Skip to main content
. 2021 Sep 13;2021:6747371. doi: 10.1155/2021/6747371

Table 2.

The ASA of tested algorithms on SF images with various noises.

Noise FCM FCM_S1 FCM_S2 FCM + GF (ε=0.14) IFCM_GF (ρ) FRFCM MRIFCM_GF (ρ)
3% Gaussian 0.7277 0.9716 0.9736 0.7333 0.9274 (0.02) 0.9972 0.9986 (0.019)
5% Gaussian 0.6417 0.9301 0.9271 0.6486 0.7492 (0.04) 0.9952 0.9979 (0.016)
10% Gaussian 0.5392 0.8103 0.8003 0.5250 0.6132 (0.002) 0.9857 0.9944 (0.004)
15% Gaussian 0.4902 0.7331 0.7348 0.4709 0.5620 (0.015) 0.9592 0.9847 (0.001)
10% Salt & Pepper 0.9233 0.9329 0.9746 0.9273 0.9995 (0.003) 0.9990 0.9994 (0.007)
20% Salt & Pepper 0.8475 0.8617 0.9477 0.8620 0.9989 (0.002) 0.9982 0.9989 (0.005)
30% Salt & Pepper 0.7708 0.7613 0.9152 0.7958 0.9973 (0.001) 0.9966 0.9975 (0.003)

The best segmentation accuracy among the group.