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Abstract

Machine learning methods have proven invaluable for increasing the sensitivity of peptide 

detection in proteomics experiments. Most modern tools, such as Percolator and PeptideProphet, 

use semi-supervised algorithms to learn models directly from the datasets that they analyze. 

Although these methods are effective for many proteomics experiments, we suspected that they 

may be suboptimal for experiments of smaller scale. In this work, we found that the power and 

consistency of Percolator results was reduced as the size of the experiment was decreased. As an 

alternative, we propose a different operating mode for Percolator: learn a model with Percolator 

from a large dataset and use the learned model to evaluate the small-scale experiment. We call 

this a “static modeling” approach, in contrast to Percolator’s usual “dynamic model” that is trained 

anew for each dataset. We applied this static modeling approach to two settings: small, gel-based 

experiments and single-cell proteomics. In both cases, static models increased the yield of detected 

peptides and eliminated the model-induced variability of the standard dynamic approach. These 

results suggest that static models are a powerful tool for bringing the full benefits of Percolator 

and other semi-supervised algorithms to small-scale experiments.
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1 Introduction

The assignment of peptide sequences to tandem mass spectra is a fundamental task in 

any proteomics experiment [1]. This task is most often performed by a database search 

algorithm, which was first introduced with the SEQUEST search engine in 1994 [2]. 

Database search algorithms score the theoretical mass spectra of peptides from a selected 

sequence database against the acquired mass spectra from the experiment, yielding a set 

of peptide-spectrum matches (PSMs). Although the score functions of individual search 

engines may differ greatly, the scores reported by each are intended to reflect the quality of 

PSMs.

Machine learning strategies to re-score PSMs were first introduced due to their ability 

to integrate multiple, orthogonal scores and features from database search engines, 

thereby improving the sensitivity of peptide detection. Two such methods were proposed 

simultaneously: one based on linear discriminant analysis [3] and another that used support 

vector machine (SVM) models to a similar end [4]. Critically, both methods were examples 

of supervised learning: they relied on fully labeled datasets—where the correct and incorrect 

PSMs could be determined a priori—to train their respective models. These trained models 

were then used to predict a new score for the PSMs of a new dataset. We refer to the models 

used by these methods as static, meaning their parameters do not change when the dataset 

is changed. Critically, the success of these static models depended on the quality of the 

labeled dataset that was used for training and how well it reflected the datasets that were 

subsequently analyzed. The original version of PeptideProphet [3] attempted to mitigate the 

latter weakness by using an expectation-maximization algorithm to learn a mapping function 

between the discriminant score and the estimated probabilities in an unsupervised fashion 

from the new dataset.

The advent of target-decoy competition [5] as a method to estimate the error rates of mass 

spectrum identification also brought forth the opportunity for improvements in machine 

learning strategies. The Percolator algorithm is a semi-supervised learning method to re­

score the PSMs of a proteomics experiment without relying on a separate, fully-labeled 

dataset for training [6]. Percolator attempts to discriminate correct PSMs from incorrect 
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PSMs by defining positive PSMs as those originating from target peptide sequences below 

a specified false-discovery rate (FDR) threshold and negative PSMs as those arising from 

decoy peptide sequences. Starting with positive PSMs accepted using the best starting 

feature or an initial set of weights, Percolator iteratively accumulates positive PSMs by 

fitting SVM models to the set of positive and negative (decoy) PSMs. The set of positive 

PSMs is then updated using the model predictions from each iteration. Percolator performs 

this model training in a three-fold cross-validation scheme, such that the new score for each 

PSM is produced by a model that did not use that PSM for training; this strategy avoids 

Percolator overfitting to the PSMs that it is attempting to re-score [7]. Percolator’s dynamic 

model training allows the algorithm to adapt to the unique qualities of each dataset. Since its 

introduction, Percolator has become a popular option to post-process database search results 

from a variety of search engines, including SEQUEST [2], Comet [8], Tide [9], Mascot [10], 

MS-GF+ [11], and X! Tandem [12]. In all these cases, Percolator demonstrably improves 

the power to detect peptides from tandem mass spectra and provides a statistical framework 

to interpret the results [13]. A recent, independent comparison of post-processing methods 

across three search engines and eight datasets found that “combinations involving Percolator 

achieved markedly more peptide and protein identifications at the same FDR level than the 

other 12 combinations for all data sets.” [14]

Percolator was originally designed for the typical scale of proteomics experiments, where 

thousands of confident PSMs are expected to be found. However, some experiments 

naturally result in data of smaller scale, such as applications that require low abundance 

samples as input. We hypothesize that analyzing small-scale experiments with Percolator 

leads to decreased sensitivity and increased variability in the resulting PSMs and peptides 

when compared to Percolator’s performance on experiments of larger scale. We verified 

this hypothesis empirically by systematically evaluating the performance of Percolator when 

analyzing experiments of decreasing scale. Consequently, we propose the use of static 

Percolator models—models learned by Percolator on an external dataset—to analyze small­

scale experiments, and we demonstrate the potential of the method on two applications: the 

analysis of small gel-based experiments and for single-cell proteomics. Support for static 

models is now available in Percolator, both in the stand-alone version (http://percolator.ms) 

and as part of the Crux toolkit (http://crux.ms) [15].

2 Methods

2.1 Datasets

We analyzed three previously described proteomics datasets, collected using data-dependent 

acquisition methods. Each of the datasets was searched using the Tide search engine [9] 

implemented in the Crux mass spectrometry analysis toolkit [15]. In all cases, we employed 

the combined p-value score function [16]. We selected the precursor m/z window using 

Param-Medic [17] with a fallback value of 50 ppm, and we set the fragment ion tolerance 

to 0.02 Da. The protein databases (described below) were processed using Tide to generate 

a shuffled decoy peptide sequence for each target peptide sequence in the database, while 

preserving both terminal amino acids. The unique aspects of each dataset, including a brief 
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description, the protein database, and the modifications we used, are described below. We 

chose these parameters to best reflect those from the original analysis of each dataset.

2.1.1 A draft human proteome—The Kim et al. draft map of the human proteome 

dataset [18] consists of approximately 25 million mass spectra from more than 2,000 mass 

spectrometry acquisitions using LTQ-Orbitrap Elite and Velos mass spectrometers. The raw 

data files were downloaded from PRIDE Archive [19] (ID: PXD000561) and converted to 

ms2 format using msconvert [20] with peak-picking and deisotoping filters (“peakPicking 

vendor msLevel=2” and “MS2Deisotope Poisson”).

We searched the ms2 files against the canonical UniProt [21] human proteome (71,785 

protein sequences, downloaded February 17, 2016), allowing for two missed cleavages 

and the following variable modifications: protein N-terminal acetylation and oxidation of 

methionine. Carbamidomethylation of cysteine was specified as a static modification, and 

the peptides were limited to two variable modifications. These parameters resulted in a 

database of 8,684,473 peptides.

2.1.2 Histone gel bands—The Basilicata et al. histone dataset [22] consists of 94 mass 

spectrometry acquisitions, each analyzing a histone-enriched SDS-PAGE gel band from 

various patient derived fibroblasts using a Q-Exactive mass spectrometer. The raw data files 

were downloaded from PRIDE Archive (ID: PXD009317) and converted to mzML format 

using ThermoRawFileParser [23], with vendor peak-picking enabled.

We searched the mzML files against the canonical UniProt/Swiss-Prot human proteome 

(20,416 protein sequences, downloaded September 6, 2019), allowing for two missed 

cleavages. In addition to the modifications allowed for the Kim et al. dataset, we allowed the 

following variable modifications with a maximum of two variable modifications per peptide, 

as used in the original publication: deamidation of asparagine and glutamine, methylation 

of lysine and arginine, and lysine acetylation, trimethylation, propionylation, and propionyl­

methylation. These parameters resulted in a large database of 218,942,133 peptides.

2.1.3 Single-cell proteomics by mass spectrometry (SCoPE-MS) experiments
—The Specht et al. single-cell proteomics dataset [24] consists of two distinct sets of 

experiments: a quality control dataset consisting of 76 mass spectrometry acquisitions 

and a macrophage differentiation dataset consisting of 69 mass spectrometry acquisitions, 

each acquired using a Q-Exactive mass spectrometer. In both cases, each acquisition 

corresponds to a single experiment analyzing multiple single cells using the tandem mass 

tag (TMT) 10-plex reagents as described in the original paper [24]. The raw data files 

were downloaded from MassIVE [25] (ID: MSV000083945) and converted to mzML format 

using ThermoRawFileParser, with vendor peak-picking enabled.

We searched the mzML files against the canonical UniProt/Swiss-Prot human proteome 

(20,416 protein sequences, downloaded September 6, 2019), allowing for two missed 

cleavages. We included the TMT 10-plex modification of lysine and the peptide N­

terminus as a static modification, but carbamidomethylation of cysteine was not included. 

Additionally, we considered the oxidation of methionine, protein N-terminal acetylation, and 
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deamidation of asparagine as variable modifications. These parameters resulted in a database 

of 21,160,904 peptides. Four of the macrophage differentiation experiments resulted in no 

PSMs at a 1% FDR threshold and were excluded from further analysis.

2.2 Downsampling to simulate small-scale experiments

We sampled sets of PSMs from the human proteome dataset to simulate experiments of 

decreasing size analyzed with Percolator. We first uniformly sampled 100,000 PSMs from 

the 23,330,311 total PSMs to be held out as a common test set for evaluation. From the 

remaining PSMs in the dataset, we uniformly sampled 1,000,000 PSMs to serve as the base 

training set.

We postulate that small datasets can be defined in two ways: either the dataset has few 

PSMs in total, or the dataset has few confident PSMs. In order to simulate both of these 

conditions, we downsampled the base training set to smaller training sets by two methods. 

To simulate the condition of few total PSMs, we created incrementally smaller datasets by 

uniformly sampling PSMs from the base training set, independently. For the condition where 

few confident PSMs are present, we defined confident PSMs as PSMs accepted at 1% FDR 

after the base training set was analyzed with Percolator. We uniformly sampled confident 

PSMs from the base training set and supplemented these PSMs with an additional sample of 

“unconfident” PSMs, such that the total number of PSMs was constant at 100,000.

Our goal was to investigate changes to the sensitivity and variability of the results obtained 

from Percolator on small datasets; hence, we analyzed each training set with Percolator 

using five unique random seeds. We then used the learned weights from each training set to 

re-score the PSMs in the test set. This allowed us to directly compare the performance of the 

Percolator models across the various training set sizes.

2.3 Comparison of static and dynamic Percolator models

We analyzed individual experiments from the histone gel band and SCoPE-MS datasets 

using both Percolator’s standard dynamic model training and a static model to evaluate 

whether static models improve the performance of Percolator on small-scale experiments. 

For the histone gel band dataset, we used the aggregate of 10 experiments (80,031 top­

ranked PSMs, 797,291 total PSMs)—each defined by a single mass spectrometry acquisition

—as a training set to generate a static Percolator model. The remaining experiments were 

individually analyzed with Percolator in duplicate, once using a dynamic model and once 

using the static model.

We performed similar analyses on the SCoPE-MS experiments. In this case, we used the 

76 quality control experiments as a training set (558,279 top-ranked PSMs, 5,576,478 total 

PSMs) for a static Percolator model. The 64 macrophage SCoPE-MS experiments were then 

analyzed individually with Percolator, again using both dynamic and static models.

2.4 Data and code availability

Percolator is an open-source project and is publicly available on GitHub (https://github.com/

percolator/percolator). All of the datasets used in this manuscript are already available 
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through their respective ProteomeXchange [26] partner repositories. All code used for these 

analyses and to generate the figures of this manuscript is available on BitBucket (https://

www.bitbucket.org/noblelab/static-percolator).

3 Results

3.1 Percolator loses power and exhibits increased variability with small datasets

Our first goal was to systematically test if Percolator’s performance declines when the 

analyzed experiments are small. Here, we use “small” to describe two possible conditions: 

an experiment that yielded few total PSMs or one that yielded few confident PSMs. Either 

condition can occur due to a wide variety of causes. The former condition may be due to 

a limited number of tandem mass spectra acquired—because of a short chromatographic 

gradient or low signal during acquisition—or when only a subset of PSMs are of interest. 

Likewise, the condition of few confident PSMs can occur when the acquired tandem mass 

spectra are of poor quality, such as when limited by the analyte abundance in the sample. 

In either case, we suspected that these limitations would hinder the performance of the 

Percolator algorithm.

To generate progressively smaller experiments to analyze with Percolator, we chose to 

down-sample multiple sets of PSMs from the Kim et al. draft human proteome dataset. 

We performed this downsampling in two ways: 1) by sampling decreasing numbers of total 

PSMs and 2) by sampling decreasing numbers of confident PSMs, while keeping the total 

number of PSMs constant. We analyzed each of these subsets with Percolator using five 

random seeds to assess the variability of the algorithm; the random seeds only serve to 

randomly assign PSMs to the cross-validation splits, since optimization of the SVM models 

is deterministic. We then assessed the models learned by Percolator by applying them to a 

held-out test set consisting of the 100,000 PSMs. Since this test set was constant for all of 

the downsampled experiments, it allowed us to compare the learned models to one another. 

We evaluated these experiments using the q-values estimated by Percolator for the test set 

PSMs, where a q-value is the minimal FDR threshold at which a given PSM is accepted.

We began our analysis by investigating pairwise comparisons of the q-values estimated 

for the test set PSMs using the models learned from the downsampled experiments. We 

first compared each of the total PSM downsampling experiments to those obtained by 

an experiment with 100,000 total PSMs (Figure 1 A-D). As the total number of PSMs 

analyzed with Percolator decreased, the resulting q-values became increasingly divergent. 

Furthermore, many test set PSMs would be considered confident only when the largest 

experiment was analyzed. We found a similar trend when we performed the analogous 

analysis on the confident PSM downsampling experiments (Figure 1 E-H). Again, the 

resulting q-values became increasingly divergent as Percolator was provided fewer confident 

PSMs. In addition to the pairwise comparisons between the downsampling experiments, we 

also investigated the reproducibility of the test set q-values when the same experiment was 

analyzed with Percolator using different random seeds (Figure S1). In both the cases of 

downsampling total or confident PSMs, the concordance between Percolator analyses with 

two random seeds decreases with the scale of the experiment.
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In an effort to understand the overall effects of the downsampling experiments on our 

Percolator analyses, we looked at the number of test set PSMs that were accepted at 

1% FDR by each model. As expected, a consistent decrease in the number of accepted 

test set PSMs was observed as the total number of PSMs analyzed with Percolator was 

decreased (Figure 2 A). Additionally, we saw more dramatic decreases in the number of 

accepted test set PSMs after downsampling confident PSMs (Figure 2 B). In both cases, the 

variability of the accepted test set PSMs increased when analyzing smaller experiments with 

Percolator, which is consistent with the results from our pairwise comparisons. Together, 

these experiments led us to conclude that Percolator suffers a loss of power and increased 

variability in its confidence estimates when used to analyze experiments of sufficiently small 

scale. The SVM models that Percolator trains rely on positive and negative examples to find 

the best separating hyperplane for a set of PSMs; hence, it is unsurprising that the resulting 

models may be suboptimal when there are few examples to learn from.

While we posit that most proteomics experiments are of sufficient size to use Percolator 

reliably, there are experiments that do not fully realize the benefits of Percolator due to 

their small size. In these cases, we propose the use of static Percolator models—models 

that were learned by Percolator from one or a collection of external experiments—to bring 

the benefits of Percolator to small-scale experiments. To demonstrate the effectiveness of 

this approach, we have applied it to two settings in the following sections: the analysis of 

individual SDS-PAGE gel bands and the analysis of a single-cell proteomics dataset.

3.2 Static models increase the peptides detected from SDS-PAGE gel bands

A routine task for proteomics laboratories and core facilities has long been the identification 

and characterization of the proteins from specific regions of a gel-based separation [27]. 

Despite the age of these gel-based methods, these types of analyses are still valuable for 

answering specific biological questions [28-31]. In these settings, a common goal is to 

detect the proteins—and potentially the post-translational modifications—that are present 

within an excised band from a 1-dimensional SDS-PAGE gel. We suspect that the scale 

of these experiments is often small, such that they would hinder the expected performance 

of Percolator, and we propose that the use of static Percolator models could improve the 

sensitivity of peptide detection in these experiments.

We sought to test these hypotheses using the collection of experiments performed by 

Basilicata et al. [22]. This dataset consists of 94 experiments each analyzing an excised 

SDS-PAGE gel band that is enriched for histones from a variety of patient-derived 

fibroblasts. We held out 10 experiments as a training set for a static Percolator model, 

then analyzed the remaining 84 experiments with Percolator either using its standard, 

dynamically trained models or the static model learned from the training set. The use of 

a static model increased the number of peptides detected at 1% FDR for 52 of the 72 

experiments (Figure 3 A). Using the number of PSMs accepted at 1% FDR before Percolator 

as a proxy for the number of confident PSMs in each experiment, we found a trend that 

follows what was observed in the downsampling experiments—the experiments with fewer 

confident PSMs benefited the most from using a static model. In some cases the number 

of detected peptides increased by as much as 22% when using the static model (Figure 3 
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B). In contrast, other experiments detected fewer peptides when a static model was used; 

however, the largest loss in peptides detected for any experiment was only 4.5% (Figure 

3 C). Furthermore, inspection of the peptide yield across low FDR thresholds for this 

experiment does not indicate a systematic loss of peptides. Rather, this apparent loss is well 

within the expected variance inherent in decoy-based FDR estimates [32, 33]. Overall these 

results suggest that it is useful to consider a static model for the analysis of excised gel 

bands, particularly when ample data is available to train a static Percolator model.

3.3 Static models reduce missing peptides across SCoPE-MS experiments

While the analysis of small, gel-based experiments represents a long-standing, routine task 

for proteomics laboratories, the analysis of single cells is an emerging field and an exciting 

future for proteomics technologies [34]. Currently, several methods are making progress 

toward performing proteomics experiments at single-cell resolution [24, 35-37]. Critically, 

all of these methods inherently rely on acquiring tandem mass spectra from samples with 

low analyte abundance, which in turn results in fewer acquired mass spectra and many 

mass spectra of insufficient quality for identification; hence, we sought to determine if 

static Percolator models could improve peptide detection rates in single-cell proteomics 

experiments.

We decided to analyze the single-cell proteomics datasets from the recent update to the 

SCoPE-MS method [24]. The SCoPE-MS method uses TMT to multiplex single cells for 

analysis, while reserving one or more TMT channels for a “carrier sample,” i.e. a sample 

where on the order of 100 cells are analyzed to boost the detectable signal in the mass 

spectra. As an isobaric labeling experiment, the relative quantitation for peptides from single 

cells is performed by extracting the reporter ion signals from tandem mass spectra that are 

confidently identified with peptides. Thus, to compare a peptide across multiple experiments 

the peptide must be confidently detected in each. Specht et al. presented two distinct sets of 

SCoPE-MS experiments that we have used in our analyses: a quality control dataset and a 

macrophage differentiation dataset, each consisting of a large collection of experiments.

For our analyses, we used the quality control SCoPE-MS dataset to train a static Percolator 

model. We then individually analyzed 65 experiments from the macrophage differentiation 

SCoPE-MS dataset with Percolator, using either the standard, dynamically trained models 

or the static model learned from the training set. It is worth noting that these experiments 

could have been analyzed jointly with Percolator, but FDR estimation would then need to 

be performed outside of the Percolator framework; this is because we were interested in the 

peptides detected in each run, rather than in aggregate. In our analyses, we found that the 

static model consistently yielded increased numbers of PSMs and peptides (Figure 4 A). At 

the PSM level, 57 of the 65 SCoPE-MS experiments (88%) had increased yield at 1% FDR, 

with the largest loss of only 3.2%. Similarly, 58 of 65 SCoPE-MS experiments (89%) had an 

increased peptide yield at 1% FDR, indicating that the static model improved the sensitivity 

of peptide detection in these SCoPE-MS experiments.

We argue that the number of peptides consistently detected across experiments is of greater 

concern than the total number of peptides detected in the individual experiments for a 

SCoPE-MS dataset. To investigate how peptide detection consistency is affected by the 
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Percolator analysis with a static model, we counted the number of peptides detected at 1% 

FDR that were shared between at least a specified number of experiments (Figure S2 A). We 

observed an appreciable increase in the number of peptides that were found in large numbers 

of experiments using the static model, despite detecting fewer overall unique peptides 

(Figure 4 B); this trend started at peptides detected in at least six or more experiments. These 

results indicate that peptides are detected with improved consistency across experiments 

when the Percolator analysis is performed with a static model.

Finally, we suspected that the improved consistency of peptide detection could be only 

partially attributed to the increased sensitivity provided by the static Percolator model. 

Specifically, we postulated that the static model also resulted in a more consistent ranking 

of peptides across experiments. We tested this hypothesis by allowing the peptides obtained 

from the dynamic Percolator models to yield the same number of peptides as obtained with 

the static Percolator model at 1% FDR, effectively nullifying the sensitivity advantage of the 

static model. Comparison of the peptides detected with the static model to these expanded 

results from the dynamic models revealed that the static models still increase the number 

of peptides that are detected across many experiments (Figure S2 B). In light of these 

findings, we concluded that Percolator analysis with static models increased the consistency 

of peptide detection across SCoPE-MS experiments due to both increased sensitivity and 

decreased variability in peptide rankings.

4 Discussion

In this work, we investigated the robustness of the Percolator algorithm when it is used 

to analyze small-scale experiments. This investigation revealed that the results obtained 

from Percolator lose power and increase in variability as experiments decrease in scale. 

Unfortunately, the question of how small an experiment can be before the algorithm 

suffers cannot be explicitly answered for all cases. Rather, this will depend on a variety 

of experimental parameters including the search engine and features used, the diversity of 

the peptides analyzed, and the quality of the mass spectra that were collected. However, we 

would generally suggest that a minimum of 5,000 total PSMs—assuming that approximately 

one third of the PSMs can be assigned confidently—be used as a minimum experiment size 

when using the Tide search engine, based on the presented results.

As an alternative to the dynamic model training that is normally performed by Percolator, 

we demonstrated that the use of static models improved the consistency and statistical power 

to detect peptides in small-scale experiments. Although we explored only two experimental 

designs, we expect that there are many types of experiments that may benefit from static 

models due to the small scale of the results they yield. For example, studies of ancient 

proteins must often be performed on limited, degraded material, such as in the recent 

analysis of ancient enamel proteins from Early Pleistocene specimens [38]. More commonly, 

the scale of an experiment can be reduced by limiting Percolator analysis to a subset of 

the total PSMs, such as when only PSMs containing a specific modification or arising from 

particular proteins are of interest. In all these cases, larger datasets may be leveraged to 

increase the yield and consistency of peptides from Percolator using a static model.
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Furthermore, one benefit we did not explore in this work was the increase in speed gained 

from using a static model. The static model approach requires training a model only once, 

prior to the analysis of the experiment of interest; hence, a static model does not need 

the iterative training involved the dynamic modeling approach. The increased speed that 

the static model approach provides will allow for models to be used in time-sensitive 

applications. One example of an application that could benefit from this static model 

approach would be real-time database searching [39]. The Orbiter method uses the Comet 

search engine to score PSMs in real-time, attempting to maximize the peptides detected and 

quantified in a TMT experiment. A static model learned by Percolator could potentially be 

used to increase the sensitivity of the Orbiter method by providing a more powerful score for 

each PSM as the spectrum is collected.

Support for static models is available as of Percolator version 3.04 (http://percolator.ms) 

and is also available within the Crux toolkit (http://crux.ms), both of which are open source 

projects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The q-values resulting from Percolator became increasingly discordant as the experiment 

size is decreased. The test set PSMs accepted at low q-values diverged as the total number of 

PSMs in the training experiments were decreased from (A) 100,000 PSMs to (B) 10,000, (C) 

1,000, and (D) 100 PSMs. Likewise, the test set PSMs diverged as the number of confident 

PSMs in the training experiments were decreased from (E) 40,000 PSMs to (F) 4,000, (G) 

400, and (H) 40 PSMs. Each point indicates a test set PSM and the dashed lines indicate a 

1% FDR threshold.
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Figure 2: 
The number of accepted test set PSMs at 1% FDR decreases with smaller training 

experiments. (A) Decreasing the total number of training PSMs resulted in a gradual 

decrease in performance and increased variability. (B) Decreasing the number of confident 

training PSMs resulted in a rapid decline in performance. The points indicate the mean of 

five random seeds and the shaded region indicates the 95% confidence interval.
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Figure 3: 
Static Percolator models improve the detection of peptides from individual histone SDS­

PAGE gel bands. (A) The static Percolator model improved the sensitivity of peptide 

detection at 1% FDR for most experiments when compared to the Percolator’s typical 

dynamic model training, particularly when few confident PSMs were found. Confident 

PSMs were defined as PSMs accepted at 1% FDR using the Tide combined p-value before 

Percolator analysis. The labeled points are further investigated in panels B and C. (B) The 

experiment for which we observed the largest peptide gain at 1% FDR also had consistent 

gains across the low FDR range. (C) The experiment that resulted in the largest peptide loss 

at 1% FDR is inconsistent over the low FDR range. The dashed lines indicate 1% FDR.
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Figure 4: 
The static Percolator model improves the number of PSMs and peptides detected in SCoPE­

MS experiments. (A) The static model resulted in improved sensitivity at both the PSM and 

peptide levels for most experiments when compared to Percolator’s dynamic model training. 

(B) More peptides are consistently detected across more experiments at 1% FDR when using 

the static model, resulting in a less sparse peptide-experiment matrix.
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