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Abstract

The present study investigated whether the representation of subjective preferences in the event-related potential is manipulable
through selective devaluation, i.e., the consumption of a specific food item until satiety. Thirty-four participants completed a
gambling task in which they chose between virtual doors to find one of three snack items, representing a high, medium, or low
preference outcome as defined by individual desire-to-eat ratings. In one of two test sessions, they underwent selective deval-
uation of the high preference outcome. In the other, they completed the task on an empty stomach. Consistent with previous
findings, averaged across sessions, amplitudes were increased for more preferred rewards in the time windows of P2, late FRN,
and P300. As hypothesised, we also found a selective devaluation effect for the high preference outcome in the P300 time
window, reflected in a decrease in amplitude. The present results provide evidence for modulations of reward processing not only
by individual factors, such as subjective preferences, but also by the current motivational state. Importantly, the present data
suggest that selective devaluation effects in the P300 may be a promising tool to further characterise altered valuation of food

rewards in the context of eating disorders and obesity.
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To cope in an ever-changing environment, we need to process
adequately the consequences of our actions and associate one
with the other. For instance, when deciding between different
dishes in a restaurant, we need to take into account which dish
matches our appetite best and whether it was consistently pre-
pared to our liking in the past. We generally evaluate the
utility of our choices and actions based on outcome attributes
such as probability, valence, or magnitude. Because outcome
processing comprises a fast-paced sequence of processing
steps (Glazer et al., 2018), the underlying neural mechanisms
have been extensively researched using measures with a high
temporal resolution, and in research with humans electroen-
cephalography (EEG) is the most frequently applied method.

An early component of the event-related potential (ERP) that
has been associated with outcome processing is the feedback-
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related negativity (FRN) (Miltner et al., 1997). The FRN, a
frontocentral negativity peaking between 200 and 300 ms after
outcome presentation (Glazer et al., 2018), is typically more
pronounced for undesirable compared with desirable outcomes
and has been linked to performance and feedback evaluation
(Bellebaum, Kobza, et al., 2010a; Holroyd & Coles, 2002;
Miltner et al., 1997; Nieuwenhuis et al., 2004; Wu & Zhou,
2009). It is generated in the anterior cingulate cortex (ACC;
Gehring & Willoughby, 2002; Miltner et al., 1997; Ruchsow
et al., 2002; Zhou et al., 2010), a structure that receives
mesocortical projections from dopamine neurons in the
substantia nigra (Emson & Koob, 1978; Lindvall et al., 1974;
Porrino & Goldman-Rakic, 1982) and ventral tegmental arca
(Beckstead et al., 1979; Porrino & Goldman-Rakic, 1982;
Swanson, 1982). Based on these findings, Holroyd and Coles
(2002) assumed that the FRN is driven by dopaminergic activity.
Interestingly, midbrain dopaminergic neurons code a reward
prediction error: while an unexpected reward is answered with
increased dopaminergic activity, an expected reward is answered
with no such increase, and an expected but omitted reward re-
sults in a decrease in activity compared to baseline (Schultz
et al., 1997; Zaghloul et al., 2009). Moreover, midbrain dopa-
minergic activity is also modulated by reward magnitude, with a
reward smaller or larger than expected eliciting suppression or
activation, respectively, relative to baseline (Tobler et al., 2005).


http://crossmark.crossref.org/dialog/?doi=10.3758/s13415-021-00904-x&domain=pdf
http://orcid.org/0000-0002-9213-8335
mailto:dana.huvermann@hhu.de

Cogn Affect Behav Neurosci (2021) 21:1010-1025

1011

Accordingly, the FRN has been shown to be affected by
both outcome probability and magnitude. It is more negative
for unexpected compared to expected negative outcomes, and
more positive for unexpected compared to expected positive
outcomes (Hajcak et al., 2007; Potts et al., 2006; Walsh &
Anderson, 2011). Similarly, the negativity is more pro-
nounced for smaller compared to larger amounts of monetary
rewards (Holroyd et al., 2004; Kreussel et al., 2012; Wu &
Zhou, 2009), and the amplitude difference between positive
and negative outcomes is larger with higher (potential) out-
comes (Bellebaum, Polezzi, & Daum, 2010b). Along these
lines, the FRN is thought to reflect dopaminergic activity, thus
also coding a reward prediction error (Pfabigan et al., 2011;
Sambrook & Goslin, 2015; Wu & Zhou, 2009). This notion
has been confirmed by means of single-trial analyses
(Burnside et al., 2019; Fischer & Ullsperger, 2013). In recent
years, there has been a debate whether effects in the FRN
difference signal between positive and negative feedback are
primarily driven by a negativity in response to negative out-
comes or by a positivity in response to rewards. It has been
proposed that positive prediction errors elicit a relative posi-
tivity in the signal, the reward positivity (Becker et al., 2014;
Holroyd et al., 2008; Proudfit, 2015). This has been supported
by studies using principal component analysis (Foti et al.,
2011) as well as by combined EEG and fMRI studies
(Becker et al., 2014; Carlson et al., 2011).

A later ERP component that has been implicated in out-
come processing is the P300 (Bellebaum, Polezzi, & Daum,
2010b; Yeung & Sanfey, 2004), a positive deflection peaking
between 300 and 600 ms after outcome presentation (Glazer
et al., 2018) that typically increases in amplitude from frontal
to parietal sites (Johnson, 1993). While its neural origin has
not been fully determined (Glazer et al., 2018; Huang et al.,
2015; Polich, 2007), it has been associated with dopaminergic
midbrain structures (Andreou et al., 2013; Pfabigan et al.,
2014; Rule et al., 2002). Although findings concerning the
P300’s sensitivity to outcome valence have been inconsistent
(Bellebaum, Polezzi et al., 2010; Foti & Hajcak, 2012; Gu
et al., 2011; Hajcak et al., 2007; Kobza et al., 2011,
Kreussel et al., 2012; Polezzi et al., 2010), coding of outcome
magnitude in the P300 has been reliably shown, with more
positive amplitudes for larger outcomes (Bellebaum, Polezzi
etal., 2010; Goyer et al., 2008; Gu et al., 201 1; Kreussel et al.,
2012; Meadows et al., 2016; Polezzi et al., 2010; Sato et al.,
2005; Wu & Zhou, 2009; Yeung & Sanfey, 2004). The P300
also shows relatively consistent effects of outcome probabili-
ty, with more positive P300 amplitudes for unexpected com-
pared to expected outcomes (Bellebaum & Daum, 2008;
Hajcak et al., 2005; Hajcak et al., 2007; Wu & Zhou, 2009;
but also see Kobza et al., 2011; Kreussel et al., 2012).

Functionally, the P300 has been subdivided into an earlier,
attention-focussed component in frontal areas (P3a) and a later,
memory-focussed component in centroparietal areas (P3b;

Polich, 2007). It has been suggested that the P300 may reflect
neural activity that inhibits other, unrelated processes and en-
hances attentional focus to promote memory storage for the
currently focussed stimulus (Polich, 2012). Along these lines,
the P300 has been shown to increase in amplitude with higher
motivational significance of stimuli (Begleiter et al., 1983;
Nieuwenhuis et al., 2005; San Martin, 2012; Severo et al., 2020).

Consistent with reward magnitude effects in both FRN and
P300, Peterburs et al. (2019) recently reported that subjective
reward preferences, corresponding to subjective reward mag-
nitude, had a significant impact on the outcome-locked ERP in
the time windows of FRN and P300, with more positive am-
plitudes for a preferred relative to a less liked food reward.
Preference coding started as early as 170 ms after outcome
onset and thus in the time window of the P2, an early positive
ERP component that also has been shown to code outcome
magnitude (Flores et al., 2015; Potts et al., 2006; San Martin
et al., 2010). However, the neural representation of subjective
preferences and their interplay with motivational states
(Balleine & Dickinson, 1998) is still largely unclear. A previ-
ous study by Baker et al. (2016) reported that after a period of
abstinence, smokers showed a more positive FRN
(operationalised as the reward-no reward difference) for ciga-
rette compared to monetary rewards. This finding suggests
that the induction of craving by the period of abstinence al-
tered the motivational value of outcomes and their respective
processing endeavour. While Baker et al.’s study offers a first
glimpse into dependence of subjective reward processing on
the current motivational state, the study lacked in control con-
ditions; it did not include a nonabstinence condition or a non-
smoker control group. In the present study, we aimed to in-
vestigate whether motivational state-induced shifts of subjec-
tive reward preferences are reflected in neural processing of
the rewards in a fully controlled design that does not entail
substance addiction.

For that purpose, we applied selective devaluation, also
referred to as selective satiety (Rolls et al., 1981), a procedure
in which one item of a variety of food items is devalued
through consumption. Changes in the (neural) processing of
this food item can be attributed solely to a change of subjec-
tive valuation, as all physical attributes of the food item re-
main the same. fMRI studies on subjective devaluation have
yielded consistent results: consumption of a food item reduced
activation in the orbitofrontal cortex (OFC) associated with
the consumed item, but not others (Gottfried et al., 2003;
Howard & Kahnt, 2017; Kringelbach et al., 2003; O'Doherty
et al., 2000; Valentin et al., 2007). It is, however, unclear
whether selective devaluation interacts with subjective prefer-
ences for specific rewards during outcome processing.
Importantly, when referring to subjective preferences, we
mean long-term preferences that shift only slightly over the
time span of few years (Nicklaus et al., 2004; Skinner et al.,
2002) as described by Rozin (1990).
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In the present study, we aimed to clarify whether the selec-
tive satiety effect extends to the manipulation of subjective
preferences and how it is represented in the ERP. We tested
a sample of healthy adults both with and without applying
selective devaluation of a preferred outcome, using a variant
of the gambling task introduced by Peterburs et al. (2019), but
with individually determined rewards of high, medium, and
low preference. We hypothesised that selective devaluation of
the high preference reward would affect the amplitude within
the time windows of the P2, FRN, and P300 ERP compo-
nents, such that preference coding in the ERP is maintained
without selective devaluation but altered when selective de-
valuation is applied. More specifically, after selective devalu-
ation, the ERP amplitude should be reduced in response to the
high preference outcome, so that processing differences com-
pared with the medium and low preference outcome are
reduced.

Methods
Participants

Thirty-four healthy adults (24 women) with a mean age of
22.2 years (SD = 3.7 years; age from 18 to 34 years) partici-
pated in the present study. All participants reported no history
of neurological or psychiatric disorders, no intake of medica-
tion affecting the central nervous system and normal or
corrected-to-normal vision. Four participants stated to be
left-handed, one to be ambidextrous, and the remaining 29
stated to be right-handed. Two participants had to be excluded
due to noisy EEG data and one participant had to be excluded
due to an extreme preference decline for the high preference
outcome from the first to the second appointment. While this
participant chose the highest possible rating for the high pref-
erence outcome in the first session (9), they chose the lowest
possible rating for the high preference outcome in the second
appointment (1) and expressed that this was to make sure that
they would not be offered the same snack item again in the
second appointment. Because such behaviour was not present
in or expressed by any other participant, this subject’s data
were excluded from the analyses.

The required sample size was estimated via G*Power (Faul
et al., 2007; Faul et al., 2009). Because G*Power does not
offer an approach to estimate sample sizes for cluster-based
permutation analyses, we estimated sample size by using the
effect size from the interaction of condition (active vs. obser-
vational) and outcome type (high, medium, or low preference)
measured in the P300 within the repeated measure ANOVA in
Peterburs et al. (2019). This setup was most similar to our
study (with the factor agency—active vs. observational—
instead of valuation condition), and they conducted both an
ANOVA as well as a cluster-based permutation analysis.

@ Springer

Assuming a similar effect size of np2 = 0.16 and keeping
conventional levels of o« = 0.05 and Power = 0.80, a sample
size of 30 participants was required. All participants gave
informed, written consent before their participation. This
study was approved by the ethics committee of the Faculty
of Mathematics and Natural Sciences at Heinrich-Heine-
University Diisseldorf and conforms to the Declaration of
Helsinki.

Stimuli

Throughout the study, participants had to give desire-to-eat
ratings for nine snack items and hunger ratings (see the
Procedure section for details on when the ratings were taken).
Ratings were given on a scale from 1 to 9, with 1 indicating
absolutely no current desire to eat the snack/no sensation of
hunger, and 9 indicating a very high current desire to eat the
snack/a very high sensation of hunger. The snack items used
in the present study belonged to three categories: sweet
(gummi bears, milk chocolate, candy-coated chocolate drops);
savoury (crisps, salted peanuts, salted mini pretzels); and neu-
tral snacks (edible wafer paper, rice cake, crispbread). Of the
nine rated snack items, three were chosen to be used in the
experimental task individually for each participant. The item
with the highest desire-to-eat rating among the sweet and sa-
voury snacks in the pre-rating (i.e., at the beginning of the first
experimental session) was chosen as the high preference out-
come (HPO). A snack of the other category (sweet or savoury,
respectively) that was rated lower than the HPO but still in a
medium range of the overall ratings of the participant was
chosen as the medium preference outcome (MPO). Only in
one case did we have to choose one of the neutral items as an
MPO, as preference formation would not have been possible
otherwise. The low preference outcome (LPO) was chosen as
the item with the highest ratings among the neutral items that
still had a lower rating than the HPO and MPO.

Procedure

Before data acquisition, participants had to fill in an online
questionnaire to assess whether they would qualify for the
study in terms of health and palatability of the snacks. To this
end, participants needed to state whether they suffered from an
eating disorder (or any neurological or psychiatric disorder),
diabetes, a disorder or absence of their sense of taste or smell,
whether they recently started a diet or intended to begin one
before the appointments, whether they had any allergies/
intolerances against any of the snacks, and to which degree
they liked the snack items (confer Friedel et al., 2014;
Horstmann et al., 2015; Janssen et al., 2017; Tricomi et al.,
2009). To ensure preference formation was possible, we only
admitted participants who could safely eat and liked at least
one of the sweet and one of the savoury items (as indicated by
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a rating above 5 on a scale from 1 to 9 where 1 indicated a
strong disliking and 9 indicated a strong liking of the item).
Note that the actual food items serving as HPO, MPO, and
LPO were chosen based on the desire-to-eat ratings that were
conducted in the lab (see above).

To avoid systematic effects of fatigue and minimise repe-
tition effects for the experimental task, we decided to deviate
from the typical pre-/post-devaluation design (confer
Horstmann et al., 2015; Soares et al., 2012; Valentin et al.,
2007) and recorded EEG after devaluation and
nondevaluation in two separate appointments which took
place at least 5 days apart, with a mean of 11.3 days between
appointments (SD = 6.3 days; range 5-25 days). One of the
appointments included a devaluation of the HPO before the
experimental task, thus forming the devaluation condition,
whereas the other one did not include such a devaluation
and thus formed the nondevaluation condition. The order of
the appointment types was counter-balanced across partici-
pants. In accordance with the procedure applied in previous
studies (confer Friedel et al., 2014; Howard & Kahnt, 2017,
Tricomi et al., 2009; Valentin et al., 2007), participants were
instructed to fast for at least 6 hours before each appointment
to encourage the consumption of the snack items through
increased hunger and attractiveness of the snack items (Uher
et al., 2006). On average, subjects declared to have fasted for
11.97 hours (SD = 4.16 hours; range 5.42-20 hours).

After participants arrived at the lab, they filled out a demo-
graphic questionnaire and a questionnaire inquiring about
their current desire for the nine depicted snacks as well as their
current hunger level (confer Horstmann et al., 2015; Howard
& Kahnt, 2017; Soares et al., 2012; Valentin et al., 2007). We
additionally took their statement of their height and weight for
an exploratory analysis using the body mass index (BMI),
which can be found in the supplementary material (see
Supplementary Analysis 1). Subsequently, the preparation
for the EEG took place while participants could eat the snack
provided to them on the devaluation appointment and, to in-
crease snacking behaviour (Lyons et al., 2013), watch a TV
show or film of their choice via a provided streaming service.

To devaluate the HPO, a bowl containing 100 g of the
respective HPO snack item was placed in front of the partic-
ipants and they were asked to eat until they felt satiated or until
they no longer wanted to eat the specific snack (confer Janssen
et al., 2017 ; Soares et al., 2012 ; Tricomi et al., 2009 ;
Valentin et al., 2007). They were encouraged to ask for anoth-
er serving if the above-mentioned conditions were not met
after finishing the previous serving. In that case, the bowl
was refilled with another 100 g of the respective snack.
Devaluation was quantified by weighing the snack bowl be-
fore and after each serving (Friedel et al., 2014; Horstmann
et al., 2015) and through questionnaires inquiring about par-
ticipants’ current desire to eat each of the nine snacks and
current feeling of hunger before and after devaluation took

place (or in the nondevaluation condition, before and after
EEG preparation took place). Devaluation led to a significant
reduction in hunger ratings (M= —3.0, SDg;-= 1.9) com-
pared with the nondevaluation condition (M= 0.4, SD ;5=
0.8), #(30)= 9.08, p < 0.001. On average, participants con-
sumed 99.1 g (SD = 56.6 g) or 454.9 kcal (SD = 245.0 kcal).
Participants could determine the time for eating the snack by
themselves and were considered satiated once they quit food
consumption (Janssen et al., 2017; Soares et al., 2012;
Tricomi et al., 2009; Valentin et al., 2007). Experimenters
sat behind a room separator whenever EEG preparation was
finished but snacking continued. Subsequently, participants
were educated about EEG artefacts and how to reduce them,
followed by the standardised instructions for the experimental
task.

The experimental task consisted of three blocks of 100 trials,
resulting in a total of 300 trials per session. Between blocks,
participants had the opportunity to take breaks whose length
they could determine by themselves. During each trial, partic-
ipants initially saw three rectangles representing doors of which
they could choose one by pressing one of three buttons on a
response box (Cedrus RB-740; Cedrus Corporation, San Pedro,
CA) to find one of the three snacks “hidden” behind it. Figure 1
shows the procedure for one trial. After the presentation of a
fixation cross for a randomly determined duration between 500
and 1600 ms, doors were shown until button press or for a
maximum of 3,000 ms. After button press, the respective door
was highlighted for 500 ms, followed by a fixation cross for
500 ms and then the display of one of the three snacks for 1,000
ms. Participants were told that they would win the snack they
would discover most often. However, unbeknown to the sub-
jects each snack was shown equally often and in randomised
order. Stimuli were presented on a BenQ Senseye LED 27~
monitor via Presentation (Version 20.0, Neurobehavioral
Systems Inc., Albany, CA) on a SilverStone PC running
Windows 10. Experimenters sat behind a room separator for
the duration of the experimental task, which lasted approxi-
mately 25 minutes. After task completion, participants were
handed their compensation at the second appointment and
dismissed. Compensation consisted of course credit and the
participants’ preferred snack.

EEG recording and preprocessing

EEG was recorded from 28 active Ag/AgCl electrodes (F7,
F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, TS,
CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P§, PO9, O1, Oz, 02,
PO10) that were positioned on an actiCap (BrainProducts
GmbH, Munich, Germany) and arranged according to the
10-20 system (Chatrian et al., 1985). Two electrodes were
attached to the mastoids. FCz served as online reference, and
the ground electrode was installed at site AFz. To account for
eye movement artefacts, two additional electrodes were
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Fig. 1 Sequence and time course of stimulus presentation in one trial of the gambling task as well as outline of the general experimental procedure

attached: one horizontal electrooculogram (hEOG) electrode
to the outer canthus of the left eye and one vertical electrooc-
ulogram (VEOG) electrode above the left eye. Impedances
were kept below 5 k2. Data were sampled at a rate of 1,000
Hz, amplified with a BrainAmp DC amplifier (BrainProducts
GmbH, Munich, Germany), and recorded with BrainVision
Recorder software (Version 1.20.0506, BrainProducts
GmbH, Munich, Germany) on an Intel Premium PC running
Windows 10.

During preprocessing, the signal was first re-referenced
to the mean signal of the mastoid electrodes, and the signal
at FCz was restored. Next, we applied direct current (DC)
detrending and a Butterworth filter with a low cutoff of
0.1 Hz (time constant: 1.59), a high cutoff of 30 Hz, and a
notch filter of 50 Hz. We subsequently corrected for oculo-
motor artefacts using ocular correction independent compo-
nent analysis (ICA) of the EEG data as implemented in
BrainVision Analyzer 2 software, based on hEOG and
vEOG for each participant, eliminating three to eight com-
ponents via ICA backward transformation. Data was then
segmented into epochs of 800 ms, starting 200 ms before
outcome onset and ending 600 ms after outcome onset for
each of the three outcomes. Next, a baseline correction was
applied based on the 200 ms immediately preceding out-
come onset. Segments with a maximum difference of values
over 100 puV or an activity lower than 0.1 pV within an
interval of 100 ms, a voltage step exceeding 50 uV/ms, or
values above 100 1V or below —100 pnV were then rejected
using automatic artefact rejection. On average, 96.7 seg-
ments per outcome type and valuation condition remained
(SD = 4.8 segments). Last, data were averaged according to
valuation condition and outcome type.

@ Springer

Data Analysis

Behavioural data To confirm the classification into outcome
types and the behavioural selective devaluation, a repeated
measure analysis of variance (ANOVA) for the desire-to-cat
ratings with the within-subject factors valuation condition (de-
valuation, nondevaluation), outcome type (LPO, MPO, HPO),
and time point (pre, post) was conducted. An alpha level of p
< 0.05 was considered statistically significant. In case of vio-
lation of sphericity, degrees of freedom were adjusted follow-
ing the Greenhouse-Geisser method. Pairwise comparisons
following significant effects of outcome type were
Bonferroni-corrected with an «-level of p = 0.017.
Significant interactions were resolved by subordinate
ANOVAs and post-hoc testing as specified below.

Cluster-based permutation analysis of ERP data As in this
study, we hypothesized to find effects in a larger time window
spanning multiple ERP components (P2, FRN, and P300)
with differing spatial distributions, we employed a cluster-
based permutation analysis as implemented in the FieldTrip
toolbox (version 20200409, www.fieldtriptoolbox.org;
Oostenveld et al., 2011) to determine the spatiotemporal
differences in the processing of the outcome types in the
different valuation conditions. Note that this procedure also
was used in a prior study on reward preferences by our group
using the same task (Peterburs et al., 2019). Cluster-based
permutation analysis is a nonparametric method to test for
differences between experimental conditions in data with a
high-dimensional spatiotemporal structure, such as EEG,
while correcting for multiple comparisons prevalent in such
data (Maris & Oostenveld, 2007). Because it does not rely on
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a priori selection of electrodes and time windows, it offers a
more objective approach than classical ERP analyses which
rely on challengeable choices of electrodes and time windows
based on visual inspection and/or previous literature. We
analysed data in several steps to account for our 2 x 3 exper-
imental design, as the method does not allow us to consider
more than one experimental factor at a time (Peterburs et al.,
2019).

Data were down-sampled to 100 Hz. In a first step, we
wanted to assess general effects of subjective preferences on
outcome processing. To this end, we pooled the two valuation
conditions by averaging the ERPs per participant for each
outcome type (HPO, MPO, and LPO) across the devaluation
and nondevaluation conditions. Univariate ANOVAs were
performed for each data point and electrode in the down-
sampled data, starting at outcome onset and ending 600 ms
after outcome onset. Samples were considered significant if
less than 0.05 of reference test statistics exceeded the test
statistic observed in the sample. Reference test statistics were
calculated from 1000 samples generated by means of random
permutation, i.e., randomly shuffling data. If at least three
spatially and temporally adjacent samples fulfilled this crite-
rion, they were combined into a cluster. Concerning spatial
adjacency, a neighbouring distance of 0.225 was used (yield-
ing four to 17 neighbours per electrode, M = 10.88, SD =
3.74), and the acticap-64ch-standard2.mat 2D template
(FieldTrip, version 20200409) was applied. The sum of the
F-values of all samples in a cluster was used as a test distri-
bution for the second-layer cluster statistic. The p-value for
each cluster was estimated by comparing the test distribution
with a reference distribution that was again calculated by ran-
dom permutations as described above.

To clarify which of the three outcomes differed from each
other, we conducted analogous cluster-based permutation
analyses based on dependent-sample #-tests for the outcome
types (HPO vs. LPO; MPO vs. LPO; HPO vs. MPO). While
these analyses were conducted for the same time period as the
previously described analysis for the overall main effect (from
outcome onset until 600 ms after), only effects within the
spatiotemporal clusters of the main effect were considered
and interpreted.

To explore the interaction effect of outcome type and val-
uation condition, which was of particular interest as it ad-
dressed our hypothesis, the same procedure as for the
cluster-based permutation analysis of the main effect was ap-
plied to the devaluation—nondevaluation difference signals
that were created for each outcome type. Hence, we again
obtained three spatiotemporal patterns of activity. Here, sig-
nificant clusters indicated that the difference between the de-
valuation and nondevaluation condition differed as a function
of outcome type. To resolve the interaction, separate follow-
up cluster-based analyses using F-tests were performed to find
processing differences between the three outcome types for

each valuation condition separately. In case of significance,
we conducted post-hoc, cluster-based permutation analyses
based on #-tests for each outcome type and valuation condi-
tion, to further discern which outcome types differed signifi-
cantly from one another. Again, clusters found in these post-
hoc tests are only reported and considered if they coincided
with the time windows of the difference signal main effect
clusters. To account for the bi-directionality of this test, we
chose an alpha-level of 0.025 to determine significance.

Results
Behavioural Results

For the desire-to-eat ratings (Fig. 2), a triple interaction be-
tween outcome type, valuation condition, and time point could
be observed, F(2, 60) =24.24, p < 0.001, npz =0.45. Because
our main interest lay in the selective devaluation effect, we
investigated only this triple interaction further. The complete
analysis is reported in Table 1. The triple interaction was re-
solved by separate within-subject ANOVAs for both time
points.

For the pre-ratings, no effect of valuation condition, F(1,
30) = 0.13, p = 0.909, and neither an interaction of valuation
condition and outcome type could be found, F(2, 60)=1.15,p
= 0.322. Instead, a main effect of outcome type emerged, F(2,
60) = 102.93, p < 0.001, npz = 0.77. Post-hoc t-tests yielded
that all outcome types differed significantly from one another,
all p < 0.001, with the highest rating for the HPO, followed by
the MPO and then LPO, reflecting the intended preference
structure.

For the post-ratings, the interaction between valuation con-
dition and outcome type reached significance, F(2, 60) =
25.58, p < 0.001, np2 = 0.46. This interaction was then re-
solved by conducting follow-up ANOV As separately for each
valuation condition. The outcome type effect within the
nondevaluation condition reached significance, F(2, 60) =
47.99, p < 0.001, np2 = 0.62. Post-hoc r-tests yielded that all
outcome types differed significantly from one another, all p <
0.006, with the highest rating for the HPO, followed by the
MPO and then LPO, reflecting the intended preference struc-
ture. The outcome type effect within the devaluation condition
also reached significance, F(2, 60) = 12.44, p < 0.001, np2 =
0.29. Post-hoc #-tests showed, however, that the underlying
pattern was different. The MPO now reached the highest
desire-to-eat ratings and was rated significantly higher than
the LPO, p < 0.001, and the HPO, p = 0.029, while ratings
for the LPO and HPO did not differ significantly, p = 0.217.

For an additional resolution of the triple interaction, we
conducted ANOVAs with the factors time point and out-
come type separately for the valuation conditions. For the
nondevaluation condition, the interaction of time point and
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Fig. 2 Desire-to-eat ratings per outcome type and valuation condition for
two different time points. Note that pre and post refers to the time point of
devaluation in the devaluation condition and to the time point of EEG

outcome type did not reach significance, F(2, 60) = 1.28, p
=0.287. However, the main effect of outcome type reached
significance, F(2,60) = 63.21, p < 0.001, np2 = 0.68, as
well as the main effect of time point, F(1, 30) = 4.61, p =
0.040, np2 = 0.13. All outcome types differed significantly
from one another, all p < 0.002; the highest rating was for
the HPO, followed by the MPO, and then the LPO.
Concerning time points, ratings were slightly lower for
the post-rating (M = 5.9, SD = 1.2) compared with the
pre-rating (M = 6.1, SD = 1.5). For the devaluation condi-
tion, an interaction between time point and outcome type
emerged, F(1.61, 48.22) = 37.86, p < 0.001, np2 = 0.56.

Table 1 Complete inferential statistics for the within-subject time point x valuation condition x outcome type ANOVA

uonenBAIp

uonEn[EAIpUOU

preparation in the nondevaluation condition. Mean and standard error are
displayed in red. HPO = high preference outcome; MPO = middle
preference outcome; LPO = low preference outcome

Follow-up repeated-measures ANOVAs with outcome
type as the single factor, separately for the time points,
yielded a significant outcome type effect for both the pre-
ratings, F(2, 60) = 75.90, p < 0.001, n,> = 0.72, and the
post-ratings, F(2, 60) = 12.44, p < 0.001, np2 =0.29. While
for the pre-ratings, all outcome types differed significantly
from one another, all p < 0.001, following the same pattern
as the nondevaluation condition (HPO > MPO > LPO),
HPO and LPO no longer differed significantly for the
post-ratings, and the MPO was rated higher than both
HPO and LPO (see above for p-values). This result pattern
thus directly reflects the selective devaluation effect.

Effect F df P Mp

Time point 48.72 1,30 <0.001 0.62
Valuation condition 8.99 1, 30 0.005 0.23
Outcome type 61.02 2,60 <0.001 0.67
Time point * valuation condition 3743 1,30 <0.001 0.56
Time point * outcome type 39.09 1.62, 48.65 <0.001 0.57
Valuation condition * outcome type 12.46 2,60 <0.001 0.29
Time point * valuation condition * outcome type 24.24 2,60 <0.001 0.45

Note. n =31.
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Cluster-based Permutation Analysis

Outcome-locked grand averages according to outcome type
and valuation condition at midline electrodes (Fz, FCz, Cz,
and Pz) are displayed in Fig. 3.

Main Effect of Outcome Type Cluster-based permutation tests
for the outcome type main effect revealed significant differ-
ences between outcome types (p < 0.001). This effect was
evident within two separate clusters (for topographical plots,
see Fig. 4 or Supplementary Figure S2 for a more detailed
version): The earlier cluster covered a time window from 90
to 200 ms and included frontal, frontocentral, central,
centroparietal, parietal, and occipital electrodes. Frontal,
frontocentral, and central electrodes were most consistently
involved. This cluster thus roughly corresponds to spatiotem-
poral attributes of the N1 and P2. The later cluster covered a
time window ranging from 240 to 600 ms and spanned over
frontal, frontocentral, central and (centro)parietal electrodes.
Frontal, frontocentral, and central electrodes were most con-
sistently included, suggesting that this cluster captures the late
FRN and the P300 time window.

Subsequently, follow-up, cluster-based analyses with
dependent-sample #-tests were conducted for each comparison
of outcome types. Comparisons between HPO and LPO as
well as between MPO and LPO matched findings of the main
effect closely: the amplitude was significantly more positive
for the HPO compared with the LPO (p < 0.001). This effect
manifested in two clusters covering time windows from 90 to
200 ms and from 240 to 600 ms spanning over frontal,
frontocentral, central, centroparietal, and parietal electrodes
(for topographical plots, see Supplementary Figure S3). For
the comparison of MPO and LPO, the MPO yielded a more
positive amplitude compared to the LPO (p < 0.001) as well.
This effect corresponded to an earlier cluster that covered the
time window between 90 and 200 ms and included frontal,
frontocentral, central, centroparietal, and parietal electrodes. A
later cluster from 240 to 600 ms included frontal,
frontocentral, central, and centroparietal electrodes (for
topographical plots, see Supplementary Figure S4). The com-
parison between HPO and MPO did, however, not reach sig-
nificance, p = 0.232.

Outcome type by valuation condition interaction Outcome-
dependent processing differences between the devaluation
and nondevaluation condition were reflected in a significant
effect of outcome type on the difference signal (p < 0.001),
which indicates an interaction between the two factors in-
volved. This effect manifested in two clusters in the P300
latency range: one cluster occupied a time window from 300
to 470 ms at frontal, frontocentral, central, centroparietal, and
parietal sites. Frontocentral electrodes were most consistently
involved in this cluster. The second, later cluster spanned

(fronto)central, central, centroparietal, and parietal electrodes
in a time window between 480 and 600 ms. Here, central,
centroparietal, and parietal sites were most consistently in-
volved. The two clusters approximate the spatiotemporal dis-
tribution of P3a and b (for topographical plots, see Fig. 5 or
Supplementary Figure S5 for a more detailed version).

To understand how this interaction effect manifested with-
in valuation conditions, we conducted cluster-based analyses
based on F-tests with outcome type as the only factor, sepa-
rately for the devaluation and nondevaluation conditions. In
the nondevaluation condition, we found an effect of outcome
type (p < 0.001), which was evident in one large cluster span-
ning both time windows implicated in the interaction effect /-
test (see Supplementary Analysis 2 for the complete results of
the separate analysis of the nondevaluation condition). This
effect was found at frontal, frontocentral, central,
centroparietal, and parietal sites (see Supplementary
Figure S6 for topographical plots).

Follow-up t-test-based cluster analyses yielded significant
differences between all outcome types: the comparison be-
tween HPO and LPO showed a significantly more positive
amplitude for HPO over LPO (p < 0.001). This effect mani-
fested within one large cluster spanning the entire time win-
dow of the previously described cluster relating to the general
outcome type effect within the nondevaluation condition and
largely coincided with the therein implicated electrode sites.
The MPO also yielded significantly more positive amplitudes
compared to the LPO (p < 0.001). This difference was found
in two clusters approximating the time windows of the cluster
analysis relating to the general outcome type effect within the
nondevaluation condition. The later cluster (500-600 ms) in-
cluded frontal, frontocentral, and central electrode sites,
whereas the earlier cluster (320-490 ms) additionally covered
centroparietal sites. For the comparison between the HPO and
MPO, amplitude showed to be more positive for HPO com-
pared with MPO (p = 0.003). Two clusters corresponded to
this effect, of which the first one covered the early time win-
dow (300-420 ms), and frontal, frontocentral, central,
centroparietal, and parietal electrodes. The second cluster co-
incided with the second cluster (480-590 ms), covering
frontocentral, central, centroparietal, and parietal electrodes.
Topographical plots can be found in Supplementary
Figures S7-9, respectively.

For the devaluation condition, the effect of outcome type
emerged as well (p < 0.001). This effect showed in one large
cluster (300-590 ms) spanning both time windows found in
the difference signal cluster analysis over frontal,
frontocentral, central, and (centro-)parietal electrode sites
(see Supplementary Figure S10 for topographical plots).
Follow-up, #-test-based cluster analyses revealed more posi-
tive amplitudes for the HPO (p < 0.001) and MPO (p < 0.001)
compared with LPO. Importantly, the MPO showed a signif-
icantly more positive amplitude compared to the HPO (p =
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Fig. 3 ERPs elicited by outcome presentation as a function of outcome
type (HPO = high preference outcome, MPO = medium preference
outcome, LPO = low preference outcome) and valuation condition

0.017), which is the main difference in the pattern of outcome
processing between the devaluation and nondevaluation con-
dition and probably drives the interaction effect. For the com-
parison between HPO and LPO, a large cluster covering the
entire early time window and early parts of the late time win-
dow was found (300-540 ms), including frontal, frontocentral,
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= interaction effect
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windows with significant effects. Standard errors are displayed as
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central, and centroparietal electrodes. A similar cluster was
found for the comparison between MPO and LPO, covering
again both time windows (300-600 ms) and including frontal,
frontocentral, central, and centroparietal electrode sites.
Concerning the comparison between HPO and MPO, a com-
paratively small cluster emerged (340-400 ms) covering
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Fig. 4 Clusters (90-200 and 240-600 ms) showing significant modulation of outcome processing by outcome type. Topographical plots represent time
series of F-values at each channel at the respective time point. Stars indicate electrodes included in the cluster

frontal, frontocentral, central, centroparietal, and parietal elec-
trodes. Topographical plots can be found in Supplementary
Figures S11-13, respectively.

Taken together, a general outcome type effect over
both valuation conditions was found in the time window
of the P2, FRN, and P300, where the amplitude for the
two rewarding outcomes (HPO and MPO) differed from
the amplitude for LPO but did not differentiate between

Cluster A

305 ms

©

335 ms 365 ms

Cluster B

485 ms 515 ms

Fig. 5 Clusters (300-470 and 480-600 ms) showing significant modula-
tion of outcome processing by outcome type in the devaluation-
nondevaluation difference signal. Topographical plots represent time

HPO and MPO. Within the nondevaluation condition,
ERP amplitudes in the time window of the P300 reflected
the preference structure of outcome types (HPO > MPO >
LPO). In contrast, differentiation between HPO and MPO
was reversed in the devaluation condition, with higher
amplitudes for MPO compared with HPO, whereas differ-
entiation of these two more preferred outcome types and
LPO was preserved.

395 ms

425 ms 455 ms

00

s

575 ms

0
F value

series of F-values at each channel at the respective time point. Stars
indicate electrodes included in the cluster
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Discussion

This study investigated whether the electrophysiological repre-
sentation of subjective reward preferences is manipulable
through selective devaluation in the context of a gambling task.
Participants completed a task in which they could win one of
three outcomes for which they had an individual high, medium,
or low preference. Each participant was tested in two separate
sessions one of which entailed selective devaluation of the
preferred outcome (HPO) by means of ad libitum consumption.
The other test session was completed on an empty stomach and
served as control condition. Desire-to-eat ratings confirmed the
presence of individual outcome preferences as well as the se-
lective devaluation effect for the HPO. We found that subjec-
tive preferences were coded in the ERP, with more positive
amplitudes for more preferred outcomes. Preference differ-
ences between LPO and HPO as well as LPO and MPO but
not between MPO and HPO were reflected in the time win-
dows of N1, P2, late FRN, and P300, when valuation condition
was not considered. Differences in outcome processing be-
tween valuation conditions reflected the spatiotemporal shift
of P3a and b. While in the nondevaluation condition, prefer-
ence succession as reflected in desire-to-eat ratings was coded
in the ERP amplitude (HPO > MPO > LPO), selective deval-
uation reduced the amplitude in the P300 time window for the
HPO, so that it was significantly less positive than the MPO
(although still significantly more positive than the LPO).

In accordance with studies showing the P300’s sensitivity
to outcome magnitude (Bellebaum, Polezzi et al., 2010; Gu
et al., 2011; Kreussel et al., 2012; Meadows et al., 2016; Wu
& Zhou, 2009), amplitude in the P300 time window was
modulated by outcome type. Of note, while we did not find
a differentiation between HPO and MPO when ERPs were
averaged across valuation conditions, it is conceivable that
this differentiation was obscured by the interaction effect,
which also coincided with the P300 time window. Indeed, in
the nondevaluation condition, amplitudes in the P300 time
window distinguished between all three outcome types. The
present results together with earlier findings (Peterburs et al.,
2019) thus corroborate the notion that the P300 codes the
motivational value of an outcome (Begleiter et al., 1983;
Nieuwenhuis et al., 2005; San Martin, 2012; Severo et al.,
2020). Future studies will need to investigate whether this
motivational value remains reward type-specific or represents
a common value with the ability to compare a multitude of
reward types (Bartra et al., 2013). Additionally, it is still un-
clear how the subjective value is computed. A study by Suzuki
et al. (2017) showed that activity in lateral OFC associated
with subjective values for food items scaled with subjective
estimates about their nutritional attributes, especially attributes
such as fat, carbohydrate, protein, and vitamin content.
Investigating whether this finding extends to preference ef-
fects in the ERP could help to elucidate the spatiotemporal

@ Springer

dynamics of how feedback evaluation and possibly also
decision-making processes come about, e.g., which reward
attributes are coded in early ERP components and which ones
are evaluated only at later processing stages.

In line with previous work showing that the P2 is sensitive to
reward magnitude (Flores et al., 2015; San Martin et al., 2010)
and distinguishes whether a reward was given (Potts et al.,
2006), amplitude in the P2 time window was modulated by
outcome type as well. While the lack of differentiation between
HPO and MPO cannot be explained by masking through the
interaction effect, Peterburs et al. (2019), who did not perform a
manipulation of motivational state, also found precisely this
pattern. They suggested that preference coding in the P2 seems
to be a first, quick outcome evaluation based on mere salience
to guide attention (Potts, 2004). The present findings are well in
line with this. The effect in this cluster started as early as 90 ms
after outcome onset, thus including the time window of the N1,
which is a component also linked to attentional processes
(Boksem et al., 2005; Gonzalez et al., 1994; Hillyard &
Anllo-Vento, 1998) that has been implicated in feedback pro-
cessing as well (Mathias et al., 2017).

Concerning the FRN time window, we found preference
effects only for late portions of the FRN. The observed patterns
are largely consistent with studies that found outcome magni-
tude effects in the FRN (Gu et al., 2011; Holroyd et al., 2004;
Kreussel et al., 2012; Meadows et al., 2016; Wu & Zhou,
2009), except for the lack of differentiation between HPO and
MPO, which was unexpected given the findings by Peterburs
et al. (2019), who used a highly similar experimental design
and found differentiation between HPO and MPO in the FRN
time window. This cannot be attributed to masking by the
interaction effect, as evident when considering the full clusters
in the outcome type analysis for the nondevaluation condition
(see Supplementary Analysis 2). A possible explanation for this
unexpected finding might be the smaller sample size in the
present study compared with the previous one by Peterburs
et al. Additionally, the difference between HPO and MPO pref-
erence ratings was larger in the study by Peterburs et al. com-
pared with the current study. It seems possible that the HPO-
MPO desire-to-eat difference might not have been large
enough to show effects in the FRN time window in the current
study. Lastly, while our experimental design was highly similar
to that used in the earlier study, Peterburs et al. used only three
different snack items in total and fitted the HPO and MPO from
only two, possibly rendering the preference structure aspect
more obvious to participants. In the current study, the availabil-
ity of nine snack items might have obscured the logic behind
the choices of stimuli shown in the experimental task. These
methodological differences might help to explain the divergent
result patterns in terms of effects of subjective outcome proba-
bility expectations that might have emerged based on partici-
pants’ knowledge about the preference structure but not out-
come randomness in the previous but not the current study.
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Indeed, subjective expectations can differ substantially from
objective outcome probabilities (Hajcak et al., 2005; Hajcak
et al., 2007). However, as neither the previous nor the present
study assessed subjective expectations, this explanation re-
mains rather speculative. Future studies should investigate the
effect of subjective expectations in the context of preference
coding in the outcome-locked ERP.

Interestingly, we failed to find modulations in the FRN
time window by outcome type as a function of valuation con-
dition and thus cannot confirm the findings by Baker et al.
(2016). Instead, we found a selective devaluation effect of the
HPO in the latency range of the P300, which is consistent with
both the notion that the P300 represents the motivational value
of stimuli (Begleiter et al., 1983; Nieuwenhuis et al., 2005;
San Martin, 2012; Severo et al., 2020) and the notion that the
P300 codes attentional processes (Polich, 1987). While in the
nondevaluation condition, the HPO has the highest motiva-
tional value for consumption after the experimental task, its
value substantially decreases after consumption to satiety, as
also reflected in the desire-to-eat ratings. However, it can sim-
ilarly be argued that the HPO has the highest salience in the
nondevaluation condition and salience is reduced in the deval-
uation condition, as valuation and salience are perfectly cor-
related in a context where only reward but no punishment is
applied (Kahnt, 2018). While we did not consider valence but
regarded the outcomes as distinguishable simply by their dif-
ference in (subjective) magnitude/preference, it could be ar-
gued that the selectively devalued HPO becomes a rather neg-
ative item, which is avoided after devaluation, as studies with
behavioural choice measures have found (Howard & Kahnt,
2017; Valentin et al., 2007). Thus, we suggest that the present
findings in the P300 time window speak rather for a coding of
motivational value than salience, but future studies will need
to capture the distinction of valence and magnitude more
closely, possibly by including the factor valence into the anal-
ysis and using punishments in addition to rewards.

The observed selective devaluation effect for the HPO
is also consistent with fMRI studies reporting selective deval-
uation effects in the OFC (Gottfried et al., 2003; Howard &
Kahnt, 2017; Kringelbach et al., 2003; O'Doherty et al., 2000;
Valentin et al., 2007), which speaks for a common coding of
valuation and desirability in P300 and OFC. This is also in
agreement with studies connecting P300 with the OFC via
LORETA source localisation (Andreou et al., 2013; Rule
et al., 2002) and lesion studies (Rule et al., 2002). Our study
further demonstrates that selective devaluation works in a con-
text with more than two outcomes and leaves the processing of
both non-devalued outcomes unchanged. An additional ex-
plorative analysis investigating the selective devaluation ef-
fect in the P300 additionally hinted toward a reduced devalu-
ation with rising BMI (see Supplementary Analysis 1), which
would be in agreement with studies showing a reduced behav-
ioural selective devaluation effect with rising BMI

(Horstmann et al., 2015; Janssen et al., 2017), although future
studies need to confirm this effect due to the unobjective
quantification of BMI in our study and the explorative nature
of this analysis (de Groot, 2014).

Conclusions and Outlook

We provide first evidence that effects of selective devaluation
are reflected in an ERP component associated with outcome
processing, i.e., the P300. By using a within-subject design
with stimuli carefully matched in desire-to-eat ratings and
with the same stimuli throughout valuation conditions for
each participant, these findings can likely be explained in
terms of changes in the motivational significance for the
respective outcomes. The present results suggest that the
P300 might be an especially interesting measure to
investigate the mechanisms leading to overeating and obesity.
Nijs et al. (2010) reported that overall satiety manifests differ-
ently for overweight and obese compared to lean subjects:
while for lean subjects, the P300 decreased with satiety, the
opposite pattern was found for overweight and obese subjects.
We speculate that this effect can be replicated for the selective
devaluation paradigm with a sufficient sample size of over-
weight participants, consistent with behavioural findings of re-
duced goal-directed behaviour with increasing BMI
(Horstmann et al., 2015; Janssen et al., 2017). Especially inter-
esting would be whether this maladaptive behaviour is revers-
ible. Soares et al. (2012) showed that stress-induced shifts to-
wards habitual instead of goal-directed behaviour and associat-
ed network activations vanished after a stress-free period of six
weeks. To examine whether this reversibility extends to
obesity-related processes, longitudinal studies which control
for participants’ diet and BMI in relation to neurophysiological
measures associated with valuation, such as the P300 or the
activation of the OFC, are needed, especially in the light of
rising obesity rates worldwide (Chooi et al., 2019).
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