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Terrestrial carbon cycling is largelymediated by soil foodwebs. Identifying the
carbon source for soil animals has been desired to distinguish their roles in
carbon cycling, but it is challenging for small invertebrates at low trophic
levels because of methodological limitations. Here, we combined radiocarbon
(14C) analysis with stable isotope analyses (13C and 15N) to understand feeding
habits of soil microarthropods, especially focusing on springtail (Collembola).
Most Collembola species exhibited lower Δ14C values than litter regardless of
their δ13C and δ15N signatures, indicating their dependence on young carbon.
In contrast with general patterns across all taxonomic groups, we found a
significant negative correlation between δ15N and Δ14C values among the
edaphic Collembola. This means that the species with higher δ15N values
depend on C from more recent photosynthate, which suggests that soil-
dwelling species generally feed on mycorrhizae to obtain root-derived
C. Many predatory taxa exhibited higher Δ14C values than Collembola but
lower than litter, indicating non-negligible effects of collembolan feeding
habits on the soil food web. Our study demonstrated the usefulness of radio-
carbon analysis, which can untangle the confounding factors that change
collembolan δ15N values, clarify animal feeding habits and define the roles
of organisms in soil food webs.
1. Introduction
In terrestrial ecosystems, soil provides key ecosystem functions and services
related to litter decomposition [1]. Decomposition is mainly driven by soil micro-
organisms and invertebrate animals via their transfers of energy and materials
through the foodweb [2,3]. Thus, how to identify the food sources of these organ-
isms has been a central theme for soil ecologists to understand their roles in the
ecosystem. Despite difficulties inherent in the complexity of the soil matrix and
limitations of conventional methods (e.g. gut content analysis and laboratory
food choice experiments), stable isotope signatures have shown significant pro-
gress as a powerful tool [4,5]. The use of stable isotopes has revealed hidden
trophic structures and trophic links in the soil. These studies provided evidence
that food sources vary widely among organisms and include living plants and
photoautotrophic microorganisms (e.g. cyanobacteria and algae) as well as
decayed materials and related saprotrophic microorganisms [6–8]. Especially,
studies using isotope tracers have revealed the underestimated importance of
carbon inputs from living roots into the soil food web [9–12] and have raised
questions over whether soil food webs are really based primarily on detritus.

Recently, an isotopic map that summarizes food sources and their effects on
the bulk stable isotope values (δ13C and δ15N) of soil animals was proposed
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[13]. This map covers most of the variation in soil animal food
sources and enables us to estimate the primary food source of
each animal taxon based on natural variations in δ13C and
δ15N values. However, the interpretation of isotope values
partly remains ambiguous because multiple factors alter iso-
tope values in the same directions [14–16]. 15N enrichment is
a particular problem, since we cannot accurately distinguish
between mycorrhizal effects and isotope enrichment by
microbial decay processes, even for non-predatory taxa [13].
Because feeding on mycorrhiza could be a highly significant
pathway for carbon input from living roots [15,17], the
dependence of soil organisms on mycorrhiza or microbially
decayed materials can lead to quite different consequences
for their ecosystem functioning. Furthermore, assessing the
degree of dependence on living roots is difficult. Soil animals,
including many omnivores, can use both living and dead
materials [18–20]. Most studies that assessed carbon inputs
from living roots have used isotope tracers [10–12], which
usually cannot be done simultaneously with the measure-
ment of natural variations of the same isotope (but see [9]).
Thus, we still cannot specify animal feeding habits directly
related to their ecosystem functioning only from the δ13C
and δ15N isotopic map.

To resolve that difficulty, we used radiocarbon (14C) analy-
sis to add information on the carbon age in animals into the
biplot of δ13C and δ15N. The radiocarbon technique provides
in situ information about the age (i.e. the time elapsed after
photosynthesis) of assimilated carbon, which can distinguish
taxa dominated by carbon that is younger than litter from
taxa that depend more on carbon from the litter and humus.
This technique is based on the atmospheric 14CO2 peak in
the early 1960s (the ‘bomb peak’) that resulted from nuclear
bomb testing and the 1963 Nuclear Test Ban treaty. The 14C
content of atmospheric CO2 has continued to decline since
this peak, and this decay curve is reflected in the 14C content
of photosynthate carbon. 14C analysis has been used to esti-
mate the feeding habits of some soil animals, such as
termites [21–24], ants [23,25], earthworms [24,26,27] and
enchytraeids [28]. We can estimate the diet ages from the 14C
contents in most soil animals, with exceptions for several
wood-feeding termites, by using the decay curve since the
peak in atmospheric 14CO2 [22]. In this study, we conducted
the first trial that has used 14C to assess the feeding habits of
soil microarthropods, especially focusing on Collembola.
Given that Collembola are the primary prey of many soil ani-
mals at higher trophic positions, their carbon sources will
clearly affect the whole soil food web [2,29]. We assessed
animal feeding habits by revealing the relationships between
the age of assimilated carbon and the stable isotope values
for multiple collembolan species and other mesofaunal taxa.
We then assessed the utility of the multi-dimensional isotopic
map that includes 13C, 15N and 14C signatures.
2. Material and methods
The research site was a warm temperate natural forest of Japanese
cypress (Chamaecyparis obtusa), one of the major species for timber
production in Japan, at the Kamigamo Experimental Forest
Station of Kyoto University, Japan (35°040 N, 135°430 E) [30]. The
vegetation consisted of a canopy layer of C. obtusa and an un-
derstory of shrubs, such as Cleyera japonica, Eurya japonica and
C. obtusa saplings. The soil has a moder humus with an organic
layer (A0) 3 to 5 cm thick above a poorly developed A horizon
that was 1 to 2 cm thick and BC horizons. In the A0 layer, densely
distributed fine roots of C. obtusa formed a root mat. More than 30
papers have been published about the ecology of the soil micro-
arthropod community, including its interactions with C. obtusa
roots, at this research site (e.g. [31,32]).

We collected samples of the soil organic layer, including soil
animals and C. obtusa fine roots, at monthly intervals from
November 2018 to March 2019. Soil animals were extracted
alive into deionized water using Tullgren funnels at 35°C. The
extracted animals were stored in a fridge at 4°C and immediately
identified and divided into taxonomic groups under a stereo-
microscope to prevent decay. Most Collembola were grouped
at the species level, whereas mites were grouped at the sub-
order level and other animals were combined at the order or
class level (table 1). These samples were stored frozen at –20°C
and then freeze-dried for isotope analyses. Fine roots that were
1 mm in diameter or less and the first-order roots (i.e. root tips)
were removed from the soil samples and ground into powder
using an agate mortar. The soil organic layer was separated
into the litter (L) layer and the fragmented litter and humus
layer (i.e. the FH layer), and each layer (excluding roots) was
ground into a powder using a ball mill. We obtained three
samples of the dominant collembolan species (Folsomia octoculata,
Tetracanthella sylvatica and Tomocerus varius): sample 1 in Novem-
ber and December 2018, sample 2 in January and February 2019,
and sample 3 in March 2019. We combined the samples of the
other taxa to obtain enough material (more than 2 mg) to
permit the three isotopic analyses (i.e. δ13C, δ15N and Δ14C).
For the substrates (i.e. roots and litter), we took small random
samples from each harvesting date and combined them, then
dried them at 70°C for 48 h. Details of isotopic analyses are in
the electronic supplementary material, S1. We used Pearson’s
correlation coefficient (r) to analyse the relationships among
pairs of the three isotopic signatures (i.e. δ13C, δ15N and Δ14C).
3. Results
The δ13C and δ15N signatures of soil animal taxa spanned 6.1
and 9.6‰, respectively (figure 1a; electronic supplementary
material, S2). The δ13C and δ15N signatures of the L layer
were lower than those of most soil animals, except for the
δ15N of Tomocerus ocreatus. The δ13C and δ15N signatures of
soil organic matter in the FH layer were higher than those
in the L layer but lower than those of most FH layer inhabi-
tants. The δ13C signatures of the root substrates were higher
than litter, whereas the δ15N signatures were between those
in the L and FH layers. The δ13C and δ15N signatures were
slightly lower in the first-order roots than in the fine roots.

The Δ14C signatures of the soil animal taxa spanned
64.5‰, with values ranging from −34.8‰ for Entomobryidae
to 29.7‰ for Pseudoscorpiones (figure 1a,b; electronic sup-
plementary material, S2). The Δ14C signatures of the
substrates showed a broad range from 13.0‰ for the first-
order roots to 56.2‰ for soil organic matter in the FH layer.
However, most Collembola (except for Neanuroidea) had a
lower Δ14C value than the substrates. Based on the simulation
calculated by Graven et al. [35], the atmospheric Δ14C value
was declining and estimated to be about 5–10‰ at the
global scale in 2019. Lower Δ14C values in soil microarthro-
pods than the globally estimated values indicate that Δ14CO2

levels at our site were affected by local CO2 emissions derived
from fossil fuels. Local variation in atmospheric 14CO2 has
been widely reported and ascribed to local CO2 emissions
derived from fossil fuel (Δ14C =−1000‰), which decreases
the Δ14C values in the curve [36,37]. If we assume the lowest



Table 1. Soil animal taxa identified in this study. The vertical habitats of the collembolan species are based on studies by Takeda [33,34]. FH, fragmented litter
and humus; L, litter.

sample ID notes on family, order and class habitat

Collembola

Folsomia octoculata F_octoculata Isotomidae FH layer

Tetracanthella sylvatica T_sylvatica Isotomidae L layer, but shows vertical migration

Isotoma carpenteri I_carpenteri Isotomidae FH layer

Onychiurus flavescens O_flavescens Onychiuridae FH layer

Onychiurus sibiricus O_sibiricus Onychiuridae FH layer, but shows vertical migration

Oncopodura yosiiana O_yosiiana Oncopoduridae FH layer

Tomocerus varius T_varius Tomoceridae L layer

Tomocerus ocreatus T_ocreatus Tomoceridae L layer

Entomobryidae Entomobryidae Entomobryidae: mix of Entomobrya spp.,

Lepidocyrtus spp., Homidia spp. and

Sinella spp.

L layer

Neanurinae Neanurinae Neanuridae: mix of Neanura kitayamana,

Vitronura pygmaea and Vitronura mandarina

L layer

Neanuroidea Neanuroidea Neanuridae, Odontellidae: mix of Friesia

japonica, Pseudachorutes spp. and

Superodontella sp.1

L layer

trophic position

others

Prostigmata Prostigmata Acari predator

Mesostigmata Mesostigmata Acari predator

Oribatida Oribatida Acari decomposer

Araneae Araneae Araneae predator

Geophilomorpha Geophilomorpha Chilopoda predator

Lithobiomorpha Lithobiomorpha Chilopoda predator

Diplopoda_adult Diplopoda_ad Diplopoda decomposer

Diplopoda_juvenile Diplopoda_ju Diplopoda decomposer

Pseudoscorpiones Pseudoscorpiones Pseudoscorpiones predator

Symphyla Symphyla Symphyla decomposer
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Δ14C signature of−34.8‰ for Entomobryidae to be the current
photosynthate C at our site in 2019, 17.2‰ of Δ14C value in the
tree fine roots is equivalent to the value of 12–13 year-aged C
on the simulation curve [35]. The results are consistent with
the findings that C in fine roots was aged 10 ± 1 years on aver-
age because fine roots are produced from stored non-structural
carbohydrates [38].

For all collembolan samples combined, Δ14C values were
significantly positively correlated with δ13C values, but not
with δ15N values (δ13C: r = 0.55, p < 0.05; δ15N: r =−0.09, p =
0.72, n = 17; figure 2a,b). We obtained similar results for the
epigeic collembolan species (i.e. L-layer inhabitants), except
for Neanurinae and Neanuroidea (which have blade-like
mandibles); that is, Δ14C values were significantly positively
correlated with δ13C values, but not with δ15N values (δ13C:
r = 0.77, p < 0.05; δ15N: r = 0.33, p = 0.42, n = 8; figure 2c,d ). By
contrast, among the edaphic collembolan species (i.e. FH-
layer inhabitants), the positive correlation between Δ14C and
δ13C values was only marginally significant, but the Δ14C
values were significantly negatively correlated with δ15N
(δ13C: r = 0.73, p = 0.06; δ15N: r =−0.89, p < 0.01, n = 7;
figure 2e,f ). For all taxa combined, Δ14C values were signifi-
cantly positively correlated with δ13C values and δ15N
values (δ13C: r = 0.49, p < 0.01; δ15N: r = 0.39, p < 0.05, n = 27;
figure 2g,h).
4. Discussion
Most Collembola showed lower Δ14C values than the litter,
regardless of their δ13C and δ15N signatures. Only the Nea-
nuroidea sample (which included Friesia japonica, which is
known to be a carnivore [33]) had a higher Δ14C value than
litter in the L layer. These results indicate that Collembola
generally depend more on carbon younger than litter, such
as carbon from living roots and algae. T. ocreatus, which is
a litter surface dweller and exhibited lower δ15N than the
litter, likely depends on algae as its main food source [6,39].
On the other hand, T. varius, F. octoculata and Onychiurus fla-
vescens could depend on root-derived C as a main pathway
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for the younger carbon input, although each species showed
different combinations of δ13C and δ15N values. These species
all showed clear responses to recent photosynthate C in a
13CO2 pulse-labelling experiment using greenhouse pots
with C. obtusa seedlings and soil collected from the same
research site [11]. Differences in stable isotope signatures
among these species could reflect differences in their habitat
[14] (table 1), leading to differences in the foods they use in
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addition to root-derived C and the relative proportions of
these multiple foods. The stable isotope signatures could
also reflect which materials they feed on directly to
obtain root-derived C; these include rhizodeposits such
as mucilage, mycorrhizal fungi, microorganisms that
propagated on the rhizodeposits, and the living root itself,
although these sources are still controversial [8,17,40].
Positive correlations between δ15N and Δ14C values have
often been reported for earthworms and termites [24,26,41].
This pattern has supported enrichment of their diet (i.e. soil
organic matter) in 15N with humification by saprotrophic
microorganisms, and this was often observed as a vertical iso-
topic gradient in the soil [4,14]. However, we did not find a
similar relationship between the δ15N value and the carbon
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age for Collembola, likely because they feed more on micro-
organisms than on detritus. The significant positive
correlation between δ13C and Δ14C values could be attributed
to the same mechanism that is responsible for the soil 15N
enrichment [21], since soil enrichment in heavier isotopes
during the humification process has been reported for both
15N and 13C [13,23]. This supports the hypothesis that collem-
bolan species with higher δ13C values could generally use
more carbon derived from the litter and humus. By contrast,
15N enrichment by a mycorrhizal pathway [42–44] may
obscure the relationship between δ15N and Δ14C values in Col-
lembola. Both factors (i.e. microbial humification and
mycorrhizae) can increase δ15N values with increasing soil
depth [13,43], but have the opposite effect on Δ14C; that is,
microbially humified soil exhibits a higher Δ14C value,
whereas mycorrhizae have a lower value [45]. The significant
negative correlation between δ15N and Δ14C values in the
edaphic Collembola (i.e. FH-layer inhabitants; figure 2f ) indi-
cates that collembolan species with higher δ15N values
depend more on recent photosynthate C, which means that
the edaphic species generally feed on mycorrhizae to obtain
root-derived C. For epigeic species, we cannot assess whether
they feed on mycorrhiza or other materials such as microor-
ganisms that are associated with rhizodeposits. Epigeic
species may not feed on mycorrhiza from the point of their
low δ15N values compared to mycorrhizal δ15N [40]. Whether
Collembola have enough opportunities to encounter mycorrhi-
zal mycelium in their living space could be critical in the first
place, although it is likely influenced by the site-specific
environment. Here, we can conclude that Collembola seem
not to feed directly on fine roots at our coniferous forest site,
because even the first-order roots had a much older carbon
age than Collembola.

Predatory taxa with high δ15N values [13,46] mostly
showed higher Δ14C values than Collembola, leading to the
positive correlation between δ15N and Δ14C values across
all taxa. Mesostigmata, Chilopoda and Pseudoscorpiones
with high Δ14C values may also feed on other animals with
higher Δ14C values than Collembola, such as Oribatida and
adult Diplopoda. In addition to Oribatida and Diplopoda,
which have been reported to feed mainly on litter or humus-
derived C [11,17], animals we did not sample, such as Diptera
larvae, could contribute to increasing the carbon age of preda-
tors [47]. Isotopic signatures of other animals should also be
assessed at the species level in future studies. However, our
findings that many predators, including one of the top preda-
tors, Araneae, exhibited a younger carbon age than the litter,
indicate non-negligible effects of the feeding habits of Collem-
bola on the whole soil food web. These results emphasize that
the soil foodweb does not necessarily function exclusively as a
brown food web derived from detritus [9].

In this study, we showed the utility of radiocarbon analy-
sis, which can compensate for the effects of confounding
factors that alter δ15N of Collembola (e.g. microbial humifica-
tion and mycorrhizae). Although we should investigate the
Δ14C values for potential food sources themselves (especially
the sources made out of the current carbon) in the future, our
findings provide an important step to improve the assess-
ment of the feeding habits of soil animals and ecosystem
functioning through their impacts on the food web.
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