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a b s t r a c t 

COVID-19 is an infectious and contagious virus. As of this writing, more than 160 million people have 

been infected since its emergence, including more than 125,0 0 0 in Algeria. In this work, We first col- 

lected a dataset of 4986 COVID and non-COVID images confirmed by RT-PCR tests at Tlemcen hospital in 

Algeria. Then we performed a transfer learning on deep learning models that got the best results on the 

ImageNet dataset, such as DenseNet121, DenseNet201, VGG16, VGG19, Inception Resnet-V2, and Xception, 

in order to conduct a comparative study. Therefore, We have proposed an explainable model based on 

the DenseNet201 architecture and the GradCam explanation algorithm to detect COVID-19 in chest CT 

images and explain the output decision. Experiments have shown promising results and proven that the 

introduced model can be beneficial for diagnosing and following up patients with COVID-19. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

The Severe Acute Respiratory Syndrome COronaVirus 2 (SARS- 

oV-2), also called COVID-19, is a contagious virus and one of the 

ost severe problems facing our lives. This pandemic was identi- 

ed in Wuhan, China, in December 2019 before spreading to the 

est of the world [8,28] . 

Several researchers and laboratories have focused on the search 

or a vaccine. However, despite the existence of few vaccines, the 

irus continues to spread with great speed, especially after the 

ew strain has emerged. 

The most effective screening technique is Reverse Transcription 

olymerase Chain Reaction (RT-PCR). Nevertheless, RT-PCR has low 

ensitivity, and the world is currently experiencing a shortage of 

hese testing kits [26] . In this circumstance, numerous sick persons 

re not confined, which accelerates the spread of COVID-19 and 

bliges the health structures to use other diagnostic techniques 

o control better the pandemic [17,31] . They recommend the use 
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f medical imaging (Computed Tomography (CT) and X-Ray) as a 

omplement to RT-PCR [5] . Chest CT-scan is a quick and easy exam 

o be obtained and it has shown a much higher sensitivity than RT- 

CR for examining COVID-19 [23] . 

Unfortunately, given the number of COVID-19 cases, which to 

ate has exceeded 160 million worldwide, the number of radi- 

logists remains very low. Therefore, the use of Deep Learning 

DL) techniques is helpful for the automatic detection of COVID-19. 

hese techniques allow the process of large image datasets with a 

igh degree of precision to reassure health experts about the reli- 

bility of these models. 

In our previous study [13] , we have addressed the problem of 

he classification of pneumonia using Chest X-ray images, and we 

ave concluded that in some databases, it is not mandatory to use 

omplex architecture or transfer learning to classify images. After a 

iscussion with several doctors at the hospital of Tlemcen in Alge- 

ia, they asked us to provide them with a decision support system 

or the COVID-19. They also confirmed that they rely on CT-scan 

mages to diagnose COVID-19 since this contains more information 

han X-ray images. For this reason, and to offer a model that will 

e useful for physicians, we have proposed an Explainable DL ar- 

hitecture for the classification of chest CT-scan images. 

https://doi.org/10.1016/j.patrec.2021.08.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.08.035&domain=pdf
mailto:ilies.lahsaini@univ-tlemcen.dz
mailto:mostafa.elhabibdaho@univ-tlemcen.dz
https://doi.org/10.1016/j.patrec.2021.08.035
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To train these DL models, we need large labeled datasets. There 

re public databases on the internet, but they do not include infor- 

ation on the acquisition and confirmation of infection by RT-PCR. 

Due to the limitation of existing datasets, we proposed, in this 

ork, collecting a new COVID-19 chest CT dataset from infected 

atients admitted to the hospital of Tlemcen in Algeria. A collec- 

ion of new COVID-19 CT-scans datasets from confirmed and un- 

onfirmed patients with RT-PCR test. Accordingly, the highlights of 

he manuscript are as follows: 

• Collecting of a new COVID-19 CT-scan dataset from patients 

confirmed positive or negative with RT-PCR test; 
• The development of a customized architecture using the trans- 

fer learning based on the Densenet201 model and the GradCam 

algorithm. 

. Related works 

In recent years, DL has realized great success in several fields 

f medical imaging; it has improved the capability to detect and 

lassify features in images using deep models. Some works focused 

n the use of DL techniques for the automatic detection of sev- 

ral lung diseases such as pneumonia [13] , [11] , and tuberculosis 

14] , [10] , [19] . 

In today’s world, with the rapid spread of the Coronavirus, 

 significant amount of research has been focused to diagnose 

OVID-19 based on CT scans and chest X-Ray images using DL ap- 

roaches. In this area, [3] used a database composed of 1428 chest 

-ray images (224 patients positive for COVID-19, 700 cases of 

neumonia, and the rest are healthy patients) in order to evaluate 

he effectiveness of the advancing Convolutional Neural Network 

CNN) architectures such as transfer learning in COVID-19 clas- 

ification. The researchers proposed a pre-trained VGG-19 model 

omposed of nineteen deep convolutional layers [7] . detected the 

OVID-19 virus by applying COVIDX-Net based on DL using chest 

-ray images [29] . proposed a CNN model in order to distinguish 

etween COVID-19, influenza A, and viral pneumonia; the pro- 

osed architecture offered an accuracy of 86.7% [25] . have devel- 

ped a prediction model based on DL approaches using the mod- 

fied technique of Inception based on transfer learning. The ob- 

ained accuracy by this method is 89.5% which makes it better 

ompared to the results of [29] [16] . applied another more com- 

lex pre-trained model of ImageNet with transfer learning for 

he prediction of COVID-19 in chest x-ray images. The researchers 

sed the Inception-ResNetV2, InveptionV3, and ResNet50 models. 

esNet50 model reached the best accuracy with an accuracy of 

8%, which is better and more significant than [29] and [25] . 

On the other hand, recent research has shown that chest CT 

rovides a lower false-positive rate than chest X-Ray images [1] . 

n this context, some works have been proposed using CT scan im- 

ges [15] . developed a model named COVNet to extract visual char- 

cteristics from chest CT for the detection of the COVID-19 virus. 

[22] proposed a DL technique called VB-net using chest-CT for 

utomatic segmentation of all lungs and infected regions of the 

ataset. In another related work, [25] , applied COVID-19 detection 

echniques based on Inception architecture modified by transfer 

earning on CT images to screen COVID-19 patients. The results ob- 

ained are 89.5%, 88%, and 87% for accuracy, specificity, and sensi- 

ivity, respectively. 

[18] performed a comprehensive study for 16 ImageNet models 

ased on transfer learning. In addition, he confirmed the robust- 

ess of DenseNet201 [9] for this task. Pharm also concluded that 

ata augmentation has a negative effect on transfer learning. 

In some works proposed to detect COVID-19 cases, new archi- 

ectures of deep neural networks have been explored [21] . pro- 

osed CTnet-10, a 10-layer CNN. The results are promising and 
123 
how that this model is more efficient than the existing architec- 

ure [30] . proposed DeCovNet, which can operate on a full 3D CT 

olume. 

In the work of [24] , a model called Details Relation Extrac- 

ion neural network (DRE-Net) was used to extract the deep char- 

cteristics of CT images. In this study, the authors used CT im- 

ges of 275 patients, including 88 patients with COVID-19, 101 pa- 

ients awaiting bacterial pneumonia, and 86 healthy people. They 

eported an accuracy of 94%. 

In some research, explainable methods have been exploited to 

isualize network predictions [12] . and [4] examined importance 

ariations in chest CT scan images using Gradient-weighted Class 

ctivation Mapping (Grad-CAM) ( [20] ). 

To control the spread of COVID-19 quickly and effectively, DL 

echniques are necessary for proper isolation and treatment. In the 

iterature, several methods have been proposed based on DL tech- 

iques for COVID-19 diagnosis. Some works have been based on 

hest x-ray images using advanced CNN architectures. Other more 

ecent studies used CT images to detect the most important virus 

haracteristics and classify the disease correctly. In this paper, we 

roposed an explainable DL method that allowed us to extract the 

haracteristics of COVID-19 from the CT images to reduce false 

egatives, give an early clinical analysis, and prides visual expla- 

ation of the decision. 

. Materials and methods 

.1. Materials 

Our experiments were based on chest CT image data collected 

t the Hospital of Tlemcen in Algeria. All executions were per- 

ormed on a local machine with an i7-8750H processor, an Nvidia 

eForce GTX 1070 GPU card, and 16GB of RAM. This paper used 

ransfer learning techniques on CNN models widely used in appli- 

ations where the data set is not significant. Transfer learning is 

o retrain a pre-trained model on large datasets such as ImageNet. 

his technique reduces the overall training time of the model and 

llows a comparatively smaller dataset to be used with relatively 

omplex architecture. 

.1.1. Collection of dataset 

The dataset was collected locally between June 2020 and Octo- 

er 2020 at the University Hospital of Tlemcen, Algeria. It consists 

f 177 patients (69 infected patients and 108 non-infected ones). 

his dataset is composed of 4986 CT images of suspected cases, 

ncluding 1868 for patients infected with COVID-19 and confirmed 

ith RT-PCR and 3118 images for patients not infected with COVID- 

9 but with other lung diseases. All these images have undergone 

re-processing to remove all unnecessary scanners. Indeed, CT is a 

et of images. This image set contains black slices at the beginning 

f each volume and other images that do not contain any part of 

he lung. We then performed a pre-processing, which consists of 

emoving these images to not distort the diagnosis. Figure 1 shows 

 sample of the data collected in this study. 

.2. Methods 

This study aims to find the best architecture to classify patients 

uspected of COVID-19 (positive or negative). For this purpose, we 

ave selected several CNN architectures that have achieved the 

est results on the ImageNet dataset. We have used the data aug- 

entation method to automatically increase the dataset and pre- 

ent the overfitting [27] , which significantly affects the size and 

uality of the dataset and the model’s capacity during training. In 

his case, the data augmentation tool firstly rescaled the images 

reduction or enlargement during the augmentation process). Then, 
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Fig. 1. Samples from our collected dataset. 

Table 1 

Settings for the image augmentation. 

methods setting 

Rotation range 30 

Width shift 0.2 

Height shift 0.2 

Rescale 1/255 

Shear range 0.2 

Zoom range 0.2 

Horizontal flip true 

Vertical flip true 
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 random rotation was performed during the training. After that, 

e did a height and width shift to move the images horizontally 

nd vertically. The zoom range is fixed at 30% random. Finally, the 

mages of the dataset were inverted horizontally. Table 1 shows 

he parameters used in the data augmentation method. The dataset 

s randomly divided in the experiment, where 80% is adopted for 

he training and the rest for the test. Afterward, we experimented 

ith several CNN architectures for all the deep CNN models in the 

lassification phase, modifying only the fully connected layers to 

dapt the model with the appropriate outputs, keeping the con- 

olution and pooling layers. These two types of layers are used in 

he feature extraction step. In our study, we have two outputs, and 

he Softmax function is used to classify those two classes, one for 

ealthy cases, i.e., negative, and the other for infected cases, i.e., 

ositive. 

The block diagram of this work is presented in Fig. 2 . For all the

roposed models, images are resized to 128 x 128 x 3, batch size 

nd epoch were fixed at 64 and 200, respectively, using Stochastic 

radient Descent (SGD) as a specific optimizer. For better visual- 

zation of the results, the GradCam algorithm was used to explain 

he model’s decision. 

.2.1. Densenet201 

Transfer learning has shown its robustness in limited data 

lassification problems. Results can be improved by using hyper- 

uning of Deep Transfer Learning (DTL). In our contribution, the 

enseNet201 model by transfer learning was proposed to extract 

eatures automatically and use their weights learned on the Ima- 

eNet dataset that reduces the effort of the calculation. DenseNet 

roved its effectiveness on different datasets such as CIFAR-100 

6] and ImageNet. Besides, this architecture provides simple and 

asy-to-build models. Also, it is possible to re-use features by 

ifferent layers, which makes the parameters of this architecture 

ighly efficient and allows to increase the variation in the follow- 

ng layers and improve the performance. 

The features of the last deep layers can be projected by those 

f all the previous set of layers (this means that the deep network 

ayers can re-use all the features produced by the previous layers) 

nder the form of : 

 

l = H ([ X 

0 , X 

1 , . . . , X 

l−1 ]) . (1) 
l 

124 
Where H l (. ) is a composite function of three operations, includ- 

ng batch normalization (BN). Followed by a ReLu function and a 

onvolution layer (3,3). In classical CNNs architectures, the convo- 

ution layers are usually followed by down-sampling layers to re- 

uce the size of the feature maps to half. Therefore, concatenation 

f feature maps around the down-sampling layers can cause a mul- 

iplicity of sizes. To solve this issue, dense blocks were designed 

efore the down-sampling layers, while the dense block layers are 

ightly connected as shown in Fig. 3 , which makes the size of the 

eature maps constant in all dense blocks and reduced to half af- 

er down-sampling. Thus, for X layers of a dense block, the overall 

umber of links between the layers is X (X + 1) / 2, unlike a tra-

itional convolutional network which equals X. However, the com- 

utation will be huge if the layers are deep because the number of 

oncatenated feature maps entered in the layers is high. Thus, the 

ontrol of the number of feature maps newly created by a growth 

ate K is necessary. The total number of feature maps in the last 

ayer of a dense block is in the form of: K 0 + (X − 1) K. Where K 0 

s the number of channels in the first input layer. To solve the com- 

utational effort, 1 x 1 bottleneck layers were applied before each 

 x 3 convolution layer followed by transition layers that signifi- 

antly improve the network compactness by controlling the num- 

er of output feature maps. Furthermore, it is usually found after 

he dense block at a certain depth, which explains why there is no 

ransition after the first dense block, as shown in Fig. 3 . 

.2.2. Proposed method 

In this work, we proposed a customized DenseNet201-based 

odel for the screening of COVID-19. We used the pre-trained 

enseNet201 by keeping only the feature extraction layers. Then, 

e added a convolution layer followed by the GlobalAveragePool- 

ng layer and added three fully connected layers with 256, 128 and 

4 neurons. The last classification layer contains two neurons and 

ses the Softmax function, where all the neurons of the same layer 

re connected to the next layer. After and to avoid overfitting our 

odel, we considered the Dropout layers defined at 20%, 30%, and 

0%, respectively. 

To provide visual evidence and improve the explainability of 

ur architecture and highlight the relevant areas that drive our 

odel decision, we used the Grad-CAM algorithm. Without an ad- 

itional manual annotation, this heat map is produced entirely by 

he DL model. The network predictions are interpreted by gener- 

ting heat maps to visualize the most representative areas of the 

mage using gradient-weighted class activation maps. The method- 

logy followed in this work has been summarized in the flowchart 

hown in Fig. 4 . 

. Results and discussion 

In this work, we have collected a new dataset from the Hospi- 

al of Tlemcen in Algeria. The labeling of each image (positive or 

egative) is done by a Radiologist and confirmed by RT-PCR test. 

The dataset is then pre-processed. We have readjusted the 

ataset so that all images will be 128x128 in size. For a better gen- 

ralization, we used a data augmentation techniques by applying 

andom transformations on the input images. To ensure the diver- 

ity of the data, several transformations have been performed, such 

s rotation and zoom with a probability of 0 to 1. 

This study compared our proposed model with five other ar- 

hitectures: VGG16, VGG19, Xception, Inception_V2_Resnet, and 

enseNet121. We have trained all models using batches of size 

2 for 200 epochs using the Stochastic Gradient Descent (SGD) 

ethod to reduce the loss function. Results have been compared 

aking into account different metrics such as accuracy ( Eq. 2 ), pre- 
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Fig. 2. Block diagram of this work. 

Fig. 3. Architecture of transferred DenseNet201. 

Table 2 

TP, TN, FP and FN ratio obtained from the test- 

ing dataset. 

Model TP FN FP TN 

VGG16 585 30 23 360 

VGG19 601 14 42 341 

Xception 599 16 18 365 

Inception_ 

V2_Resnet 595 20 15 368 

DenseNet121 593 24 6 375 

DenseNet201 602 13 6 377 

Our Work 606 9 3 380 

c

A

P

S

S

F

h

h

C

W

s

s

125 
ision ( Eq. 3 ), Recall ( Eq. 4 ), and F1-score ( Eq. 6 ). 

CC = 

TP + TN 

P + N 

= 

TP + TN 

TP + TN + FP + FN 

(2) 

recision = 

TP 

TP + FP 

(3) 

ensitivity = 

TP 

TP + FN 

(4) 

pecificity = 

TN 

TN + FP 

(5) 

1 − score = 

2 · p recision · r ecall 

p recision + r ecall 
(6) 

Where: 

P: total number of COVID-19 patients 

N: total number of Non-COVID-19 patients 

True positive (TP): prediction is COVID, and the image is COVID. 

True negative (TN): prediction is Non-COVID, and the patient is 

ealthy. 

False positive (FP): prediction is COVID, and the patient is 

ealthy. 

False negative (FN): prediction is Non-COVID, and the image is 

OVID. 

Table 3 shows the obtained performances of different models. 

e notice that our proposed Densenet201 model gives better re- 

ults compared to the other architectures on the accuracy, preci- 

ion, and F1-score. 
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Table 3 

Comparisons of the results between the different architectures applied to our dataset. 

Model Accuracy Precision Sensitivity Specificity F1-score AUC 

VGG16 94.69% 96.21% 95.12% 94.00% 95.67% 94.56% 

VGG19 94.38% 93.47% 97.72% 89.03% 95.55% 93.38% 

Xception 96.59% 97.08% 97.4% 95.3% 97.24% 96.35% 

Inception_ 

V2_Resnet 96.49% 97.54% 96.75% 96.08% 97.14% 96.42% 

DenseNet121 96.99% 98.99% 96.09% 98.43% 97.52% 97.27% 

DenseNet201 98.1% 99.01% 97.89% 98.43% 98.45% 98.16% 

Our Work 98.8% 99.50% 98.54% 99.22% 99.02% 98.88% 

Table 4 

Comparisons of the results between the different architectures applied to the dataset of [2] . 

Model Accuracy Precision Sensitivity Specificity F1-score AUC 

VGG16 94.37% 91.49% 96.41% 92.70% 93.89% 94.96% 

VGG19 96.37% 95.96% 95.96% 96.72% 95.96% 96.33% 

Xception 91.95% 91.40% 90.58% 93.07% 91.00% 91.82% 

Inception_ 

V2_Resnet 94.57% 93.36% 94.62% 94.52% 93.98% 91.82% 

DenseNet121 95.77% 91.73% 99.55 % 92.73% 95.48% 96.12% 

DenseNet201 97.38% 95.26% 99.10% 95.98% 97.14% 97.54% 

Our Work 98.18% 97.76% 98.20% 98.17% 97.98% 98.82% 

Fig. 4. Flowchart of the proposed study. 
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Additionally, Densenet201 gives the best recall (also known as 

ensitivity), which is good since, in medical diagnostic aid in gen- 

ral and decision support for COVID-19, this metric is crucial. In- 

eed, high sensitivity is equivalent to a shallow false-negative rate. 

alse negatives are patients who have been diagnosed as Non- 

OVID by the system but are positive. Such an error can cause the 

atient’s death and does not have the same impact as a false posi- 

ive error that can be quickly corrected with additional tests. Also, 

 person classified as healthy while infected with COVID-19 can 

ransmit the virus and causes more losses. Our model also offers 

ood results in terms of false positives as shown in Table 2 . Such

n error can cause panic and emotional distress to the patient. We 

an therefore deduce that our model is the best in terms of per- 

ormance. 

Fig. 5 shows the training and validation accuracy curves of 

he proposed work. The first remark is that our proposed method 

ensenet201 exceeded 90% just after the 15th epoch and gains 

ore accuracy. This clearly shows that the proposed model can be 

sed effectively for the early diagnosis of COVID-19. We can also 

otice that most models have learned well from the dataset and 

uffer neither from over- nor under-fitting. This can be explained 

y the fact that SGD contains the error, stays stable and prevents 

verfitting even without regularization. 

In order to prove the robustness of our proposed model, we 

sed another public database ( [2] ). Table 4 shows the performance 

esults. Here, the sensitivity obtained is 98.20%, and the specificity 

s 98.17% for COVID-19 positive cases. From the obtained results, 
w

126 
e can conclude that the proposed model can correctly detect true 

ositives (i.e., COVID-19 infected patients) with an ACCURACY of 

8.18%. In addition, the proposed model showed good performance 

n terms of accuracy and F-1 score. 

To convince physicians of the accuracy and usefulness of the 

roposed tool and to visualize the areas that motivate the model’s 

ecision, we have applied the Grad-CAM algorithm. 

Fig. 6 shows the heatmaps on the suspect areas, which prove 

hat our algorithm focuses on the infected areas while neglecting 

he other normal regions. The network predictions are interpreted 

ased on heatmaps to visualize the most significant areas on an 

mage by applying gradient-weighted class activation maps. 

To better evaluate the performance of our model, we plotted 

he ROC curve (Receiver Operating Characteristic) and calculated 

he AUC (Area Under the Curve). The ROC curve is a graph that al- 

ows asserting the classification efficiency of a model according to 

he true positives and false positives. As shown in Fig. 7 , the model

roposed by DTL with Densenet201 offers an AUC of 98.88%. We 

emark that this classification model delivers better results com- 

ared to the existing classification models as seen in Table 4 . 

. Conclusion 

This research introduced a benchmarking analysis and study on 

ifferent models to classify CT-scan images of COVID-19. This tool 

s necessary for managing the COVID-19 crisis, given the world- 

ide shortage of RT-PCR screening kits. For that, we have collected 
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Fig. 5. Training and validation analysis over 200 epochs: Training and Testing accu- 

racy analysis and Training and Testing loss analysis. 

Fig. 6. Explanation with heatmap on COVID-19 images using Grad-CAM. 
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 new CT-scan dataset from the hospital of Tlemcen in Algeria. We 

hen applied a transfer learning on six well-known DL architec- 

ures (VGG16, VGG19, Xception, Inception V2 Resnet, DenseNet121, 

ensenet201), then proposed a model based on DenseNet201 and 

he GradCam algorithm. According to the carried out experiments, 

he proposed architecture has shown its reliability with 98.8% of 

ccuracy. It also provides a visual explanation, which proves that 

he proposed model can be considered as an alternative for screen- 

ng COVID-19 and the follow-up of patients. Thus, the DL methods 

an help in the fight against the spread of the virus. We intend 
127 
o add more classes containing other lung diseases to help health 

xperts and general practitioners. 
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