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Abstract

Transplantation is now performed globally as a routine procedure. However, the increased demand 

for donor organs and consequent expansion of donor criteria has created an imperative to 

maximize the quality of these gains. The goal is to balance preservation of allograft function 

against patient quality-of-life, despite exposure to long-term immunosuppression. Elimination 

of immunosuppressive therapy to avoid drug toxicity, with concurrent acceptance of the 

allograft – so-called operational tolerance – has proven elusive. The lack of recent advances in 

immunomodulatory drug development, together with advances in immunotherapy in oncology, 

has prompted interest in cell-based therapies to control the alloimmune response. Extensive 

experimental work in animals has characterized regulatory immune cell populations that can 

induce and maintain tolerance, demonstrating that their adoptive transfer can promote donor­

specific tolerance. An extension of this large body of work has resulted in protocols for 

manufacture, as well as early-phase safety and feasibility trials for many regulatory cell types. 

Despite the excitement generated by early clinical trials in autoimmune diseases and organ 

transplantation, there is as yet no clinically validated, approved regulatory cell therapy for 

transplantation. In this review, we summarize recent advances in this field, with a focus on 

myeloid and mesenchymal cell therapies, including current understanding of the mechanisms of 

action of regulatory immune cells, and clinical trials in organ transplantation using these cells as 

therapeutics.

INTRODUCTION

Transplantation is a marvel of modern medicine. Kidney disease, once considered a death 

sentence until the advent of artificial renal replacement therapies in the early 1900s, is now 

treated preferentially by kidney transplantation, and offers superior survival and quality­
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of-life measures in suitable candidates.1 The evolution of transplantation from the first 

successful kidney transplant2 in 1954, to the standard-of-care prescribed today, is indebted 

to the combined effort of clinicians, scientists and patients in the quest for improved 

recipient outcomes. Kidney transplantation is the most common solid organ transplantation 

procedure performed world-wide.3 The era of increasing demand for organs has necessitated 

broadening of donor acceptance criteria that use less ideal allografts, and approaches that 

maximize the benefits from transplantation. Since the ELITE-Symphony study,4 there have 

been few major therapeutic changes reaching routine clinical care over the last 10 years. 

Current drug options entail lifelong immunosuppression, and are not without significant 

disadvantages, increasing the risks of potentially life-threatening infections and unfavorable 

cardiovascular, metabolic and cancer risk profiles for the recipient. The need to uncover 

novel therapies to prevent rejection and extend allograft survival, while minimizing exposure 

of the patient to risks of chronic immunosuppression, remains. Cellular therapy is a novel 

treatment approach that has gathered interest recently. This review focuses on myeloid­

derived cells and mesenchymal stem cells (MSC) to tested to induce tolerance in solid organ 

transplantation (Figure 1).

TRANSPLANT TOLERANCE AND TOLEROGENIC CELL TYPES

Immunological tolerance is the ‘holy grail’ of transplantation and describes nonreactivity 

of the recipient’s immune system to the nonself, immunogenic donor allograft.5–7 

Achieving full or partial tolerance can help minimize the need for intense pharmacological 

immunosuppression to prevent rejection, while maintaining requisite immunocompetence to 

control or prevent infection and malignancy.

Recent research into transplant tolerance has been focused on immune system-donor tissue 

interfaces: including adoptive cellular therapy, in vivo induction of regulatory cells, co­

stimulation blockade and donor hematopoietic cell chimerism.8–16 Studies of rare patients 

who achieve spontaneous “operational tolerance” (acceptance of the graft without clinically 

significant rejection in the absence of maintenance immunosuppression) have revealed clues 

to the potential mechanisms – including the role of various tolerogenic cell populations.17–25

Currently, there is no cell therapy approved for use in human solid organ transplantation 

although a wide variety of cells have been investigated in preclinical and clinical studies. 

These include cells from myeloid, lymphoid or mesenchymal lineages. (Figure 2) This 

review will discuss a selection of adoptive tolerogenic cell therapies, including tolerogenic 

dendritic cells (tolDC), regulatory macrophages (Mreg); and mesenchymal stem cells 

(MSCs) - summarizing recent advances, mechanisms and progress in recent clinical studies 

(Tables 1–3). Within the constraints of this article, we have not discussed myeloid-derived 

suppressor cells,26 regulatory T-cells27–30 (Treg) and chimeric antigen receptor Tregs31–34 

(CAR-Treg) in which all have translational potential.

WHAT IS AN ‘IDEAL’ TOLEROGENIC CELL?

In keeping with the principle of nonmaleficence, tolerogenic cells must be immunologically 

safe to administer. Once given, they must not provoke any pro-inflammatory responses, not 
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undergo unexpected cellular phenotype switching (ie, tolerogenic-to-activated effector cell 

type), nor excessive, nonspecific immunosuppression (ie, lead to increased risk of infections 

or malignancies). Establishing safety has been a major priority to development of cellular 

therapies in transplantation given the potentially serious consequences. This includes host 

sensitization to allogeneic cells, graft rejection, or potential increased susceptibility to 

infection if there is excessive immunosuppressive potential of the cell product.

Tolerogenic cells provide benefit when given in addition to, or in place of, standard 

immunosuppression that the patient would have otherwise received (beneficence). A 

particular advantage might include the ability to selectively dampen the immune response 

to donor alloantigen. There should be a reasonable therapeutic window, where sufficient 

shift occurs towards a state of donor-specific unresponsiveness, but not limit the immune 

response to nondonor antigens. The therapeutic window must also be achievable within the 

constraints of required dosing – ensuring a reasonable cell number and/or volume which 

would be straightforward to culture or manufacture. In some trials, cells may be given 

pretransplantation, peritransplantation, or posttransplantation with single or multiple doses 

of specific product.

WHICH PATIENTS SHOULD RECEIVE TOLEROGENIC CELL THERAPY?

Ideally, all patients suitable for transplantation should be considered for tolerogenic cell 

therapy. However, risk of rejection from immunosuppression reduction or withdrawal is not 

equally distributed amongst the organs and this factor is reflected in the selection of patient 

groups in current cell therapy trials. Recipients of living donor kidney or liver transplants 

have dominated contemporary studies of cellular therapies and tolerance given the overall 

lower immunological risk and restricted time-period during which cells can be prepared. 

Other solid organ transplants have been excluded given the high-risk of rejection and 

associated morbidity and mortality, especially following cardiac and lung transplantation. 

Highly sensitized patients or patients with underlying autoimmune disease are also less 

likely to be studied, given the increased risk of rejection and intensive immunosuppression 

regimens required. Cell products investigated thus far are derived from either donor or 

recipient sources and generated or expanded ex vivo. This creates a significant lag time 

and potential barrier for recipients of deceased donor organs if protocolized cell therapies 

are to be given pretransplantation or peritransplantation. Some phase I studies have 

administered Tregs35,36 and MSC37,38 months after liver or kidney transplantation and have 

not demonstrated significant adverse outcomes, although the efficacy is yet to be proven. 

Potentially, this could be circumvented by development of third-party cell biobanks (akin to 

umbilical cord-derived Tregs and MSC) that could be accessed as ‘off-the-shelf’ products. 

This strategy has been successful for CAR T-cells for use in hematological cancers and 

antigen-specific CD8+ T-cells for resistant viral infections following allogeneic stem cell 

transplantation.39–42

SOURCE AND REGULATION OF TOLEROGENIC CELLS

Sufficient numbers of circulating, physiologically intrinsic tolerogenic cells are difficult to 

isolate from donors for use in solid organ transplantation. Hence, ex vivo expansion of 
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precursor cells, followed by appropriate in vitro manipulation is required to obtain adequate 

numbers of tolerogenic cells. These cells can be derived from the recipient (autologous), 

donor, or third party (allogenic). Details as to manipulation of precursor cells will be 

discussed in the following sections but most commonly, precursor cells are derived from 

peripheral blood, in particular peripheral blood mononuclear cells. Mesenchymal stem cells 

(MSC) can also be derived from peripheral blood, but other potential sources include 

bone marrow, umbilical blood and nonlymphoid tissue such as skin, adipose and muscle.43 

Induced pluripotent stem cells (iPS) produced through reprogramming of somatic cells 

can be a source of MSCs, but to date have only been used in experimental models of 

organ transplantation or human hematopoietic stem cell transplantation for prevention of 

graft-versus-host disease.44–46

Tolerogenic cells for human use are viewed as a medium-to-high risk category biological 

product - they require ex vivo manipulation and are intended for nonhomologous use 

(expected function being different to originally derived product).47 Specific requirements 

by regulatory bodies for these products may vary depending on the country and institution 

undertaking the clinical study, but at a minimum, most regulatory agencies require 

compliance with the Good Manufacturing Practice (GMP) guidelines. GMP guidelines 

allow for standardization in manufacturing biological products to ensure consistent and 

controlled quality standards that are appropriate for use of cellular products in human 

trials. GMP practice dictates standards from organizations and facility management, to 

product production and distribution. Cells produced to GMP quality fulfil a set of predefined 

release criteria specific to each individual trial. This often details the cell product’s viability, 

purity, phenotype, function determined with in vitro bioassays and sterility (with maximum 

allowable endotoxin and microbial contamination limits)48–50 (Figure 1). These release 

criteria can vary for each cell type and center, introducing a major source of heterogeneity 

that needs to be considered when reviewing results of studies, particularly given the small 

sample sizes of most human transplant tolerance studies.

IMPORTANT OUTCOMES FOR CELL-BASED THERAPIES IN TRANSPLANT 

TOLERANCE

Generally, in organ transplantation, biopsy proven rejection and/or graft survival has been 

reported as the primary outcomes to evaluate treatment effects of cell therapy. The presence 

of subclinical rejection, patient and graft survival, graft function and adverse events, 

including infusion reactions and opportunistic infections heralding over-immunosuppression 

have been commonly recorded as secondary outcomes. Of note, studies to date incorporated 

relatively short duration follow-up, often limiting observation time to 1 year. Current studies 

are also still relatively early phase I/II trials with small and select groups of recipients. 

This is understandable given progress to date, with investigators now overcoming major 

technical challenges to produce the desired cell product in sufficient numbers to meet target 

cell doses. Furthermore, these cell therapies have generally been tested in relatively low 

immune risk recipients (unsensitized or patients at low risk of rejection) and in living-donor 

transplant settings (particularly useful current studies focusing on cell therapy given before 

or at time of transplantation, allowing sufficient time for cell expansion). Development of 
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HLA-matched third-party cells or banked autologous cells may be of interest if more studies 

explore the role of cell therapy post transplantation.

Future refinement to select suitable, higher risk candidates may be identified through the 

‘molecular microscope’, identifying genomic biomarkers of patients who might benefit most 

from tolerogenic therapies.51–55 Standardized in vitro testing of cellular products prior to 

infusion, and validation of clinical and laboratory biomarkers or surrogate end points (with 

potential to incorporate various ‘-omics’ technologies and bioinformatics)56 to optimize 

future study design.

Myeloid-derived Tolerogenic Cell Therapies

Antigen-presenting cells (APC) have an important role in maintaining central and 

peripheral tolerance. Clonal deletion of CD4+CD8+ thymocytes and Treg generation 

for central tolerance is dependent upon antigen presentation to thymic T-cells57 and 

experimental depletion of APC can lead to dysregulation of immune tolerance and 

development of autoimmune phenomena.57–59 Furthermore, APC are the first responders 

of innate immunity, initiating inflammatory cascades and also orchestrating adaptive 

immune response through allorecognition following transplantation. Given their central, 

promulgating role in inflammation, manipulation of macrophages or DC to achieve tolerance 

is appealing with robust research directed at tolerogenic myeloid DC (TolDC) and regulatory 

macrophages (Mreg).

Mechanisms of TolDC-and Mreg-induced tolerance—These APC share common 

progenitors and overlapping features but can be distinguished by tissue residence and 

functional phenotype.60–63 Tissue-resident cells are specialized myeloid cells which 

continually survey the parenchymal microenvironment and are important in both initiation 

and resolution of inflammation.64 Tissue-resident cells are donor-derived passenger 

leukocytes which accompany the allograft during transplantation and can participate in 

both direct or semi-direct alloantigen presentation. In addition, monocyte-derived APC 

can be found in the allograft, either from donor or recipient origin, and can also 

initiate inflammation and rejection through either direct, indirect or semi-direct alloantigen 

recognition65–70 (Figure 3). Administration of TolDC or Mreg may disrupt canonical T-cell 

activation by professional APC, leading to a state of functional or peripheral tolerance. 

This may be through either secretion of immunosuppressive cytokines and expression of 

immunomodulatory surface molecules leading to T cell anergy, apoptosis and/or induction 

of regulatory T-cells (iTreg).71–73

TolDC can stimulate the expansion of conventional CD4+CD25+Foxp3+ iTreg, functionally­

suppressive T regulatory-1 cells (Tr1, CD4+CD25−Foxp3−) and possibly CD8+ regulatory T­

cells through upregulation of IL-10 and indoleamine 2,3-dioxygenase (IDO).57,74–77 TolDC 

may further stimulate IL-10 secretion by CD19hiFcγIIbhi regulatory B cells (Breg).78–82 

TolDC can also upregulate CTLA-4 expression (an important inhibitory feedback signal 

of T cell activation83,84), release TGF-β (stimulating expansion of tolerogenic Treg),85 

and increase PD-L1-PD1 signaling (reducing T-cell proliferation and survival). The latter 

receptor phosphorylates the immunoreceptor tyrosine based inhibitory motif (ITIM) and 
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recruits Src homology region 2 domain-containing phosphatase-1 (SHP1) and SHP2 to 

block TCR signaling and proliferation.86,87 TolDC can also inhibit T cell differentiation 

by preventing CD39 ectonucleotidase-mediated breakdown of extracellular adenosine 

triphosphate (ATP) and subsequent activation of the pro-inflammatory purinergic P2X7­

TLR-MyD88 signaling pathway.88–91

Tissue macrophages are important sentinels of danger signals, including pro-inflammatory 

cytokines,92 and mediate an important role in allograft rejection.93 Exposure of 

macrophages to IL-4 or IL-10 can polarize towards an M2 phenotype,94–98 that is associated 

with anti-inflammatory characteristics and release of further IL-10 and TGF-β.99,100 Similar 

to TolDs, Mregs can produce regulatory cytokines or metabolites (such as IL-10, IDO) that 

promote the formation of iTreg (TIGIT+ Treg),101,102 influence indirect and semi-direct 

antigen presentation of Mreg-antigens by intact APCs, and reduce T-cell proliferation or 

survival through iNOS pathways.103

Preparation and Requirements of TolDC and Mreg cells for adoptive transfer
—Peripheral blood mononuclear cells (PBMC) are an accessible, renewable cell pool that 

can be purified and manipulated into a desired myeloid cell type. They form the basis for 

most ex vivo protocols that generate human tolDC or Mreg. Recipient (autologous) or donor 

(allogeneic) blood can be used to purify CD14+ monocytes, which are then exposed to 

specific cytokines or growth factors in culture to direct their differentiation into the preferred 

regulatory population (Figure 4).

Mreg used in The One Study104 and earlier pilot studies105–107 were generated by 

exposing donor-derived CD14+ monocytes to low dose macrophage colony stimulating 

factor (M-CSF) and stimulation with interferon gamma (IFN-γ). Prespecified criteria 

used to characterize these Mreg included a CD14loCD16loCD80loCD86loCD85hloCD258lo 

phenotype, tessellating epithelioid morphology, suppression of T cell proliferation in mixed 

leukocyte culture, elevated IDO, and <1% contamination with T lymphocytes.108–112

Early phase trials of donor- or recipient-derived tolDC have delivered ex vivo­

generated, maturation-resistant DC also derived from circulating CD14+ monocytes.113–115 

Autologous TolDC (ATDC) are attractive in that they avoid the potential risk of host 

sensitization, and murine models demonstrate their effectiveness in promoting heart 

allograft tolerance.111,116,117 The use of ATDC in humans was demonstrated in the 

DC arm of the ONE study,104 using recipient-derived PBMC exposed to low-dose 

GM-CSF for 6 days before administration 1 day before kidney transplantation. These 

cells met similar criteria described above for Mreg but needed to demonstrate a HLA­

DRloCD80loCD86loCD83loCD40lo immature phenotype and show maturation resistance to 

LPS ± IFNγ in vitro. The results are encouraging, adding to evidence supporting the 

use of PBMCs from patients with kidney disease. Despite the cells being derived from a 

uremic environment, they can generate functional tolDC.112 However, efficacy of (donor 

antigen-pulsed) host-derived tolDC was lower than of tolDC generated from healthy donors 

in nonhuman primates.118,119
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Clinical trials of living donor kidney or liver transplantation use donor-derived 

monocytes cultured in GM-CSF, IL-4, vitamin D3 and IL-10. Defined release criteria 

included >95% tolDC purity, expression of the tolerogenic surface markers HLA­

DR−CD11c+CD14−CD40loCD80lo CD86loPD-L1hiCCR7+CD83lo, a PDL-1:CD86 ratio > 

2.5 and cell culture supernatant with high IL-10 and low IL-12p70 levels.109,118,119 There 

are also early phase clinical studies using tolDC in autoimmune diseases not covered in this 

review.110,120–124

GM-CSF, 1α,25-(OH)2 vitamin D3 (vit D3) are commonly used in protocols for tolDC 

generation125–128 resulting in low-level expression of MHC and co-stimulatory molecules, 

production of IL-10, failure to prime T-cells and induction of Treg proliferation.129 

Vit D3 has also been combined with dexamethasone and produces CD14+CD11chiDC­

SIGN+CD1a− tolDC with elevated PD-L1:CD86 that promotes Treg or Tr1-like 

Treg.27,129,130 Other agents that have been studied in combination with vit D include 

monophosphoryl lipid A and LPS.130–132 In the presence of stimuli that activate TLR2 and 

TLR4, or ligands for pattern recognition receptors, tolDC display maturation resistance, with 

low-to-intermediate levels of CD80, CD86, CCR7, higher levels of CCR4/5, and increased 

IL-10 compared to immunogenic or classical DC.126,133 These DC retain the ability to home 

to inflamed tissue via CXCR3 and CCR7.127,134

An important consideration is what happens to tolDC or Mreg once infused and exposed 

to the effects of anti-rejection medications. All transplant recipients receive some regimen 

of glucocorticoids for immunosuppression and traditionally these are thought to influence 

a wide variety of gene expression, including inhibition of pro-inflammatory NF-κB 

signaling and activation of protein-1 transcription factors. Recent evidence suggests that 

glucocorticoids can alter cellular immune pathways and the transcriptomes of myeloid and 

lymphoid cells within hours of administration, and have been used in some protocols for 

generating tolerogenic cell products.101,135–141 Other medications, including tacrolimus, 

cyclosporine, mycophenolate, rapamycin and minocycline have been used modulate DC 

phenotype.115,133,142–144 Animal studies suggest that tolDC effects are retained when they 

are administered concurrently with conventional immunosuppression given that these agents 

are also known to inhibit DC maturation, with reduced MHC and co-stimulatory molecule 

expression, lower IL-2, IL-12, IFN-γ and increased IL-10 and TGF-β production.145–147

The tissue microenvironment provides important paracrine signals to influence myeloid cell 

maturation, and phagocytosis of local apoptotic bodies can add to their immunoregulatory 

function through production of TGF-β. Sterile inflammation such as rejection can 

also induce counter-regulatory myeloid-derived suppressor cells (MDSC) through the 

MyD88 pathway.148–152 Alternative methods to generate tolDC113,114,153 include the 

use of the NF-kB inhibitor (Bay 11-7082),154 butyric acid,155 aspirin,156 vit D with 

IL-10,118,119 minocycline,143 TGFβ,157 protein kinase inhibitor,157 vasoactive intestinal 

peptide,158 hepatic growth factor,159,160 Flt3 ligand inhibitor,161,162 CTLA4-Ig,163 

Wnt5a,164 monophosphoryl lipid A,165 silencing of IL-12p35166 or RelB and NFκB,167 

genetic engineering to increase expression of IL-10, TGF-β or CTLA4,168 CCR7169 or Fas­

ligand,170 TNF-related apoptosis inducing ligand,171 exosomes,111,117 apoptotic bodies and 

peptides172 from donor-derived leukocytes. The ability of apoptotic cell capture to promote 
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DC tolerogenicity, including use of photopheresis (extracorporeal photochemotherapy) to 

induce apoptosis, together with evidence that acquisition of donor-derived apoptotic cell 

products induces the expansion of donor-specific Treg in transplant recipients has been 

reported.172–174

Clinical trials using TolDC and MReg—Preclinical studies in mice and primate models 

have demonstrated the benefit of adoptive myeloid cell therapies to improve outcomes 

in heart, islet, liver and kidney transplantation,175–180 whereas recent clinical trials have 

addressed the translational potential of adoptive tolDC or Mreg cell therapy (Tables 1 and 2).

The ONE Study104 was a landmark early clinical trial of regulatory cell therapy. This was a 

multinational study consisting of 6 parallel arms of distinct cell therapy groups (CTG) and 

a reference group of 66 patients who received living-donor kidney transplants. Patients of 

high immunological risk were excluded (re-graft, PRA > 40% or needing desensitization), 

as were patients who were an exact HLA match with their donors. Both groups received 

the same regimen of prednisolone, mycophenolate and tacrolimus, but the reference group 

received basiliximab induction instead of cell therapy and patients were followed up for 

median of 60-weeks. The CTG received a prespecified dosing regimen of either tolDC, 

Mreg or Treg peritransplantation, with optional dose tapering of mycophenolate during 

the study period a minimum of 36 weeks had elapsed since time of transplantation. This 

was a phase I/II clinical trial with 38 patients in the CTG group – including 8 patients 

in the autologous tolDC arm (University of Nantes) and 2 patients in the donor-derived 

Mreg arm (University of Regensburg). Given the small numbers, results were pooled for 

analysis and found no difference in the primary outcome of incidence of biopsy-proven 

acute rejection (BPAR) between CTG and reference groups. Tapering of immunosuppression 

to tacrolimus monotherapy was successfully achieved in 15 of 38 patients in the CTG group. 

Two patients failed attempted tapering – suffering either biopsy-proven rejection or IgA 

recurrence. There was no significant difference between groups with regard to secondary 

endpoints (subclinical rejection, estimated glomerular filtration rate, or measured de novo 

donor specific antibodies). The study also reported a higher proportion of Treg in recipient 

peripheral blood and reduced rates of viral infection in the CTG compared to the reference 

group.

This ONE report documents the largest cohort tested with regulatory immune cells in kidney 

transplantation and shows these products can be safely administered and that maintenance 

immunosuppression may be minimized following regulatory cell therapy. While the numbers 

in the myeloid-based arm are small but encouraging. Comparison to basiliximab treatment 

allows direct comparison with current standard-of-care induction immunosuppression. 

Although basiliximab standard of care group was not a true control group since the 

CTG group had a greater option of dose tapering, we know from earlier studies that 

immunosuppression weaning is not always safe, nor reliably predictable in ‘low-risk’ kidney 

transplant recipients – with mixed results for mycophenolate181,182 and increased risk of 

rejection following tacrolimus withdrawal in the immunologically quiescent recipient.183 

The potential value of Mreg in deceased donor transplantation is uncertain, with an earlier 

pilot study by the same group requiring major revisions to their study protocol early due 

to safety concerns when 5 of 7 patients needed treatment for suspected or confirmed 
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rejection in the context of maintenance tacrolimus, sirolimus and steroid combination with 

unsuccessful weaning to tacrolimus monotherapy.105

TolDC generated from donor-derived monocytes cultured with GM-CSF, IL-4, vit D3 and 

IL-10 are currently being investigated in 2 phase I/II clinical trials of living donor liver or 

kidney transplantation at the University of Pittsburgh. Allogeneic tolDC are infused 7 days 

prior to transplantation, concurrently with half-dose mycophenolate until transplantation. 

The kidney transplant study stipulates patients remain on standard triple immunosuppression 

of prednisolone, tacrolimus and mycophenolate, whilst the liver transplant study includes 

protocolized weaning of prednisolone by 1 week, mycophenolate by 12 months and 

potentially tacrolimus between 12–18 months if 12 month protocolized transplant biopsies 

were rejection-free.184–186 These 2 trials are in progress at time of writing. The aim of these 

studies is to evaluate feasibility and safety, and to obtain preliminary mechanistic insights – 

which will allow for refinement of future human and preclinical studies.

Mesenchymal Stem Cells

MSCs have been investigated for clinical use since the 1990s, with expansion to over 200 

clinical trials. The broad therapeutic application of MSCs has spawned several companies 

and FDA approval for use in pediatric, steroid-resistant GVHD.187 The development of 

commercially-available third-party MSCs is particularly useful for therapy at short notice, 

but needs to be balanced against the risk of allo-sensitization. MSCs have also received 

attention over the last decade for treatment of acute kidney injury,188 RA,189 and MS.190

Mechanisms of MSC and transplant tolerance—Like myeloid-derived tolerogenic 

cells, MSCs also promote improved graft survival in preclinical rodent and primate models 

and are thought to exert immunomodulatory effects on both innate and adaptive immune 

pathways. Generation of Foxp3+ Tregs is the favored mechanism through which MSCs exert 

transplant tolerance.191,192 MSCs can impair APC maturation and reduce signal 1 and signal 

2 presentations at the APC-T-cell interface. This in turn, reduces the production of pro­

inflammatory cytokines (IL-12 and IFN-γ), and limits activation of effector CD4+ and CD8+ 

T cells. MSCs also promote proliferation of Treg and impair B-cell maturation following 

sterile inflammation and can influence monocyte/macrophage polarization, skewing towards 

the M2 phenotype.193,194 MSCs produce many of the same soluble factors as tolDC and 

Mreg, particularly IDO, PGE2, TGF-β, HLA-G5 and NO, and utilize CXCL9 and CXCL10 

to attract and affect immunomodulatory of cells within close proximity8,43,195,196 (Figure 5).

Preparation and requirements of MSCs for adoptive transfer—Sources of MSCs 

typically include third-party umbilical cord blood, as well as donor or autologous bone 

marrow in solid organ and hematological stem cell transplantation. iPS cells are another 

promising population from which to generate these MSC, but have yet to be tested in human 

solid organ transplantation. Primary cells expanded in bioreactors and can be identified as 

multipotent MSCs by criteria determined by the International Society for Cellular Therapy. 

MSCs are defined as cells which adhere to plastic, differentiate into skeletal tissue in 

vitro, and express CD105, CD73, CD90, but not cell surface CD34, CD45, CD14, CD11b, 

CD19, CD79α or HLA-DR.8 Use of MSCs to promote transplant tolerance have similar 
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GMP requirement for CD73+CD90+CD105+ phenotype and usually <2% CD34+ or CD45+ 

contamination, compatible morphology, and karyotype stability. It is important to note 

that karyotype stability alone is insufficient to determine genetic stability and there is the 

potential tumorigenic risk of increased passages during ex-vivo expansion.197–199

Clinical Trials using MSC—Early clinical studies administering autologous, bone 

marrow-derived MSCs in living donor kidney and liver transplantation38,43,200–207 have 

shown mixed results. Most phase I trials demonstrate relative safety in transplant recipients, 

(Table 3) but one study conducted in Italy (NCT00752479) described focal inflammatory 

infiltrates in renal biopsies when MSCs were administered to living-related kidney 

transplant recipients with basiliximab and low-dose rabbit anti-thymocyte globulin induction 

followed by cyclosporin/mycophenolate maintenance therapy. This was thought to be a 

severe engraftment phenomenon, leading to early termination and revision of future trial 

protocols.43,200,208 Another phase I trial performed in the Netherlands (NCT00734396) 

tested posttransplant use of MSCs in living donor kidney transplantation. Patients had 2 

HLA-DR mismatches and received standard induction with basiliximab, and calcineurin 

inhibitor (CNI)/mycophenolate/prednisolone therapy.38 Two of the 6 patients showed 

evidence of inflammation suggestive of subclinical rejection and one further exhibited 

biopsy-proven rejection. This was in addition to transient declines in renal function thought 

to be engraftment reaction. Five of the 6 patients showed some degree of inhibition of 

donor-specific immunity, with reduced proliferation in a mixed leukocyte reaction. These 

results led to the development of the Neptune study (NCT02387151),37 a single-center phase 

Ib study in which MSCs were given to 10 patients, 6 months after living donor kidney 

transplantation and with clean 6-month surveillance biopsies. Patients received alemtuzumab 

induction and prednisolone/everolimus/tacrolimus maintenance therapy. Importantly, this 

trial used third-party, allogeneic MSCs that were typed to avoid repeated HLA-mismatches 

at -A, -B, -DR and -DQ loci. At 1 year post transplant, there were no cases of BPAR, and 

1 patient showed subclinical rejection with borderline change histology. Despite the HLA 

mismatches on MSC products, there were no de novo DSAs detected postinfusion. Thirty 

percent of patients had detectable BK viremia but no evidence of nephropathy, and a similar 

number suffered from herpes zoster. Infusion or engraftment reactions were not reported, 

and it was noted that pro-inflammatory cytokines were not significantly elevated following 

MSC infusion.

The largest cohort of kidney transplant recipients treated with MSCs comprised 159 patients 

in a study conducted at the Fuzhou General Hospital, China.209 This was a single-center, 

randomized control trial where autologous BM--derived MSCs were prepared a month prior 

to transplantation and given at the time of and 2 weeks posttransplantation. The control 

group was given basiliximab instead of cell therapy and all patients were maintained on 

CNI, mycophenolate and steroids. This protocol is similar to that of The ONE study, except 

that low dose prednisolone was maintained for all patients and the cell therapy group 

received both standard and low-dose (80% of standard) CNI immunosuppression regimens. 

Fifty-three patients were enrolled in each of the 3 groups. There was a lower risk of 

BPAR in the MSC group compared to controls, regardless of CNI dose. Interestingly, only 

patients in the control (basiliximab induction) group had steroid-resistant rejection requiring 
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anti-thymocyte globulin. The trend of better outcomes in the cell therapy group was also 

seen in the eGFR within the first-year posttransplantation. Twelve-month patient and graft 

survival was similar between the groups and not surprisingly, the MSC with low-dose CNI 

had the lowest incidence of opportunistic infections. These studies add significantly to the 

body of evidence that MSCs may be beneficial in allowing reduced intensity of maintenance 

immunosuppression, but the results require both validation and longer-term follow-up. The 

effectiveness of MSCs in high immunological risk and/or deceased donor transplantation is 

untested.209 Trials using MSCs need to be carefully designed given the risk of engraftment­

related side effects, graft inflammation, excess immunosuppression potentially contributing 

to opportunistic infections and malignancy210,211 and known thrombogenic risks associated 

with activation of platelet and coagulation system.212,213 One trial with MSCs as treatment 

of severe lung rejection214 is ongoing, and another study combines MSCs with autologous 

islet transplantation following total pancreatectomy for chronic pancreatitis.215

Conclusion

Regulatory immune cell therapy exploits the cell’s inherent capacity to negatively influence 

cognate immune effector cells. We have highlighted the importance of myeloid and 

mesenchymal lineage regulatory cells which show potential as adjuvant immunosuppressive 

agents in clinical studies. The results so far are encouraging, but future cell therapy studies 

need to show significant benefit over current standard-of-care to justify the potential risks 

and resource investment. Current barriers to more widespread use of tolerogenic cell therapy 

in solid-organ transplantation include:

1. Clinical trials to date largely exclude recipients of higher immunological risks 

(higher risk grafts such as cardiac transplantation or higher risk individual such 

as re-graft or high panel reactive antibody titers), time-challenged scenarios of 

deceased donor kidney transplantation, or whether these cells can be used in 

the injured allograft (with delayed graft function or active rejection). These 

important issues will need to be addressed to justify cell therapy use outside 

the lower immune risk recipients of living donor transplants and duration of the 

effects of cell therapy.

2. Clinical efficacy is yet to be proven – the optimal protocol for dosing and timing 

of administration is yet to be determined and greater number of patients will 

need to be included in trials to provide more robust evidence. Recruitment will 

be a major barrier given it is an issue in transplantation-based interventional 

studies in general and may need additional strategies such as enrichment of the 

patient cohort and utilizing pragmatic or adaptive therapies in the future when 

there are more phase II/III clinical trials.

3. Active monitoring for adverse effects needs to be ongoing, with the ONE study 

having the longest reported follow up period so far. The duration of the effects of 

cell therapy are unknown and will need longer term observed and censored data 

to ensure there is no excess in major adverse events.
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4. Further monitoring of the immune landscape and exploration of the molecular 

mechanisms that underlie tolerogenic cell function will allow for greater 

precision in cell generation and trial design to achieve these aims.
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Abbreviations

APC Antigen-presenting cell

ATG anti-thymocyte globulin

ATP adenosine triphosphate

BReg regulatory B cell

CAR-T cell Chimeric antigen receptor-T cell

CNI calcineurin inhibitor

CTLA-4 cytotoxic T-lymphocyte associated protein 4

DC dendritic cell

FCx facilitating cell

Foxp3 foxhead box p3

GM-CSF granulocyte and macrophage colony stimulating factor

GVHD graft versus host disease

HSCT hematopoietic stem cell transplantation

HO-1 heme oxygenase-1

ICOS inducible T-cell costimulator

ICOSL inducible T-cell costimulatory ligand

IDO indoleamine 2,3-dioxygenase

IFN-γ interferon gamma

LAG3 lymphocyte activation protein 3

M-CSF macrophage colony stimulating factor
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MDSC myeloid-derived suppressor cell

MHC major histocompatibility complex

MSC mesenchymal stem cell

Mreg regulatory macrophage

NF-κB nuclear factor kappa-light-chain-enhancer of activated B 

cells

NK cell natural killer cell

NOS nitric oxide synthase

ODN oligodeoxynucleotide

PD1 programmed death protein 1

PDL1, PDL2 programmed death ligand 1 and 2

PGE2 prostaglandin E2

TCR T-cell receptor

TGF-β transforming growth factor beta

TH1 T-helper cell type 1

TH17 T-helper cell type 17

TolDC tolerogenic dendritic cell

TRAIL tumor necrosis factor related apoptosis inducing ligand

Treg regulatory T cell

VEGF vascular endothelial growth factor

Wnt5a wingless-related integration site 5a
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Figure 1. 
Concept of tolerogenic cell therapy to reduce the need or intensity of maintenance 

immunosuppression in solid organ transplantation thus minimizing the adverse side effects 

while still able to prevent rejection and support graft and patient health. Autologous, 

allogeneic or third-party derived precursor cells generated and manipulated ex-vivo 

according to Good Manufacturing Practices guidelines, generating a stable population of 

tolerogenic cells for adoptive transfer peritransplantation. These tolerogenic cells can act via 

direct cell-cell interactions or indirectly through the controlled orchestration of cytokines, 

chemokines or enzymes to influence surrounding cells to either disrupt T-cell activation, 

differentiation or effector function; or induce differentiation of naïve recipient cells to adopt 

a suppressive phenotype. APC, antigen-presenting cell; MHC, major histocompatibility 

complex; TCR, T-cell receptor; Tol, tolerogenic.
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Figure 2. 
Simplified overview of hematopoietic or mesenchymal derived cells which have important 

effector and regulatory roles in transplant immunology – with potential candidates for 

tolerogenic cell therapy for clinical transplant tolerance highlighted (dotted boxes). BReg, 

regulatory B cell; DC, dendritic cell; Mreg, regulatory macrophage; NK, natural killer; 

TolDC, tolerogenic dendritic cell; Treg, regulatory T cell.
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Figure 3. 
Important pathways of alloantigen recognition in transplant sensitization and rejection. 

Direct alloantigen recognition involves presentation of an intact MHC-antigen complex 

by donor APCs to recipient lymphocytes. Indirect allorecognition occurs through recipient 

APC uptake of donor-derived antigen molecules to present to lymphocytes. Semi-direct 

allorecognition can occur through exosomes (delivering microRNA and donor-content 

to recipient lymphocytes) or cross dressing of recipient APCs with donor-derived MHC­

antigen complexes by trogocytosis. From antigen recognition to effector cell differentiation, 

all are potential targets through which tolerogenic cells can exert their effects. APC, antigen­

presenting cell; MHC, major histocompatibility complex; TCR, T-cell receptor.
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Figure 4. 
Overview of mechanisms underlying how TolDCs or Mregs achieve tolerance through direct 

cell-cell contact with altered expression of co-stimulatory and co-inhibitory molecules. 

These cells can also influence the cells in the immediate microenvironment through 

altered cytokine, chemokine, and/or enzyme release to influence downstream cell survival, 

differentiation, and function. See abbreviations list for cytokine, chemokine and enzyme 

details. APC, antigen-presenting cell; CTLA-4, cytotoxic T-lymphocyte associated protein 

4; FoxP3, foxhead box p3; GM-CSF, granulocyte and macrophage colony stimulating 

factor; HO-1, haem oxygenase-1; IDO, indoleamine 2,3-dioxygenase; IFN-γ, interferon 

gamma; IL-4, interleukin 4; IL-10, interleukin 10; M-CSF, macrophage colony stimulating 

factor; Mreg, regulatory macrophage; NF-κB, nuclear factor kappa-light-chain-enhancer 

of activated B cells; NOS, nitric oxide synthase; ODN, oligodeoxynucleotide; PGE2, 

prostaglandin E2; RNAi, RNA interference; S1P, sphingosine-1-phosphate; TCR, T-cell 

receptor; TGF-β1, transforming growth factor beta 1; TH2, T-helper cell type 2; TNFα, 

tumor necrosis factor alpha; TolDC, tolerogenic dendritic cell; VEGF, vascular endothelial 

growth factor; VIP vasoactive intestinal peptide.
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Figure 5. 
Overview of the use of MSC for renal transplantation in the quest for tolerance. MSCs 

have a wide range of influences on the immune system with both suppressive effects on 

activation and maturation can promote differentiation of immune cells into regulatory or 

suppressive phenotypes. APC, antigen-presenting cell; IDO, indoleamine 2,3-dioxygenase; 

MSC, mesenchymal stem cell; PGE2, prostaglandin E2; TGFβ, transforming growth factor 

beta; TolDC, tolerogenic dendritic cell; Treg, regulatory T cell.
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