Skip to main content
. 2021 Sep 13;2021:6747371. doi: 10.1155/2021/6747371

Table 1.

The ASA of tested algorithms on ST images with various noises.

Noise FCM FCM_S1 FCM_S2 FCM + GF (ε=0.14) IFCM_GF (ρ) FRFCM MRIFCM_GF (ρ)
3% Gaussian 0.7028 0.9783 0.9742 0.6984 0.7520 (0.047) 0.9982 0.9993 (0.014)
5% Gaussian 0.6471 0.9166 0.8716 0.6646 0.7166 (0.034) 0.9965 0.9987 (0.009)
10% Gaussian 0.5806 0.7628 0.7497 0.6172 0.7153 (0.02) 0.9892 0.9964 (0.008)
15% Gaussian 0.5499 0.7292 0.7139 0.5924 0.7082 (0.017) 0.9425 0.9907 (0.005)
10% Salt & Pepper 0.9431 0.9389 0.9826 0.9443 0.9995 (0.008) 0.9991 0.9993 (0.009)
20% Salt & Pepper 0.8873 0.8757 0.9647 0.8916 0.9993 (0.006) 0.9989 0.9993 (0.004)
30% Salt & Pepper 0.8304 0.7806 0.9409 0.8366 0.9981 (0.002) 0.9976 0.9982 (0.003)

The best segmentation accuracy among the group.