Table 2.
The ASA of tested algorithms on SF images with various noises.
Noise | FCM | FCM_S1 | FCM_S2 | FCM + GF (ε=0.14) | IFCM_GF (ρ) | FRFCM | MRIFCM_GF (ρ) |
---|---|---|---|---|---|---|---|
3% Gaussian | 0.7277 | 0.9716 | 0.9736 | 0.7333 | 0.9274 (0.02) | 0.9972 | ∗ 0.9986 (0.019) |
5% Gaussian | 0.6417 | 0.9301 | 0.9271 | 0.6486 | 0.7492 (0.04) | 0.9952 | ∗ 0.9979 (0.016) |
10% Gaussian | 0.5392 | 0.8103 | 0.8003 | 0.5250 | 0.6132 (0.002) | 0.9857 | ∗ 0.9944 (0.004) |
15% Gaussian | 0.4902 | 0.7331 | 0.7348 | 0.4709 | 0.5620 (0.015) | 0.9592 | ∗ 0.9847 (0.001) |
10% Salt & Pepper | 0.9233 | 0.9329 | 0.9746 | 0.9273 | ∗ 0.9995 (0.003) | 0.9990 | 0.9994 (0.007) |
20% Salt & Pepper | 0.8475 | 0.8617 | 0.9477 | 0.8620 | ∗ 0.9989 (0.002) | 0.9982 | ∗ 0.9989 (0.005) |
30% Salt & Pepper | 0.7708 | 0.7613 | 0.9152 | 0.7958 | 0.9973 (0.001) | 0.9966 | ∗ 0.9975 (0.003) |
∗The best segmentation accuracy among the group.