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Abstract

Cleft palate has been linked to both genetic and environmental factors that perturb key 

events during palatal morphogenesis. As a developmental outcome, it presents a challenging, 

mechanistically complex endpoint for predictive modeling. A dataset of 500 chemicals evaluated 

for their ability to induce cleft palate in animal prenatal developmental studies was compiled from 

ToxRefDB and the biomedical literature, which included 63 cleft palate active and 437 inactive 

chemicals. To characterize the potential molecular targets for chemical-induced cleft palate, we 

mined the ToxCast high-throughput screening database for patterns and linkages in bioactivity 

profiles and chemical structural descriptors. ToxCast assay results were filtered for cytotoxicity 

and grouped by target gene activity to produce a ‘gene score’. Following unsuccessful attempts 

to derive a global prediction model using structural and gene score descriptors, hierarchical 

clustering was applied to the set of 63 cleft palate positives to extract local structure-bioactivity 

clusters for follow-up study. Patterns of enrichment were confirmed on the complete dataset, i.e., 

including cleft palate inactives, and putative molecular initiating events identified. The clusters 

corresponded to ToxCast assays for cytochrome P450s, G protein-coupled receptors, retinoic 

acid receptors, the glucocorticoid receptor, and tyrosine kinases/phosphatases. These patterns 

and linkages were organized into preliminary decision trees and the resulting inferences were 

mapped to a putative adverse outcome pathway (AOP) framework for cleft palate supported by 

literature evidence of current mechanistic understanding. This general data-driven approach offers 
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a promising avenue for mining chemical-bioassay drivers of complex developmental endpoints 

where data are often limited.

Introduction

Cleft lip and/or palate is a common birth defect occurring in 1 out of 700 live births 

worldwide (Dixon, Marazita, Beaty, & Murray, 2011), costing over $15 million annually in 

direct hospital expenses in the United States (Russo & Elixhauser, 2007). Animal models 

and human epidemiological studies have revealed complex etiology for this malformation, 

with genetic factors, environmental factors, and their interactions underlying the risk. 

The genetic factors are identified through human studies and animal models and have 

indicated potential gene pathways involved in cleft palate (Wattanawong, Rattanasiri, 

McEvoy, Attia, & Thakkinstian, 2016). A number of cleft palate teratogens have been 

identified from in vivo mammalian studies published in both the biomedical literature 

and in regulatory guideline prenatal developmental toxicity studies that routinely evaluate 

secondary palate formation (Collins, 2006). The Toxicity Reference Database (ToxRefDB) 

is the U.S. Environmental Protection Agency’s public database of animal toxicity data 

manually curated from over 3,000 guideline studies on over 500 chemicals (Martin, Judson, 

Reif, Kavlock, & Dix, 2009), many of which are also included in ToxCast. ToxRefDB 

includes multi-generational reproductive studies (Martin, Mendez, et al., 2009) and prenatal 

developmental toxicity studies (Knudsen et al., 2009) where cleft palate is one of the 

observed apical endpoints following prenatal exposure. However, the identification of 

putative cleft palate teratogens in humans is limited to case studies and epidemiological 

studies that have associated small numbers of environmental chemicals and pharmaceuticals 

with incidence of cleft palate (Hu & Shy, 2001; J. Schardein, 2000; J. L. Schardein & 

Macina, 2007).

To date, the U.S. Environmental Protection Agency’s ToxCast high-throughput screening 

(HTS) program has tested over 4000 chemicals for bioactivity, with the ph1, ph2 subsets 

from Phase II (1060 chemicals) tested across the widest variety of in vitro assays (Richard 

et al., 2016). Within the cross-Agency Tox21 project, additional screening of upwards of 

8500 chemicals, including most of EPA’s 4000 ToxCast chemicals, has yielded results for 

an additional set of approximately 100 Tox21-specific assays (Tice, Austin, Kavlock, & 

Bucher, 2013). These chemical-assay results are being used to develop new approaches 

for modeling or estimating potential toxicity (Judson et al., 2016; Kavlock et al., 2012; 

Richard et al., 2016). An important concept incorporated into many of these approaches 

is the integration of in vitro data with biological information and chemical descriptors 

utilizing in silico models that can then be used to predict in vivo toxicity (Benfenati, Piclin, 

Roncaglioni, & Vari, 2001). The goals of the ToxCast program include building predictive 

models from HTS data, either alone or in conjunction with other data such as chemical 

structures, that can be used to screen previously untested environmental chemicals (Judson 

et al., 2010). Here, we applied various methods to the goal of predicting cleft palate, 

illustrating that hybrid approaches coupled with supervised data mining can chart a path 

forward for modeling complex in vivo developmental endpoints.

Baker et al. Page 2

Birth Defects Res. Author manuscript; available in PMC 2021 September 21.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Our approach combines chemical structural information, HTS data, and results from 

guideline animal studies and the published literature to propose biological pathways 

associated with incidence of cleft palate and, ultimately, to support the development 

of a chemical-biological predictive signature for cleft palate. Computational methods 

employing ToxCast and Tox21 HTS data to build predictive models or signatures have 

been developed for liver tumors (Jack, Wambaugh, & Shah, 2011), reproductive toxicity in 

rat multigenerational studies (Martin, Judson, et al., 2009), zebrafish developmental toxicity 

(Sipes, Padilla, & Knudsen, 2011), vasculogenesis/angiogenesis (Knudsen & Kleinstreuer, 

2011), prenatal developmental toxicity in rats and rabbits (Sipes, Martin, et al., 2011), 

and male reproductive developmental toxicity (Leung et al., 2016). In some studies, the 

HTS data are integrated with information such as biological pathways (Kleinstreuer et al., 

2013; Leung et al., 2016; Sipes, Martin, et al., 2011). Studies utilizing HTS data similar 

to ToxCast have created modeling sets that combine chemical structural descriptors with in 
vitro assay data to achieve higher predictivity on the toxicity endpoints (Sedykh et al., 2011; 

I. Shah, Liu, Judson, Thomas, & Patlewicz, 2016; Wu et al., 2013; Zhu, 2013; Zhu, Rusyn, 

Richard, & Tropsha, 2008; Zhu et al., 2009). Most recently, an approach is being developed 

to explore chemical structure feature (i.e., chemotype) enrichments within local regions of 

chemical structure space as a means to amplify weak chemical-biological activity signals 

within highly structurally and mechanistically diverse datasets (Richard et al., 2016; Richard 

et al., 2018; Strickland, Martin, Richard, Houck, & Shafer, 2018). Early unpublished work 

in this area presented the conceptual chemotype enrichment approach applied to cleft palate, 

with preliminary results mined from datasets combining public and non-public cleft palate 

data for rats (Mostrag-Szlichtyng et al., 2013; Volarath et al., 2010; Yang et al., 2013).

Whereas statistical prediction of toxicity is an important goal of computational toxicology, 

in general, and of the ToxCast program, in particular, gaining an understanding the 

biological pathways and mechanistic drivers of the toxicity is equally important. This 

understanding involves relating chemicals to molecular initiating events (MIEs), and gene 

and protein targets to cellular events and, downstream, to tissue and organ phenotypes 

that potentially lead to the toxicity endpoint. The chemical and biological knowledge 

supporting a toxicity pathway can then be formalized by constructing an adverse outcome 

pathway (AOP) (Ankley et al., 2010; Villeneuve et al., 2014). Conceptually, an AOP starts 

with identifying one or more MIEs, followed by specifying the key events and key event 

relationships leading to an adverse outcome or apical endpoint, where the latter can become 

major drivers of regulatory decision-making. The availability of rich HTS data across a 

diverse chemistry landscape, coupled with guideline study results for subsets of chemicals, 

can potentially help to identify both chemical and biological drivers for MIEs and support 

AOP development.

In this work, we employ a variety of computational modeling and data-mining approaches, 

using both HTS data and chemical structural descriptors, to extract mechanistically 

informative indicators of cleft palate activity that suggest several distinct MIEs leading 

to an AOP for cleft palate. A substantial body of knowledge in the scientific literature is 

brought to bear on supporting these results as contributors to an AOP. The challenges of 

modeling a complex developmental endpoint, such as cleft palate, using limited amounts 

of data aggregated over many species, dose ranges, and study parameters, for a broadly 
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diverse chemical structure space, are not atypical of the environmental toxicology domain. 

Hence, it is hoped that the present approach will provide useful guidelines for exploring 

chemical-bioactivity drivers for a broader range of developmental toxicity endpoints moving 

forward.

Materials and Methods

Identification of cleft palate inducing chemicals

Chemicals for this study were selected from the ToxCast Phase II library, consisting of 

1060 diverse chemicals in the ph1_v2 and ph2 sub-inventories. This Phase II library 

subset has the largest ToxCast assay coverage, having been tested in a battery of over 

1400 in vitro assay endpoints to date (Richard et al., 2016). The full ToxCast chemical 

library with sub-inventories identified is available for download at https://comptox.epa.gov/

dashboard/chemical_lists/toxcast; Phase II ToxCast assay data results are available at https://

www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data.

Two sources of information were mined to identify chemicals in the ToxCast Phase II library 

that had evidence linking them to cleft palate: ToxRefDB version 1 (Knudsen et al., 2009; 

Martin, Judson, et al., 2009) and the biomedical literature in PubMed. ToxRefDb is available 

here: ftp://newftp.epa.gov/comptox/High_Throughput_Screening_Data/Animal_Tox_Data/. 

In total, 63 chemicals from the library were linked to cleft palate in animal models (CP­

positives; Table 1). Evidence for 30 CP-positives in rats or rabbits were documented in 

ToxRefDB and the remaining 33 were identified from evidence in rats, rabbits, mice, or 

hamsters and from epidemiological studies in the biomedical literature (described below). To 

be as inclusive as possible for this initial modeling effort, we did not eliminate chemicals 

based on a dose threshold, maternal toxicity, or whether cleft palate was part of a syndrome 

or associated with cleft lip. An additional 437 chemicals were identified and labelled CP­

negatives. These chemicals had ToxCast HTS and ToxRefDB apical endpoint data with 

no record of causing cleft palate when they were tested in prenatal developmental studies 

in which cleft palate was an evaluated. Literature-based searches for CP-positive ToxCast 

chemicals utilized a novel high-throughput text-based search tool (Baker & Hemminger, 

2010; Kleinstreuer et al., 2013) applied to Medical Subject Heading (MeSH) annotations 

from > 25 million citations in PubMed (queried 05/2016). First, we queried this database to 

find chemicals described with one of the subheadings: toxicity, poisoning, or adverse effects, 

and that occurred in the same article in which the term ‘cleft palate’ was annotated. The 

resulting chemical list was curated manually (i.e., association of the chemical to the cleft 

palate endpoint were reviewed for accuracy) and cross-referenced with chemicals tested in 

ToxCast to confirm the presence of bioactivity data for inclusion in the study.

Data elements

To represent chemical structural features, we used a publicly available set of fingerprints 

referred to as “ToxPrints”, also referred to as “chemotypes” (Yang et al., 2015). ToxPrints 

consist of structural fragments including groups of atoms, bonds, alkyl chains of varying 

lengths, rings with and without aromaticity or heteroatoms, and groups (e.g. carbohydrates, 

amino acids). A sample ToxPrint for a triazole moiety, that captures bond type (aromatic) 
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and heterocycle information, is illustrated in Figure 1. The publicly available set of 729 

ToxPrints was designed to capture the diversity of chemicals in public sources of toxicity 

data and, although they do not capture every structural element, they represent key features 

(alerts and scaffolds) that may trigger safety concerns in regulatory workflows (available for 

download at https://toxprint.org).

For this analysis, we used a filtered and summarized version of the ToxCast data outcomes 

referred to as “gene scores”. The filtering process removes ToxCast activity outcomes 

that are likely the result of cell stress and non-specific bioactivity (Judson et al., 2016). 

The remaining assay results were then passed to the summarization step, wherein the 

results from ToxCast assays that target the same gene are averaged using the logAC50 

(M) as previously described (Leung et al., 2016) and also summarized in the Supplemental 

Material.

Construction of datasets and approach

The primary dataset used in this analysis consisted of chemical identifiers linked to chemical 

structures in EPA’s DSSTox database (assigned to a unique DTXSID substance ID and 

CASRN for each structure), gene scores, ToxPrint chemotype incidence (0 or 1), and an 

indicator for cleft palate activity (0 or 1) for each chemical. This full dataset consisted of 

279 gene scores and 383 chemotypes across 63 CP-positive and 437 CP-negative chemicals 

(500 total chemicals). (Supplemental Material) The overall methodology is depicted in 

Figure 2 and an illustration of the modeling set construction is available in Supplemental 

Material Table 1. Phase I of the methodology includes the predictive modeling of the entire 

dataset using hybrid descriptors. Phase II consists of exploratory methods comprised of a 

clustering approach within the cleft palate active subspace using both ToxPrint descriptors 

and gene scores, whose results are then combined with literature inferences to inform the 

creation of initial decision trees and putative AOPs.

Predictive Modeling and Clustering

The Weka data mining software (Hall et al., 2009) version 3.8.1 was used for the 

predictive model building. Preliminary range-finding runs were performed to find the 

best combinations of classifiers and attribute selection methods. The Naïve Bayes with 

Chi-squared attribute selection criteria produced consistent models and thus was used in 

the final model-building runs. There was a large imbalance in the number of chemicals 

that were cleft palate actives versus inactives. Classification algorithms are not effective in 

data sets with this extreme imbalance, so resampling was employed to equalize the sets. 

The resampling was performed before each run. Each dataset was tested with and without 

resampling over 50 iterations.

Partek Genomics Suite version 6.6 (Partek, Inc., Chesterfield, MO) was used to cluster the 

chemicals using the gene scores and ToxPrint chemotype fingerprints. In each case, the rows 

(representing chemical signatures) were clustered using Pearson’s Dissimilarity metric and 

Ward’s Method. A cluster colorization count of 10 was specified. To adjust for the difference 

between the range of values for gene scores and the binary 0/1 values of the chemotype 
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columns, to give them approximately equal weights, the chemotype values were weighted by 

a factor of 3.

Results

I. Global Prediction

The goal of the prediction phase was to determine whether a global model for predicting 

cleft palate activity could be derived using machine-learning methods and a hybrid 

descriptor set comprised of chemical structural elements (ToxPrint chemotypes) and 

biological activity (gene scores). Three configurations of the full modeling set were tested 

in a series of exploratory machine-learning analyses to determine whether a hybrid training 

set of assay results and chemotypes was more predictive of cleft palate activity than either 

gene score assay results or chemotypes alone. The first dataset consisted of all attributes for 

the full set of 500 CP positives and negatives, including 279 gene scores from ToxCast and 

383 ToxPrint chemotypes. Next, reduced sets of either gene sets alone or chemotypes alone 

were tested. The results (Table 2) show that algorithms run on the three datasets were not 

successful at predicting CP positive chemicals. The true positive rate measures the accuracy 

rate for identifying cleft palate active chemicals. The best true positive rate was achieved 

by prediction on the chemotype-only set (0.37); prediction using the gene score-only dataset 

yielded the worst true positive rate (0.28). These results showed weak capacity to predict 

CP-positives statistically by association with chemical structure or gene score information 

alone.

II. Cluster analysis

The weak performance of the initial modeling attempts led us to reason that there were 

not enough chemical or biological features in common within either the CP-positive or CP­

negative chemical subsets for the classifier to find patterns significant enough for successful 

models. To investigate this possibility, we focused just on the CP-positive chemicals and 

clustered this subset by gene scores and chemotype. The resulting cluster diagram (Figure 

3) shows that the 63 CP-positive chemicals had a wide variety of bioactivity patterns 

and structural patterns, but some distinct clusters emerged when examined visually. We 

hypothesized that chemical-bioactivity profiles share an underlying pattern that could be 

used to infer an MIE. Six clusters were selected for further evaluation. This selection was 

based on prior interest and background knowledge. We examined each of the six clusters to 

determine what attribute (molecular activity or structural feature) contributed significantly to 

the cluster, and then we examined the CP-negatives and CP-positives together with regard to 

that significant attribute to see if any local predictivity emerged.

Cluster A (Figure 4) comprises six chemicals. Structurally, aldrin, endrin, and dieldrin 

appear very similar to each other, and retinol and retinoic acid are also highly related, 

whereas aspirin is a structural outlier. These distinct structure classes, in turn, are grouped 

by biological similarity with respect to retinoic acid receptor assay activity (Figure 4i). Five 

of the compounds in the cluster have potent activity at the RARA, RARB, and RARG 

targets, and the sixth chemical, aspirin, has low activity at RARA, RARB, and RARG. 

We restricted our biological focus to these three RARs but extended our chemical focus to 
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both CP-positive and CP-negative chemicals. A dataset was created of both CP-positive and 

CP-negative chemicals that had activity at any of the three retinoic acid receptors RARA, 

RARB, and RARG. This dataset contained gene scores and chemotypes for 73 chemicals: 

12 were CP-positives and the remaining 61 were CP-negatives. However, the CP-positives 

did not cluster together and were instead distributed throughout the space, indicating that 

this set of biologically focused features did not resolve CP-positives from CP-negatives 

(data not shown). We sorted the chemicals by their activity at each of the RAR targets, in 

turn. Whereas the sorted list of RARA and RARB did not show any visible enrichment for 

CP-positive chemicals, the sorted list of hits on the RARG gene score showed that all of 

the chemicals in Cluster A, except aspirin (with a low gene score of 4.39), were ranked in 

the top 10 with four at the top of the list (Figure 4iii). Bromuconazole, a chemical with no 

evidence linking it to cleft palate, had a high gene score (10.8) for RARG and is the only one 

of 7 chemicals with a score over 8.0 that is CP-negative (Supplementary Table 2).

Cluster B contains seven CP-positive chemicals that demonstrated activity in the cytochrome 

P450 in vitro assays (Figure 5). Six of these chemicals are conazoles and, consequently, 

contain several structural elements in common, including a triazole ring, represented by 

ToxPrint 617 (Figure 1). The seventh, monobutyl phthalate, does not contain the triazole ring 

common to the other chemicals in the cluster. The chemicals in Cluster B hit at least one 

of the cytochrome P450 genes. To begin our examination of Cluster B, we selected the 30 

chemicals in our original dataset that contained a triazole ring or the similarly constructed 

thiadiazole and clustered them by their gene scores to see if this group of chemicals showed 

patterns in bioactivity that would discriminate between the CP-positives and CP-negatives. 

The resulting diagram shown in Figure 5iii has two primary subclusters: one (top cluster 

in the figure) has a mixture of CP-positives and CP-negatives, while the bottom cluster has 

CP-negative chemicals only. The CP-positives significantly associate with the top cluster in 

Figure 7 (P = 0.02) by a 2×2 chi-squared test of independence.

Cluster C contains chemicals that hit a variety of G-protein coupled receptors (GPCRs) : 

SR125047 (a pharmaceutical), volinanserin (MDL 100907), haloperidol, chlorpromazine, 

and diphenhydramine. The ToxCast activity is consistent with their known, published 

activity. Volinanserin is a serotonin 5-HT2a receptor antagonist (Marek & Aghajanian, 

1994); haloperidol and chlorpromazine are dopamine receptor antagonists; diphenhydramine 

is a histamine H1 receptor antagonist. Four of the five chemicals in Cluster C 

(chlorpromazine, volinanserin, haloperidol, and diphenhydramine) hit several genes in 

common, including the adrenergic alpha 2B receptor, dopamine D1 receptor, serotonin 

5-HT1A receptors, and the serotonin 5-HT7 receptor (Figure 6). For each of these receptors 

in turn, we looked at both the CP-positives and CP-negatives with assay results and 

chemotypes to identify internal patterns in the restricted space. The clustering results 

for adrenergic alpha 2B (Figure 6iii) showed two coherent clusters determined by visual 

inspection. One cluster of 5 chemicals had no CP-positive chemicals, and the other had 

significantly associated CP-positives (P = 0.02) by a Chi-squared test of independence. 

We performed a similar clustering exercise on the 14 chemicals in the set that hit 

serotonin 5-HT1A, the 13 chemicals that hit serotonin 5-HT7, and the 13 chemicals that 

hit dopamine D1. None of these analyses showed a clean separation between CP-positives 

and CP-negatives. A visual inspection of the clusters showed that chemicals that fell into 
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the CP-positive cluster bind more than one type of GPCR and could thus be considered 

“promiscuous” in this context.

Cluster D contains three known ligands of glucocorticoid receptor: triamcinolone, 

corticosterone, and cyproterone acetate (Figure 7). The central gene target in Cluster D 

is the glucocorticoid receptor (GR) (gene NR3C1). A simple ranking of the chemicals (both 

the CP-positives and CP-negatives) demonstrated a qualitative positive association between 

gene score and CP-positive chemicals. Of the 32 chemicals in this set that had activity 

at the glucocorticoid receptor, eight are known to cause cleft palate (Supplemental Table 

3). When the chemical list is ranked by the potency, three of the top five chemicals are 

CP-positives: corticosterone, triamcinolone, and cyproterone acetate (Figure 7iii). Of the top 

four chemicals that hit the glucocorticoid receptor, mifepristone is the only one with no clear 

evidence that it causes CP.

Cluster E contains two chemicals: caffeine and theophylline. These chemicals have 

both similar structural elements and similar activity at the adenosine receptors and 

phosphodiesterase 10 (PDE10), the key gene targets behind the cluster (Figure 8). 

Caffeine and theophylline are the only two chemicals that hit PDE10. In contrast to 

Cluster B, the chemicals that hit the adenosine receptor represented in Cluster E are not 

particularly promiscuous. Most chemicals that hit ADORA1 (A1 adenosine receptors) also 

hit ADORA2A (A2a adenosine receptors), but there is little CP activity for these chemicals 

in the set of GPCR targets in Cluster C. When all the chemicals hitting the adenosine A1 

receptor are sorted by gene score, an enrichment is apparent (Figure 8iii). Three of the five 

top chemicals in the sorted list are CP-positives.

Cluster F contains four chemicals: valproic acid, oxytetracycline dihydrate, mancozeb, 

and a metabolite of mancozeb, ethylene thiourea (Figure 9). Although the four chemicals 

in Cluster F do not share common structural features (Figure 9ii), all four hit protein 

tyrosine phosphatase, non-receptor type 4 (PTPN4), three hit protein tyrosine phosphatase, 

non-receptor type 9 (PTPN9), and three hit phosphatase and tensin homolog (PTEN). Four 

out of the top five chemicals in the sorted list of chemicals that hit PTPN4 are CP positives, 

with the only exception being maneb, which had the highest gene score for PTPN4 and is 

structurally related to mancozeb, yet maneb is not associated with cleft palate (Figure 9iii). 

PTPN9 and PTEN were less strongly associated with CP positive chemicals. Mancozeb and 

oxytetracycline dihydrate were both positive for phosphatases PTPN4, PTPN9, and PTEN 

and exhibited non-zero gene scores for receptor tyrosine kinases (RTK) FLT4, CSF1R, 

FGFR1, and IGF1R, which suggests that the activity of chemicals in cluster F may generally 

be associated with altered protein tyrosine kinase/phosphatase activity.

III. Decision Tree Stumps

Growth and fusion of the embryonic palate is a complex process involving many 

biochemical interactions with the potential of being disrupted by outside agents acting 

through various MIEs. This inherently complex biological phenomenon was difficult to 

predict globally using a modeling approach with a combination of biological and chemical 

descriptors, applied to a highly imbalanced dataset consisting of 13% CP-actives. We 

subsequently found that local chemical-bioactivity patterns identified through clustering 
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of CP-actives had some predictive capability. Conceptually, the methods in the second 

phase of this work can be seen as the initial steps in building a decision tree framework 

for identifying putative CP-positive chemicals, a framework in which the initial nodes are 

indicated through clustering ToxCast bioactivity profile and chemotype information. (Initial 

nodes or one level decision trees are called stumps.)(Witten, Frank, & Hall, 2011) For 

example, RARG was a strong contributor to the formation of a cluster (Cluster A) and, when 

CP-positive and CP-negative chemicals were sorted by RARG gene score, the chemicals at 

the top of the list were enriched for CP-positives. If we transform these observations to a 

decision tree stump, RARG gene scores are the initial decision node (Figure 10a). A gene 

score cutoff of 8.0 parses two groups of chemicals, one with predominantly CP-positives and 

the other with predominantly CP-negative chemicals. The separation is far from complete, 

and so the next steps in tree-building would focus on confirming the initial branches, as well 

as finding attributes to be tested in subsequent branches to continue to separate CP-actives 

from inactives. The trees in Figures 10d, 10e, and 10g are similar; they can be seen as first 

decision branches in trees with GR receptor activity, ADORA1 activity, and PTPN4 activity, 

respectively, with initial node inputs and gene score cut-offs serving as decision points.

Figure 10b depicts a tree stump describing what was learned from investigating Cluster B. 

In this case the top node is entered if the chemical contains a triazole ring. The clustering 

of CP-positives and CP-negative chemicals with triazole rings shown in Figure 5iii shows 

two distinct clusters, one with no CP-positives, and one with a mix of CP-positives and 

CP-negative chemicals. The question marks on Figure 10b indicate that it is hard to tell 

what attribute, or more likely, combination of attributes, contribute to the separation of the 

two clusters in Figure 5iii. A decision tree that accurately separates triazole-containing 

compounds into CP-positives and CP-negatives could build upon early efforts using 

chemotype enrichment approaches, in which both expanded structural frameworks and 

physical chemical properties (e.g., charge on triazole linkage atom) were suggested to 

further discriminate CP-actives (Mostrag-Szlichtyng et al., 2013; Volarath et al., 2010; Yang 

et al., 2015). Similar constraints apply to the tree in Figure 10c. This tree is an attempt to 

depict what is shown in the subcluster diagram from Figure 6iii. Although there is some 

effective separation of chemicals visible in the diagram, it is difficult to tell what set of 

attributes likely contributed to the results. That ambiguity is reflected in the tree diagram 

by question marks. On the other hand, Figure 10f depicts a simpler tree stump: only two 

chemicals had gene scores >0 for PDE10A and they were both CP-positives.

IV. Adverse outcome pathway (AOP) construction

We have identified a number of gene targets that may be molecular initiating events (MIEs) 

in AOPs for cleft palate. To evaluate the hypothesis that the gene targets behind the 

clusters are likely MIEs for cleft palate, we performed a review of biomedical literature 

in PubMed (Baker, Knudsen, & Williams, 2017) for known links between the genes and 

cleft palate in order to construct putative AOPs. The broad steps in palate development 

are well characterized and provide pathways potentially involved in the disruption of that 

development. Palate development comprises a complex set of events that take place over 

several days in the developing embryo (Bush & Jiang, 2012). The beginning of palate 

development is considered the migration of neural crest cells to the first branchial arch. 
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The formation of the secondary or hard palate begins in mice on day 11 (E11) with 

the outgrowth of the palatal shelves from each of the maxillary processes. The shelves 

initially grow vertically alongside the tongue. Between E13 and E14, the shelves elevate 

to a horizontal position above the tongue (Ray & Niswander, 2012). The elevation and 

subsequent expansion of the shelves across the oral cavity brings the two shelves into 

contact and allows fusion to take place. The fusion step is complex, requiring that the 

epithelium that covers each of the shelves adheres and the basal epithelium of the two 

opposing shelves forms a seam referred to as the midline epithelial seam (MES). In normal 

palatogenesis, the MES is removed and the central mesenchyme becomes continuous. 

Several events have been thought to contribute to the disappearance of the seam, including 

migration of the epithelial cells and transformation of epithelial to mesenchymal cells 

(Abbott, 2010; Bush & Jiang, 2012; Jin & Ding, 2006). More recent work attributes the 

disappearance of the seam to convergence and extrusion of the epithelial cells (Kim et al., 

2015).

AOP for perturbation of retinoic acid receptor—High doses of retinoic acid have 

been shown to cause CP in the mouse and rat, both in vivo and in palate culture models. 

Retinoic acid is the physiological ligand for RARs, and retinol is a close structural analog. 

The activated RAR downregulates the TGFβ/Smad signaling pathway (Degitz, Morris, 

Foley, & Francis, 1998; Liu et al., 2014), which, in turn, modulates the ratio of MMP2 

and MMP9 (Greene, Nugent, Mukhopadhyay, Warner, & Pisano, 2003) and tissue inhibitors 

of metalloproteinases (TIMP) (Li et al., 2014) in the extracellular matrix (ECM). The net 

effect of disrupting the ratio of MMPs and TIMPs would be perturbed remodeling of the 

structural proteins and proteoglycans of the palatal shelves and, thus, altered structural 

integrity of the palatal ECM (Li et al., 2014). Changes to the amount and stoichiometry of 

the proteoglycans can have important structural repercussions. Shelf elevation is thought to 

be powered by the hydration of glycosaminoglycans and hyaluronic acid, which are both 

hygroscopic molecules that sequester a significant amount of water. Their downregulated 

remodeling by excess retinoic acid during the critical period of palatogenesis could diminish 

palatal growth and retard the elevation of the palate into the position required for fusing into 

an intact structure (Li et al., 2014). Indeed, mice receiving high doses of retinoic acid have 

smaller palatal shelves (Huang, Lu, Chen, & Liao, 2003).

Excess retinoic acid may exert an influence during the later stages of fusion of the palatal 

shelves as well as during the growth and positioning of the palatal shelves. Literature 

supports the observation that excess retinoic acid signaling prevents the medial edge 

epithelial (MEE) cells from differentiating or transforming, thus preventing the palatal 

shelves from fusing (Abbott & Birnbaum, 1990; Abbott, Harris, & Birnbaum, 1989). 

Retinoic acid may also prevent apoptosis of the MEE cells (Shimizu, Aoyama, Hatakenaka, 

Kaneda, & Teramoto, 2001) thereby preventing their disappearance from the MES and the 

formation of the intact palate. Figure 11 shows a putative AOP framework for cleft palate. 

One plausible MIE is retinoic acid receptor activation associated with the chemicals in 

Cluster A (retinoic acid, retinol, Aldrin, Endrin, and Dieldrin).
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AOP for CYP26 inhibition—The triazole compounds in Cluster B are anti-fungal agents 

used in agriculture and to treat human fungal infections. These compounds are thought 

to inhibit the cytochrome P450 enzyme CYP51 in fungi, thereby interfering with steroid 

biosynthesis involved in the construction of the fungal walls (Menegola, Broccia, Di Renzo, 

& Giavini, 2006). In mammals, triazoles inhibit a variety of CYPs, including CYP3A4, 

CYP2C9, CYPC19, and CYP26. In development, CYPs may play a role in controlling the 

synthesis and elimination of morphogenic compounds in a temporal and spatial manner 

to drive development of the embryo (Stoilov, Jansson, Sarfarazi, & Schenkman, 2001). 

In palate formation, the action of CYP26 is likely very important because the enzyme 

degrades retinoic acid. Blocking CYP26 causes endogenous retinoic acid to accumulate, 

disrupting the fine-tuned regulation of retinoic acid needed for correct development. The 

azole compounds ketoconazole and itraconazole are potent inhibitors of CYP26A1, one of 

the CYP26 isoforms, while fluconazole is a weak inhibitor (Thatcher et al., 2011). Further 

indirect evidence that fluconazole inhibits CYP26 is that administration of fluconazole 

causes transient increases in endogenous levels of retinoic acid in a dose-dependent 

manner and increases its half-life (Menegola, Broccia, Di Renzo, Massa, & Giavini, 2004; 

Schwartz, Hallam, Gallagher, & Wiernik, 1995; Van Wauwe, Coene, Goossens, Cools, & 

Monbaliu, 1990). In rat embryos, co-administration of low concentrations of retinoic acid 

and fluconazole worked synergistically to cause severe teratogenic effects, suggesting an 

interactive mechanism (Menegola et al., 2004). In summary, there is evidence that azole 

compounds bind not only the cytochrome P450s in ToxCast, but some of them may also 

bind one of the forms of CYP26. Because chemicals that inhibit CYP26 cause an increase 

in retinoic acid levels, these azole compounds likely cause CP by the same mechanism as 

exogenous retinoic acid. Therefore, disruption of CYP26 constitutes a plausible MIE for 

cleft palate (Figure 11).

AOP for perturbation of GPCR targets—The neurotransmitter GPCR targets in 

Clusters C and E have been linked to cleft palate in the literature. Palate mesenchyme 

is derived from neural crest cells. There is evidence that ligands and receptors for 

neurotransmitters are present and active in palate tissue (Garbarino & Greene, 1984; 

Greene, 1989). Norepinephrine, epinephrine, dopamine and serotonin have all been shown 

to be present in developing palate tissue (Greene, 1989; Wee, Babiarz, Zimmerman, & 

Zimmerman, 1979). Serotonin antagonists have been shown to inhibit palate shelf rotation in 

embryo culture. Serotonin activity has been hypothesized to engender a contractile motion in 

the palatal shelves that is non-muscular in basis and contributes to proper positioning of the 

shelves for fusion (Babiarz, Allenspach, & Zimmerman, 1975).

DNA synthesis in murine palate mesenchymal cells can be modulated by addition of 

beta-adrenergic agonists and antagonists. This activity is receptor-mediated and correlates 

with levels of cyclic adenosine monophosphate (cAMP) (Pisano, Schneiderman, & Greene, 

1986). The cAMP pathway is modulated by a number of GPCRs. Because the CP-positive 

chemicals in Cluster C hit more than one GPCR, it may be that the MIE is not activity 

at one receptor, but activity at several receptors, in perhaps an additive or cooperative 

fashion (Chan, Yeung, & Wong, 2005; Selbie & Hill, 1998). Since cAMP modulation is 

correlated to cell proliferation, palate growth may be affected by GPCR disruption of cAMP. 
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cAMP is also known to control the production of glycosaminoglycans in the extracellular 

matrix (Greene, MacAndrew, & Lloyd, 1982). Between day 15 and 16 of rat development, 

increasing levels of cAMP are associated with a slowdown in DNA synthesis and increase 

in synthesis of glycoprotein molecules important for adhesion of the palatal shelves and 

eventual fusion (Pratt & Martin, 1975). The AOP for cleft palate depicted in Figure 11 

includes GPCR disruption as a MIE.

AOP for phosphodiesterase inhibition—Caffeine and theophylline are also known 

phosphodiesterase inhibitors. Phosphodiesterase is the enzyme that degrades cAMP and 

attenuates its signal, and blocking this enzyme results in higher levels of cAMP. 

Theophylline has been used experimentally to enhance the effect of cAMP on the increased 

synthesis of glycosaminoglycans in mouse embryo palate mesenchyme (Greene et al., 

1982). Whether the effects of caffeine and theophylline stem from their effects on adenosine 

or on phosphodiesterase or both is unknown, but it is likely that the cAMP pathway is an 

important factor. Disruption of cAMP signaling via chemical interference of adenosine or 

phosphodiesterase (by the chemicals in Cluster E) is a plausible MIE for cleft palate that 

is intricately tied with disruption of GPCR signaling via the chemicals in Cluster C (Figure 

11).

AOP for Protein Tyrosine Kinase/Phosphatase Inhibition—Growth factor signaling 

through receptor tyrosine kinases plays known roles in palatal shelf growth, elevation, 

adhesion, and fusion. Chemicals in cluster F were predominantly active in protein tyrosine 

phosphatase assays, while mancozeb and oxytetracycline dihydrate showed activity in 

receptor kinases with known (FGFR1) or suspected (IGF1R) activity during palatogenesis. 

Deficient FGFR2 signaling inhibits palatal shelf elevation (Rice et al., 2004), while deficient 

FGFR1 signaling in cranial neural crest cells inhibits both shelf elevation and fusion (Wang 

et al., 2013). TGFβ signaling is involved in palatal shelf adhesion and fusion (Bush & 

Jiang, 2012). However, only 4 CP positives and 28 CP negatives showed activity against 

TGFβ1, demonstrating poor specificity for cleft palate. Signaling through the epidermal 

growth factor receptor (EGFR) is critical for proper palatogenesis. Excess EGF signaling in 
vivo (Hassell, 1975) inhibits complete palate fusion, whereas Egfr knockout mice exhibit 

cleft palate in vivo and incomplete palatal explant fusion in vitro (Miettinen et al., 1999). 

EGF signaling is related to MMP activity during palatogenesis, as palates from Egfr 
knockout mice exhibit reduced MMP activity (Miettinen et al., 1999). Whereas 18/497 

of the chemicals studied here hit EGFR, only 4 were CP positive, indicating only a weak 

enrichment. The poor predictivity of EGFR or TGFβ1 interference with cleft palate suggests 

synergistic interference of other pathways may segregate the effects of CP positives from CP 

negatives in cluster F. Other pathways including BMP (Bush & Jiang, 2012) and PDGFR 

(Xu, Bringas, Soriano, & Chai, 2005) are involved in palatogenesis but are not reflected in 

ToxCast. Phosphatases and kinases together fine-tune cell signaling and cellular processes 

and regulate palate fusion in rodents (Hale, Ter Steege, & den Hertog, 2017).Phosphatases 

with known roles during embryonic development include PTEN and PTPN (Hale et al., 

2017). These genes contributed to the associations within Cluster F. PTPN4, for instance, 

was hit by all four chemicals in Cluster F. Our review of Cluster F and the biomedical 
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literature indicate that kinase activity and phosphatase activity are indispensable for normal 

embryogenesis and palatogenesis and constitute a critical MIE for the cleft palate AOP.

Discussion

Building computational models that predict in vivo cleft palate teratogenicity is a 

challenging problem. Palatogenesis is a complex process that takes place over the course 

of days and involves the finely tuned interactions of many molecular players, perturbation of 

which by chemicals may initiate a cascade of effects leading to cleft palate. We found 

that, for a set of chemicals known to cause CP in ToxRefDB and in the biomedical 

literature, an analysis of HTS bioactivity data plus chemical structure data together point 

to potential molecular initiating events leading to CP, and that clustering this data revealed 

patterns centered on GPCR targets, triazole ring-containing compounds, cytochrome P450s, 

adenosine and adrenergic receptors, and receptor kinases/phosphatases. We found that 

rudimentary decision trees could be built on the features driving the clusters and these 

trees were able to separate CP-positives from CP-negative chemicals to some extent, further 

supporting our hypothesis that these targets play key initiating roles in CP. Finally, starting 

with these putative MIEs and searching literature reports of gene and protein interactions 

in PubMed, we were able to construct a logical and plausible AOP framework for CP that 

could reasonably be the basis for further confirmatory studies, and possibly extended to 

predict human CP.

This work builds on previous research directed at building models for developmental 

toxicity from HTS data in ToxCast. Sipes et al. was the first to use ToxCast Phase I data 

to build predictive models for developmental toxicity (Sipes, Martin, et al., 2011). Using 

ToxCast Phase I data and anchored to developmental defects identified in ToxRefDB, they 

built models that achieved >70% balanced accuracy. Their endpoint was broader than that 

used here, encompassing any adverse developmental outcome, although the set of chemicals 

they used was smaller. Kleinstreuer et al. used ToxCast Phase I data to find signatures for 

developmental vasculogenesis disruption (Kleinstreuer et al., 2011). As in our work, key 

molecular signals from the signatures were incorporated into a putative AOP (Knudsen & 

Kleinstreuer, 2011). Agent-based models (Kleinstreuer et al., 2013) and several in vitro 
models (Belair, Schwartz, Knudsen, & Murphy, 2016; Ellis-Hutchings et al., 2017; Nguyen 

et al., 2017) were used to test the AOP. Wu, et al (Wu et al., 2013) also assembled chemical 

structure and biological activity data for chemicals to build a decision tree framework to 

predict developmental and reproductive toxicity. They compiled 25 categories of chemicals, 

including 6 categories based on known molecular activity (e.g., estrogen receptor binders) 

and 19 structural features (e.g., fused aromatic ring). They then built a decision tree to sort 

the developmental or reproductive toxicants from nontoxicants and demonstrated how the 

tree can be used in initial steps of chemical screening. Whereas they started with a curated 

set of chemicals and categories to define their decision points, our work used clustering 

of CP-positive chemicals, followed by statistical analysis, to identify the initial tree nodes 

using HTS ToxCast data and chemical structural features. Combining their concepts with 

ours may prove fruitful, particularly if the decision points in the tree could be based on 

strategic combination of HTS data and structural features and properties. The large corpus 
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of chemicals in ToxCast, for example, would expand the assessment to a broader chemical 

space and the assay data in ToxCast would extend the bioactivity space.

Limitations

The strategy we employed of assembling, following, and linking multiple lines of evidence 

for a chemical’s in vivo activity is a novel and promising approach to predicting and 

understanding chemical toxicity. By integrating and combining sources to accumulate 

weight-of-evidence, one can minimize the limitations of any one source of data, but 

these limitations still exist. For example, retinoic acid is a signaling molecule regulating 

animal morphogenesis as well as a well-known teratogen causing CP, and whereas some CP­

positive chemicals were listed in the top 10 score in the analysis, others such as aspirin (CP­

positive) were not. Additionally, bromuconazole was listed as a high score chemical even 

though the compound is CP-negative. Aspirin is a very weak actor at the RARG receptor 

based on the low gene score in our data. It did not rise to the top like retinol. Bromoconazole 

does however have a high score in the RARG assay and one would expect it to be positive, 

but we have no evidence. A number of reasons can explain the false positive and false 

negative results. The amount, strength or timing of chemical dose or metabolism are just 

two possible reasons. In order to compile a large set of CP-positive chemicals, we were 

inclusive and did not consider maternal toxicity, dose levels, dose timing, study type, diet, 

epigenetics or species differences. Any of these factors could have affected the observation 

of cleft palate and therefore the construction of the CP-positive chemical set. The gene 

score transformation of ToxCast data is designed to eliminate non-specific activity caused 

by cell stress and cytotoxicity, but these non-specific activities could cause developmental 

defects, including cleft palate. Additionally, the ToxCast data do not accurately reflect 

metabolism. A potential limitation of our approach is species-dependent differences in 

teratogenicity associated with select chemicals studied here. For instance, rodents modified 

to express human aryl hydrocarbon receptor (AhR) do not exhibit cleft palate in response to 

TCDD exposure (Moriguchi et al., 2003), though TCDD is a known cleft palate teratogen 

in wild-type rodents (Abbott, 2010), which suggests structural differences in AhR may 

underpin species-dependent responses to AhR-binding teratogens. Future embodiments of 

our approach will take into account species-dependent effects, which may further hone our 

list of CP positive chemicals and increase confidence in the MIEs constituting a cleft palate 

AOP.

Our methods included some arbitrary components, including weighting during clustering, 

the choice of chemical structural descriptors, and in selecting the six CP-positive subclusters 

for a deeper analysis. Prior knowledge and interest were factors in our selection of clusters. 

Modifying any one of these factors could lead to different results. The differing levels 

of specificity between the ToxCast DSSTox chemical identifiers (structure-specific with 

respect to stereo chemistry and salt form) and the less specific way in which chemicals 

are often identified in the literature introduces challenges during integration of these two 

sources. For instance, retinoic acid, retinol, and Vitamin A are used to refer to both specific 

(all-trans) and more broadly general forms of retinoids. The MeSH identifier for a chemical 

is even broader, often encompassing many forms (e.g., salts) of a chemical. When mapping 

programmatically from one set of data to another, mismatches can occur. Three forms of 
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oxytetracycline are present in the ToxCast gene score data, whereas our algorithms mapped 

only one of these to the MeSH term. Future work will need to include a strategy to handle 

mapping complex relationships like this.

Chemotype enrichment approaches using the publicly available set of ToxPrint features have 

been previously applied to study of the cleft palate endpoint, with some preliminary insights 

generated for the triazole-containing subset of cleft palate actives based on unpublished 

datasets. Chemotype enrichments calculated for the full range of ToxCast assay endpoints 

also serve as a means for using generalized chemical structure features to identify potentially 

associated assay results (Strickland et al., 2018). Future work could build on those efforts to 

strengthen or augment the decision tree nodes proposed in the present study, with the goal of 

placing of the results entirely on a structure plane since the generation of ToxCast assay and 

gene-score results is not feasible for all chemicals.

Our aims in future work include using these findings to inform more complex models of CP. 

For example, relationships between AOPs and signaling pathways not robustly developed in 

ToxCast (eg, Wnt, Shh) would be useful for bridging cross-species responses to chemicals 

causing cleft palate. The in silico cell agent-based model of palate formation described in 

Hutson et al. (Hutson, Leung, Baker, Spencer, & Knudsen, 2017) could be extended to 

include the pathways identified in the current work and linked by chemical perturbation to 

CP. With these additions, the simulation will recapitulate more of the complexity of palate 

formation and, in turn, using ToxCast results to computationally disrupt molecular activity 

in a dose-dependent fashion will allow simulation of palate dysregulation through a broader 

range of MIEs and by a wider range of chemicals. In addition to computational models, 

organotypic culture models are an emerging platform for chemical toxicity screening (Belair 

et al., 2017; Grego et al., 2017; Knudsen et al., 2015; Wolf et al., 2018). These models must 

recapitulate the biology behind the chemical effects and be appropriately characterized with 

both CP positive and negative chemicals like those identified here. With these steps, we will 

come closer to being able to predict cleft palate teratogenesis for as yet untested chemicals, a 

major goal of the ToxCast program.
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Refer to Web version on PubMed Central for supplementary material.
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derived from ToxCast is available as supplemental material to this publication.
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ToxRefDB version 1 (Knudsen et al., 2009; Martin, Judson, et al., 2009) is openly available 

at ftp://newftp.epa.gov/comptox/High_Throughput_Screening_Data/Animal_Tox_Data/.

The ToxPrint chemotypes are available for download at https://toxprint.org. (Yang et al., 

2015).
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Figure 1. 
Example of ToxPrint-617 chemotype “ring:hetero_[5]_N_triazole_(1_2_4-)” (gray bonds 

indicate aromaticity).
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Figure 2. 
Flow diagram showing planned methodology and actual methods used.
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Figure 3. 
Clustering of 63 cleft palate active chemicals by gene scores and chemotypes.
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Figure 4. 
Analysis of Cluster A. i) Details of Cluster A for Gene Scores and Chemotypes; ii) 

Chemicals in Cluster A; iii) RARG activity of CP-positive and CP-negative chemicals. 

When activity at RARG gene is sorted by the score, chemicals with a gene score over 8.0 

are enriched for CP-positive activity. This enrichment is supported by results from a Probit 

model run in R using the MASS library. RARG contributes to the probability of predicting 

CP-positives with a score of 0.07183 (p-value<.05).
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Figure 5. 
Analysis of Cluster B. i) Details of Cluster B for Gene Scores and Chemotypes; ii) 

Chemicals in Cluster B; iii) Clustering gene scores for the subset of CP-positive and 

CP-negative chemicals that contain a triazole, the key descriptor in Cluster B, or the similar 

thiadiazole ring. The two main clusters differ in their makeup. One (top) has a mix of 

CP-negative and CP-positive chemicals (1 prefixed to name indicates CP-positive) and the 

other cluster (bottom) has only CP-negative chemicals.

Baker et al. Page 27

Birth Defects Res. Author manuscript; available in PMC 2021 September 21.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 6. 
Analysis of Cluster C. i) Details of Cluster C for Gene Scores and Chemotypes; ii) 

Chemicals in Cluster C; iii) Clustering gene scores for the subset of CP-positive and 

CP-negative chemicals with activity at the adrenergic alpha 2B receptor, the key descriptor 

in Cluster C. The two main clusters differ in their makeup. One (bottom) has a mix of 

CP-negative and CP-positive chemicals (1 appended to name indicated CP-positive) and the 

other cluster (top) has only CP-negative chemicals.
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Figure 7. 
Analysis of Cluster D. i) Details of Cluster D for Gene Scores and Chemotypes; ii) 

Chemicals in Cluster D; iii) Clustering gene scores for the subset of CP-positive, the key 

descriptor in Cluster D. The two main clusters differ in their makeup. This enrichment 

is supported by results from a Probit model run in R using the MASS library. NR3C1 

contributes to the probability of predicting CP-positives with a score of 0.22721 (p­

value<.01).
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Figure 8. 
Analysis of Cluster E. i) Details of Cluster E for Gene Scores and Chemotypes; ii) 

Chemicals in Cluster E; iii) Gene scores sorted in descending order of potency for 

ADORA1, ADORA2A, and PDE10A showing enrichment at higher potencies for CP­

positive chemicals. This enrichment is supported by results from a Probit model run in 

R using the MASS library. ADORA2A contributes to the probability of predicting CP­

positives with a score of 0.11181 showing a trend with a non-significant probit coefficient. 

For PDE10A, 100% of hits were CP-positive.
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Figure 9. 
Analysis of Cluster F. i) Details of Cluster F for Gene Scores and Chemotypes; ii) Chemicals 

in Cluster F; iii) Gene scores sorted in descending order of potency for PTPN4 showing 

enrichment for CP-positive chemicals. This enrichment is supported by results from a Probit 

model run in R using the MASS library. PTPN4 contributes to the probability of predicting 

CP-positives with a score of 0.25377 (p-value<.01).
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Figure 10a – 10g. 
Decision tree stumps constructed using these results. The initial node in each diagram splits 

into sub-branches depending on the value of a descriptor. In branches a,d,e, f and g these 

decision points have been putatively identified as gene score ranges. For branches b and 

c, unsupervised clustering separates the chemicals, but the descriptors and value ranges are 

unknown. CP+ stands for CP-positive chemicals; CP- for CP-negative.
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Figure 11. 
Integrated cleft palate AOPs. An analysis of HTS data, chemotypes, and evidence from 

mining the biomedical literature resulted in a networked set of cleft palate AOPs. (RA- 

retinoic acid; GPCR – g-protein coupled receptors; GRs – glucocorticoid receptors; RTKs 

– receptor tyrosine kinases; GF – growth factor; MMP - matrix metalloproteinases; /

TIMP -Tissue Inhibitor of Metalloproteinase; TGF – transforming growth factor; ECM 

- extracellular matrix; EMT - epithelial-mesenchymal transition; MEE - medial edge 

epithelial)
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Table 1.

63 cleft palate active chemicals and source of information on their cleft palate activity.

DTXSID CASRN Name (synonym) Source

DTXSID0020442 94-75-7 2,4-Dichlorophenoxyacetic acid
(Bage, Cekanova, & Larsson, 1973; Roll & 

Matthiaschk, 1983)[*]

DTXSID8020541 57-41-0 5,5-Diphenylhydantoin (Paulson, Paulson, & Jreissaty, 1979) [***]

DTXSID2020634 51-21-8 5-Fluorouracil (Abbott et al., 1993)[*]

DTXSID8020040 309-00-2 Aldrin (Ottolenghi, Haseman, & Suggs, 1974)[*]

DTXSID7021239 302-79-4 trans-Retinoic acid (Tretinoin, all-trans-retinoic 
acid, retinoic acid) ToxRefDB

DTXSID5020108 50-78-2 Aspirin ToxRefDB

DTXSID0032520 131860-33-8 Azoxystrobin ToxRefDB

DTXSID0020232 58-08-2 Caffeine ToxRefDB

DTXSID0022808 50-53-3 Chlorpromazine (Walker & Patterson, 1974) [*]

DTXSID4020458 2921-88-2 Chlorpyrifos
(Tian, Ishikawa, Yamaguchi, Yamauchi, & 

Yokoyama, 2005)[*]

DTXSID6022474 50-22-6 Corticosterone (R. Shah & Kilistoff, 1976) [*]

DTXSID1023990 21725-46-2 Cyanazine ToxRefDB

DTXSID6043709 4449-51-8 Cyclopamine (Lipinski et al., 2008) [*]

DTXSID5020364 50-18-0 Cyclophosphamide (McClure, Wilk, Horigan, & Pratt, 1979)[**]

DTXSID6032358 57966-95-7 Cymoxanil ToxRefDB

DTXSID0032601 94361-06-5 Cyproconazole ToxRefDB

DTXSID3022873 2098-66-0 Cyproterone (Eibs, Spielmann, & Hagele, 1982) [*]

DTXSID3022877 147-94-4 Cytarabine (Ortega, Puig, & Domingo, 1991) [*]

DTXSID2021781 84-74-2 Dibutyl phthalate ToxRefDB

DTXSID5032365 1194-65-6 Dichlobenil ToxRefDB

DTXSID0020440 120-36-5 Dichlorprop (Roll & Matthiaschk, 1983)[*]

DTXSID6022923 15307-86-5 Diclofenac (Montenegro & Palomino, 1990)[*]

DTXSID9020453 60-57-1 Dieldrin (Ottolenghi et al., 1974)[*]

DTXSID1024621 111-96-6 Diethylene glycol dimethyl ether (diglyme) ToxRefDB

DTXSID3020465 56-53-1 Diethylstilbestrol
(Gabriel-Robez, Rohmer, Clavert, & Schneegans, 

1972)[*]

DTXSID6025068 84-75-3 Dihexyl phthalate ToxRefDB

DTXSID4022949 58-73-1 Diphenhydramine ToxRefDB

DTXSID6020561 72-20-8 Endrin (Ottolenghi et al., 1974) [*]

DTXSID5020601 96-45-7 Ethylene thiourea (Khera, 1987)[*]

DTXSID7032551 79622-59-6 Fluazinam ToxRefDB

DTXSID3020627 86386-73-4 Fluconazole (Tiboni & Giampietro, 2005) [*]
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DTXSID CASRN Name (synonym) Source

DTXSID3024235 85509-19-9 Flusilazole ToxRefDB

DTXSID4034150 52-86-8 Haloperidol (Szabo & Brent, 1974) [*]

DTXSID6025438 127-07-1 Hydroxyurea (Chaube & Murphy, 1966)[*]

DTXSID9020740 53-86-1 Indomethacin (Montenegro & Palomino, 1990)[*]

DTXSID7029879 65277-42-1 Ketoconazole (Mineshima et al., 2012) [*]

DTXSID2024163 330-55-2 Linuron (Matthiaschk & Roll, 1977)[*]

DTXSID0034695 8018-01-7 Mancozeb ToxRefDB

DTXSID4024195 94-74-6 MCPA (Roll & Matthiaschk, 1983)[*]

DTXSID4020822 59-05-2 Methotrexate ToxRefDB

DTXSID4040002 131-70-4 Monobutyl phthalate (Ema, Kurosaka, Amano, & Ogawa, 1995a)[*]

DTXSID1032646 4151-50-2 N-Ethylperfluorooctanesulfonamide 
(Sulfluramid) ToxRefDB

DTXSID1020930 54-11-5 Nicotine (Saad, Gartner, & Hiatt, 1990) [*]

DTXSID1034260 79-57-2 Oxytetracycline (Czeizel & Rockenbauer, 2000)[*]

DTXSID2024242 76738-62-0 Paclobutrazol ToxRefDB

DTXSID3031864 1763-23-1 Perfluorooctanesulfonic acid (PFOS) (Thibodeaux et al., 2003) [*]

DTXSID5021122 50-06-6 Phenobarbital (Sullivan & McElhatton, 1975) [*]

DTXSID5021124 108-95-2 Phenol ToxRefDB

DTXSID8024280 60207-90-1 Propiconazole ToxRefDB

DTXSID9021217 58-14-0 Pyrimethamine ToxRefDB

DTXSID3023556 68-26-8 Retinol (Vitamin A) (Lorente & Miller, 1978) [***]

DTXSID4047387 NOCAS_47387 SAR102779 ToxRefDB

DTXSID1034212 118134-30-8 Spiroxamine ToxRefDB

DTXSID3047342 NOCAS_47342 SR125047 ToxRefDB

DTXSID5021336 58-55-9 Theophylline ToxRefDB

DTXSID3023897 43121-43-3 Triadimefon ToxRefDB

DTXSID5024344 2303-17-5 Tri-allate ToxRefDB

DTXSID1040742 124-94-7 Triamcinolone ToxRefDB

DTXSID0040709 688-73-3 Tributyltin (Ema, Kurosaka, Amano, & Ogawa, 1995b) [*]

DTXSID0032497 55335-06-3 Triclopyr ToxRefDB

DTXSID9021427 51-79-6 Urethane (Nomura et al., 1996) [*]

DTXSID6023733 99-66-1 Valproic acid (Elmazar, Thiel, & Nau, 1992)[*]

DTXSID6047363 139290-65-6 Volinanserin (MDL-100907) ToxRefDB

Some chemicals have multiple sources; only one is included here. For those chemicals identified through the literature, an indicator of number of 
articles is included in brackets:

*:
0-5 articles

**:
5-10 articles
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***:
over 10 articles.
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Table 2.

Results from predictive modeling.

Dataset True positive rate 
(avg)

False positive rate 
(avg)

True negative rate 
(avg)

False negative rate 
(avg)

True positive Std 
Dev

Entire set 0.32 0.18 0.82 0.68 0.22

Chemotypes only 0.37 0.23 0.77 0.63 0.23

Gene scores only 0.28 0.18 0.82 0.72 0.21
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