3).

We performed a one-sided sign test for the reported ERRs,
separately for solid cancers and for leukemia, to evaluate the
hypothesis that the median of the ERRs per unit dose equals
zero vs the alternative that the median ERR per unit dose
exceeds zero (7). The sign test excluded the INWORKS study (8,
9) because it is a pooled analysis of UK, French, and US nuclear
workers, which were included separately. To assess the impact
of the studies identified as potentially biased, we then repeated
the sign test after excluding the studies where bias adjustment
could move a positive ERR toward the null. A one-sided P value
less than .05 was considered statistically significant.

Finally, we conducted a meta-analysis of the published ERR
estimates at 100 mGy to quantify the magnitude of the risk and
to assess the consistency across studies for both all solid can-
cers and leukemia. Here we excluded the INWORKS study (8, 9)
because of overlap as described above and the US Radiologic
Technologists (USRT) studies (10-12) because only site-specific
ERRs were reported. All other studies were included regardless
of potential bias because, as described above, we generally
could not quantify the magnitude of the bias and hence the
magnitude of bias-corrected ERRs and because only excluding
the subset of positive studies with positive biases could bias the
summary risk estimate toward the null. We generated standard
errors of the ERR at 100 mGy based on the upper (UL) and lower
limit (LL) of the confidence interval as (UL-LL)/2*1.96 or (UL-LL)/
2*1.645, depending on whether 95% or 90% confidence intervals
were reported, respectively. We acknowledge that this is an
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approximation that may not be fully adequate given the skewed
dose distributions and small numbers of cases in some of the
studies. The meta-ERR estimate was derived from a random
effects model using the iterative method of Paule and Mandel
(13) as outlined in DerSimonian and Kacker (14). We also com-
puted Cochran’s Q, which is the weighted sum of squared differ-
ences between individual study effects and the pooled effect
across studies, to test homogeneity, as well as the I statistic
[variance due to heterogeneity (15)]. If homogeneity was
rejected, we excluded the studies with the largest signed contri-
bution to the Q statistic. Meta-ERRs were calculated separately
for studies on adult solid cancers, adult leukemia, and child-
hood leukemia. We did not calculate meta-ERR estimates for
childhood solid cancers two studies reported ERRs.

Results

Of the 26 eligible studies, we found that 3 studies had a known
or suspected bias in dose estimates that could bias the risk esti-
mate away from the null because of possible recall or selection
bias [Chornobyl residents (16), Chornobyl liquidators (17),
Ukrainian Chornobyl liquidators (18); Tables 1 and 2] and 1
study that was likely biased toward the null [Three Mile Island,
leukemia (19)]. The direction of potential dose bias was uncer-
tain in the USRT study on breast cancer (12). Among the 3 case-
control studies of leukemia in Chornobyl liquidators (17, 18) and
residents (16), individual dose estimates relied extensively on
information obtained by interview after case ascertainment. In
2 of these studies there was evidence from the manuscripts that
the risk estimate was reduced after exclusions of a study center
[Chornobyl residential childhood leukemia study (16)] and proxy
respondents [Ukrainian liquidators leukemia study (18)].

Our evaluation of confounding and selection bias identified
several sources that could bias the risk estimates: clinical indi-
cation for studies of medical diagnostic exposures during child-
hood and lifestyle factors for environmental, medical, and
occupational studies of adult cancers, and for occupational
studies, other workplace exposures and healthy worker survivor
bias. In addition to the impact of a potential dose error consid-
ered above (2), the Chornobyl residential case-control study (16)
may also have suffered from control selection bias that may
have upwardly biased the risk estimate. We assessed that a po-
tential for uncontrolled confounding biasing the risk estimate
toward the null from healthy worker survivor bias was espe-
cially likely for the Korean workers (29) and Japanese nuclear
workers (33) studies, which did not adjust for socioeconomic
status or duration of employment, and the German nuclear
workers study (35), which did not adjust for birth cohort and so-
cioeconomic status (Tables 1 and 2). For the solid cancer results
in the Canadian (34) and German nuclear workers study (35)
and the leukemia findings in the Japanese nuclear workers
study (33), bias adjustment would move the ERR toward the
null. For the Japanese nuclear workers, the direction of the bias
was uncertain, given that smoking may be a positive con-
founder in this cohort (40). Therefore, we could not draw a de-
finitive conclusion on the impact of bias adjustment with the
available data.

Four studies may have had cancer ascertainment possibly
differential by radiation exposure, which could have biased the
risk estimate. These include the Japanese nuclear workers (33)
with bias toward the null through early loss to follow-up during
periods with higher radiation exposure; the Chinese back-
ground study (20) with possible bias away from the null because

of a higher loss to follow-up in regions with lower background
radiation exposure compared with regions with high back-
ground radiation exposure; the cardiovascular imaging study
(25), possibly biased away from the null because those undergo-
ing diagnostic or therapeutic procedures with imaging were
more likely to have cancer outcomes detected; and the Korean
radiation workers population (29), where medical surveillance
was required for radiation workers but not for the general popu-
lation or for the worker comparison group (manufacture of mo-
tor vehicles) (Tables 1 and 2).

When considering the 3 potential biases for the 22 studies
of solid cancers, there were 3 studies with negative ERR esti-
mates where adjustment would likely move the ERR toward
the null [Three Mile Island (19), Canadian (34), and German
nuclear workers (35)] and 4 studies with positive ERR esti-
mates where it was uncertain whether adjustment would
move the ERR toward or away from the null [Canadian cardiac
imaging (25), Korean (29) and Japanese workers (33), and USRT
breast cancer (12); Table 1]. For leukemia, there was 1 study
with a negative ERR where adjustment would likely have
moved the ERR toward the null [Japanese workers (33)], 3
studies with a positive ERR where adjustment would likely
have moved the ERR toward the null [Chornobyl residents
(16), Chornobyl liquidators (17), and Ukrainian Chornobyl
liquidators (18)], and 2 positive studies where the direction of
the bias was uncertain [Chinese background (20) and Korean
workers (29); Table 2].

For solid cancers, 16 of 22 studies reported a positive ERR,
leading to rejection of the hypothesis that the median ERR per
unit dose equals zero (P = .03) from the sign test
(Supplementary Table 1, available online). After exclusion of the
4 studies for which bias adjustment could move a positive ERR
toward null [Canadian cardiac imaging (25), Korean workers
(29), Japanese nuclear workers (33), and USRT breast cancer
(12)], 12 of the remaining 18 studies were positive (P = .12). For
leukemia, 17 of 20 studies were positive, and we rejected the hy-
pothesis that the median ERR per unit dose equals zero (P =
.001) (Supplementary Table 2, available online). This conclusion
was not changed by the exclusion of 5 studies [Chornoby] resi-
dents (16), Chinese background (20), Korean workers (29),
Chornobyl liquidators (17), and Ukrainian Chornobyl liquidators
(18)] for which bias adjustment could move a positive ERR to-
ward null (P =.02).

Power to reject the null for these studies was evaluated un-
der atomic bomb survivor-based alternative hypotheses. For all
cancers except leukemia, studies with a statistically signifi-
cantly elevated ERR (at the 5% level) had reasonable power
(>50%), whereas studies with statistically nonsignificant ERR
estimates had low power (<50%). The only exception was the
basal cell carcinoma analysis within the USRT study (11), with a
statistically nonsignificant negative ERR estimate in the pres-
ence of reasonable power (Table 1). For leukemia, the pattern
was less clear. Although the power of studies with statistically
nonsignificant ERR estimates was generally low, 3 studies with
statistically significant ERR estimates were estimated to have
low power [UKNRRW (30), UK pediatric CT (27), and Taiwanese
residents (24)] and 2 studies to have reasonable power [Great
Britain (GB) background (21) and INWORKS (8)] (Table 2).

In the meta-anaylsis for all solid cancers following adult-
hood exposure, homogeneity was not rejected only after exclu-
sion of the Canadian cardiac imaging study (25) (P = .63), which
introduced statistically significant heterogeneity because of the
very small standard deviation in relation to the size of the ERR.
Based on the remaining 13 studies, the meta-ERR at 100 mGy
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was 0.029 (95% CI = 0.011 to 0.047) with 10% of the variability
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Study ERR (95%Cl)
Environmental
Three Mile Island < >-1.000 ( -6.000, 3.000)
Chinese background —t—— -0.101 ( -0.253, 0.095)
Techa River B 0.077( 0.013, 0.150)
Taiwanese residents * = 0.040( 0.010, 0.080)
Occupational
Korean workers * > 0.720 ( -0.500, 2.100)
UK NRRW = 0.030( 0.000, 0.056)
Korean nuclear workers 0.210( -0.190, 0.900)
Rocketdyne workers —_— -0.020 ( -0.180, 0.170)
Japanese workers T 0.130( -0.030, 0.300)
Canadian nuclear workers < -0.120 ( <-0.150, 0.240)
German nuclear workers -0.100 ( -0.400, 0.100)
US nuclear workers o 0.010( -0.020, 0.050)
French nuclear workers * — 0.040 ( -0.040, 0.130)
SUMMARY - 0.029 ( 0.011, 0.047)
* 90% confidence interval
4 5 0 5 1

Excess Relative Risk at 100 mGy (95% CI)

Figure 1. Meta-analysis of the excess relative risk (ERR) at 100 mGy for all solid cancers after adulthood radiation exposure. The size of the ERR symbol is proportional

to the inverse variance of the study-specific ERR. CI = confidence interval.

leukemia: P = .01 for 13 of 16 positive studies). As an alternative,
we recommend future analyses of individual subjects exposed
to cumulative doses less than 100 mGy, as recently done for leu-
kemia after childhood exposure (57). The 5 studies which were
excluded because they only published risk estimates for catego-
ries of dose were mostly null (50-54). It is possible that the non-
increasing categorical risks were the reason for not presenting
risks per continuous dose, which could be a form of reporting
bias. Finally, 2 background radiation studies used dose rate in-
stead of cumulative dose (55, 56). Both were largely null.

A recent review conducted by the National Council on
Radiation Protection and Measurements (NCRP) (58) assessed
the different, albeit related, question of whether the recent epi-
demiological data from 29 low-dose and low-dose rate studies
support the linear-no-threshold (LNT) model for radiation pro-
tection purposes. There were considerable differences between
the studies included in the NCRP review and ours; only 12 of the
studies were in both reviews. One reason for the difference in
eligible studies is that we restricted our review to low-dose
studies, defined as mean cumulative dose less than 100 mGy.
The approach to reviewing the evidence was also different.
NCRP adopted the traditional approach to assessing study qual-
ity and excluded several studies because they were classified as
low quality. As we have shown in this monograph, there is not
always a direct relationship between study quality and bias.
Some of the studies that were classified as high quality could

still have been subject to bias [eg, the Japanese nuclear workers
study (33)], and those judged as poor quality are not necessarily
biased [eg, the GB background study (21) and the Taiwanese res-
idents study (24)]. We showed formally that mostly these meth-
odological issues and errors are unlikely to have resulted in
biases that would have impacted the interpretation of the study
results. Nevertheless, after their exclusions, the NCRP commit-
tee still concluded that “twenty studies [of the 29 reviewed,
with the committee designating 4 studies as inconclusive] (80%)
provided some support for the LNT model, including five stud-
ies (20%) providing strong support and four (16%) providing
moderate support” (58). As mentioned previously, the Biological
Effects of Ionizing Radiation VII (1) and other earlier reviews of
evidence for cancer risks from low doses mostly depended on
epidemiological studies of higher dose exposures and then in-
voked the LNT assumption from experimental data to support
the conclusion that low doses are likely to cause cancer.
Although we cannot rule out the possibility that the risks are
influenced by higher doses, our results, derived from studies
with a mean cumulative dose of less than 100 mGy, apply to
populations that are mostly exposed to low doses and therefore
directly address the question of whether there is epidemiologi-
cal evidence for cancer risks from low-dose exposures. Despite
the different approaches and different studies included, the 2
previous reviews (1, 58) and the pooled analysis of leukemia af-
ter childhood exposure to doses less than 100 mGy (57) are all in
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Study ERR (95%Cl)
Environmental
Three Mile Island < >19.000 ( -3.000, 45.000)
Chinese background 1.068 ( =-0.000, Inf)
Taiwanese residents * g 0.150( 0.030, 0.240)
Occupational
Korean workers * > 1680 ( -3.400, 14.900)
Chornobyl liquidators —— > 0500( -0.380, 5.700)
UK NRRW ro— 0.180( -0.006, 0.500)
Rocketdyne workers 0.060( -0.500, 1.230)
Japanese workers -0.190( -0.610, 0.860)
Ukrainian Chornobyl liquidators — 0221( 0.005 0.761)
Canadian nuclear workers > 1.440( <-0.150, 14.600)
German nuclear workers 0.400( -0.300, 1.100)
US nuclear workers o— 0.170( -0.020, 0470)

US atomic veterans

-0.500 ( -14.000, 4.000)

French nuclear workers*

SUMMARY

* 90 confidence interval

0350 ( <0.000, 1.600)

e 0.160( 0.070, 0.250)

i3 1

0 1 2

Excess Relative Risk at 100 mGy (95% CI)

Figure 2. Meta-analysis of the excess relative risk (ERR) at 100 mGy for leukemia after adulthood radiation exposure. The size of the ERR symbol is proportional to the

inverse variance of the study-specific ERR. CI = confidence interval.

Study ERR (95%Cl)
Environmental

Chornobyl residents 3.200( 0.800, 8.400)

GB background ———— 12.000 (  3.000, 22.000)

Swiss background 3.600( -0.300, 7.700)

Finnish background
Medical

French pediatric CT

UK pediatric CT

SUMMARY

-3.000 ( -11.000, 6.000)

1.600( -2.300, 2.700)
3.000( 0.300, 10.900)
2.840( 0.370, 5.320)

T T

-10 0

10 20

Excess Relative Risk at 100 mGy (95% CI)

Figure 3. Meta-analysis of the excess relative risk (ERR) at 100 mGy for leukemia after childhood radiation exposure. The size of the ERR symbol is proportional to the

inverse variance of the study-specific ERR. CI = confidence interval.

general agreement with our result that there is evidence of can-
cer risks from low-dose ionizing radiation. Our summary risk
estimates from the meta-analysis are broadly consistent with
the Life Span Study of atomic bomb survivors (41, 42).

The observation that most of the study findings were posi-
tive (ERR>0) raises the question of whether there could be

publication bias. Because these epidemiological studies re-
quired extensive effort and all had the primary (and usually the
only) aim of evaluating whether low-dose ionizing radiation
causes cancer, the likelihood that a null or statistically nonsig-
nificant result would not be published is likely quite low in our
view. Furthermore, the field of radiation epidemiology is
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Table 3. Meta-analysis of excess relative risks (ERR) at 100 mGy for all solid cancers and leukemia

Outcome No. of studies

Adult solid cancer 14*

Adult solid cancer excluding the Canadian 13*
cardiovascular imaging study due to heterogeneity

Adult leukemia 141

Childhood leukemia 6

ERR at 100 mGy (95% CI) P Cochran Q (P) I?
0.055 (~0.0027, 0.112) 03 37.25 (<.001) 0.65
0.029 (0.011, 0.047) <.001 9.89 (.63) NA
0.160 (0.070 to 0.250) <.001 412(99) NA
2.840 (0.370 to 5.320) .01 6.40 (.27) 0.22

*Excluding INWORKS and site-specific results from US Radiologic Technologists.
tExcluding INWORKS.

relatively small and we are not aware of recent studies or
updates that were not published, although a few were published
or submitted for publication after the study period.

Confidence intervals and study power need to be considered
in interpreting study findings. The confidence intervals for ERRs
from all eligible studies included positive values; for the positive
estimated ERRs, the upper confidence limits were often several
times the estimate. Thus, even when the null hypothesis could
not be rejected, findings were compatible with positive effects.
It should also be noted that a statistically significant estimate in
a low-power study may reflect a false-positive finding and sug-
gest that the estimated ERR is biased. However, one should be
cautious about the assessments of statistical power reported
here [Tables 1 and 2; and see also Gilbert et al. (3)] because they
are based on summary data reported by the study and several
assumptions, most importantly that the ERR from the Life Span
Study can be transported to other populations.

To our knowledge, this monograph provides the first sys-
tematic assessment of the impact of methodological issues and
errors on the risk estimate in the studies of low-dose radiation
exposure eligible for our analysis. More generally, we used a
novel approach in this systematic review to formally assess
biases based on published data combined with epidemiological
and statistical theory. Traditionally, systematic reviews classify
the quality of a study but without formally considering whether
the quality of information translates into a bias. For example,
low-quality dosimetry does not automatically result in bias [eg,
the GB background study (21)]. In addition, the direction of the
bias, and, if possible, the magnitude of the potential bias need
to be assessed. Without these further considerations, exclu-
sions based on quality or potential bias could result in substan-
tial loss of information. Such an approach has been recently
recommended over other approaches, such as the use of a “risk
of bias” checklist (59).

There were, however, several limitations to our review.
Primarily because we were working only with published data,
there were several instances where we had insufficient infor-
mation to assess the direction of the bias. As examples, this oc-
curred in assessing the direction of confounding if the
relationship between the exposure and the confounder was not
published, the lack of quantitative estimates about the com-
pleteness of follow-up, and absence of information about the
completeness and accuracy of vital statistics and cancer registry
data for studies using linkage of the cohort with such databases.
We also could not assess the magnitude of the bias in most sit-
uations because the required data were not available in the pub-
lications. Our summary analysis was therefore limited to the
simple sign test, which does not take into account the size or
precision of the estimated ERRs, because alternative tests are
based on the actual values (t test) or their ranks (Wilcoxon

signed rank test). We have made several recommendations in
each of our papers that would facilitate assessments of bias in
the risk estimates in the future. For example, we recommend
the routine publication of assessments of dose uncertainty and
levels of loss to follow-up by exposure and outcome. Some of
the data to inform our assessments came from substudies, and
we assumed that these applied to the full study population. For
example, there was no evidence that smoking was related to oc-
cupational radiation exposure in a case-control study of leuke-
mia in US nuclear workers (60). Because smoking data were not
available for the full cohort, we assumed the findings from this
sample were generalizable. In addition, the sign test requires
that the distribution of the estimated ERRs per unit dose (under
the assumption that the true ERRs are zero) has a median of
zero, although it does not depend on the ERRs following approx-
imately normal distributions. Our assessment of whether a
study was positive or null as input for the sign test did not ac-
count for the width of the confidence intervals. Many of these
studies had wide confidence intervals, which overlapped zero,
and therefore one could argue that bias adjustment, which
moves a statistically nonsignificant positive ERR toward the
null, does not change the conclusion. Results on all solid can-
cers combine a diverse group of cancer sites. This heterogeneity
has to be taken into account when comparing results with those
for leukemia. Finally, the meta-analyses included all studies,
even those identified as potentially biased and were based on
the assumption that the estimated ERRs from the individual
studies were approximately normally distributed. With the
highly skewed dose distributions and small numbers of cases in
many of these studies, these approximations may not be accu-
rate (3). Thus, tests and confidence intervals could be distorted,
especially because the meta-analyses are based on the Wald
method. Furthermore, our assessment necessarily had a subjec-
tive component.

Age at exposure and time since exposure are important ef-
fect modifiers of cancer risk from ionizing radiation exposure,
and the eligible studies were heterogeneous in these respects. A
pooled analysis with individual subject data is necessary, there-
fore, to quantify the risk accounting for these effect modifiers.
The childhood thyroid pooling project (28) included here and
the more recently published pooled analysis of leukemia after
childhood radiation exposure (57) provide the most reliable esti-
mates of these cancer risks that account for these modifiers.
Similarly, the INWORKS study (9) reviewed here provides a reli-
able, and we judge, minimally biased, estimate of the solid can-
cer and leukemia risks from adulthood occupational radiation
exposures incorporating age and time since exposure (8, 9).

It is well established that moderate to high doses of ionizing
radiation cause cancer. As discussed in the paper by Gilbert et al
(3), the available low-dose human data also now satisfy most of
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Hill's viewpoints on causality: consistency, temporality, biologi-
cal gradient, plausibility, and coherence (61). The first of Hill’s
viewpoints, strength of effect, or in other words, magnitude of
association, is usually not met in studies of cancer risk after
low-dose radiation exposure. Large effects are an important in-
dicator of causality because they are less likely to be entirely
due to bias. However, large effects are not considered a neces-
sary aspect and indeed Hill explicitly cautions against dismissal
of weak observed associations. Our systematic assessment in
this monograph showed that these epidemiological studies of
low-dose radiation and cancer risk are characterized by several
limitations, but we found that only a small minority of the stud-
ies had biases whose correction could have moved a positive
ERR toward the null. After exclusion of these studies, the major-
ity of studies still reported positive risk estimates. We therefore
conclude that there is now a large body of epidemiological data
that supports excess cancer risks from low-dose ionizing radia-
tion, and the magnitude of the excess relative cancer risk from
these low-dose studies is statistically compatible with the
atomic bomb survivors.
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