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Abstract
Retinopathy of prematurity (ROP) is a potentially blinding disorder seen in low birth weight preterm infants. In India, the 
burden of ROP is high, with nearly 200,000 premature infants at risk. Early detection through screening and treatment can 
prevent this blindness. The automatic screening systems developed so far can detect “severe ROP” or “plus disease,” but this 
information does not help schedule follow-up. Identifying vascularized retinal zones and detecting the ROP stage is essential 
for follow-up or discharge from screening. There is no automatic system to assist these crucial decisions to the best of the 
authors’ knowledge. The low contrast of images, incompletely developed vessels, macular structure, and lack of public data 
sets are a few challenges in creating such a system. In this paper, a novel method using an ensemble of “U-Network” and 
“Circle Hough Transform” is developed to detect zones I, II, and III from retinal images in which macula is not developed. 
The model developed is generic and trained on mixed images of different sizes. It detects zones in images of variable sizes 
captured by two different imaging systems with an accuracy of 98%. All images of the test set (including the low-quality 
images) are considered. The time taken for training was only 14 min, and a single image was tested in 30 ms. The present 
study can help medical experts interpret retinal vascular status correctly and reduce subjective variation in diagnosis.

Keywords Retinopathy of prematurity(ROP) · Automatic zone detection · Machine learning · Artificial Intelligence · 
Segmentation · U-Net

Introduction

Retinopathy of prematurity (ROP) is one of the important 
causes of vision impairment in premature infants that weigh 
less than 1750 g and are born before 34 weeks of gestation 
(full-term length of pregnancy is 38–42 weeks) [1]. Out of 15 
million premature births worldwide, 53,000 children require 
ROP treatment every year. In India, 200,000 out of 3.5 million 

premature infants are at the risk of developing ROP [2]. Addi-
tionally, the percentage of premature births in rural and inac-
cessible parts of the country is higher due to various challenges, 
including the unavailability of good healthcare services and 
doctors. It is very challenging to get the proper diagnosis and 
treatment for the ROP-affected babies in such cases.

The tissue at the back of the eye is called the retina, which 
is affected in ROP. In this disease, blood vessels grow unreg-
ulated and in the wrong direction on the baby’s retina. Pri-
mary prevention of ROP can be done by improving neonatal 
care, and secondary prevention is through early detection 
and treatment of the disease [3]. Since the disease has no 
outward signs, it is not seen in a cursory examination by 
ophthalmologists. They need to screen “at risk” babies using 
a special digital wide-field camera like Retcam (Clarity MSI, 
US)/Neo (Forus Healthcare, Bangalore, India) camera [4] 
or binocular indirect ophthalmoscope. The advantage of 
camera-based screening is that this can be used by trained 
paramedical staff. Ophthalmologists can grade these images 
at base hospitals without traveling to neonatal care units 
where preterm babies are often hospitalized. Screening is 
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performed to determine the likelihood of having the disease. 
Screening by the ROP specialists at early stages can prove 
useful in early treatment and subsequent disease control [5].

As shown in Fig. 1 [6], immature vessels in an infant’s 
retina grow completely without ROP development or pro-
gress to various ROP stages. Stages 1, 2, or 3 ROP can 
regress spontaneously with subsequent vessels’ natural 
growth in some infants. When ROP progresses to stage 3 
with Plus disease, it must be treated to save the baby’s sight. 
Otherwise, it may lead to stages 4 and 5 (retinal detach-
ment), leading to blindness. Timely screening is important 
to monitor the progress of the stages.

Unfortunately, very few ROP specialists are available 
in India, around 150 [7]. Even among the experts’ diag-
nosis of level, ROP can be highly subjective. Computer-
aided systems are developed for screening to assist medical 
experts [8]. An automatic ROP screening system can save 
time for ophthalmologists and provide the opportunity to 
focus on critical cases requiring treatment. Efficient and 
effective screening by an automated system can ensure 
that babies are treated on time and blindness is prevented. 
Increasing the number of blinding ROP cases [9] and the 
impact of this blindness on families [10] makes a strong 

case for inventing newer automated systems for ROP 
screening.

The severity of ROP is determined by the zones of retina 
involved and stages. The retina is divided into three zones, 
and ROP has five stages. Stages are identified from clinical 
features such as ridge and blood vessels. A thin demarcation 
line that separates the vascular and avascular retina indi-
cates stage 1, as shown in Fig. 2a. When this line grows 
thicker into a ridge, it is called stage 2 (Fig. 2b). In stage 
3, extraretinal fibrovascular proliferation from the ridge 
occurs (Fig. 2c). Stages 4 and 5 indicate partial and total 
retinal detachment, respectively. “Plus disease” is identified 
by increased tortuosity and dilation of blood vessels in the 
retina’s most central part.

Fig. 1  ROP regression and progress

Fig. 2  a Stage1, b stage 2, c stage 3
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Zones are identified from the optic disc (OD) and macula 
location with developing retinal blood vessels, as shown in 
Fig. 3. Zone I is the innermost zone and defined as a circular 
area around the optic disc with a radius twice the distance 
from the optic disc to the macula. Zone II is defined as the 
large circular area around zone I in the direction of retinal 
vessels. The circle has a radius extending from the optic 
disc to the nasal Ora Serrata. The remaining retina beyond 
zone II is defined as zone III and mostly represents the most 
peripheral temporal retina [11].

Depending on zones vascularized and stages observed, 
the patient’s schedule for follow-up is decided, as shown in 
Table 1. Infants with vessels reaching zone III are seldom 
affected by ROP and often do not require treatment even if 
ROP develops. However, it is important to detect zone I and 
zone II accurately. Identification of optic disc, macula, and 
blood vessels is necessary for zone detection as their features 
like tortuosity, dilation, and the width of blood vessels are 
used to diagnose ROP. It is a challenging task as the retina’s 
vascular structure is not completely developed in premature 
babies.

The existing automated screening systems detect the ROP 
diseases as “Yes/No ROP” or “Mild/Severe ROP” and pres-
ence/absence of “Plus disease.” Identification of all zones 
and stages of ROP is required in management decisions 
(“when to discharge a baby from ROP screening follow up”) 
by a specialist. It is a crucial decision as an early discharge 
may mean the baby can still develop a vision-threatening 
disease, and not discharging on time may mean an unneces-
sary burden on an ophthalmologist. Such a system has not 
been reported in the literature [12].

Deep learning techniques such as Convolutional Neural 
Network (CNN) [13] are rapidly proving to be the state-
of-art foundation in medical imaging. They are fast and 
accurate because of automatic feature extraction. The main 

challenge in medical image analysis is the unavailability of 
large training data sets and annotations for these images. 
The scarcity of labeled data in medical imaging can be 
overcome by using deep belief networks such as Generative 
Adversarial Networks and U-Networks [14, 15]. U-Net is 
a CNN that can be trained with fewer images to get high 
dice coefficient scores in medical image segmentation [16].

This paper proposes a novel method using an ensemble 
of “U-Network” and “Circle Hough Transform” to iden-
tify zones I, II, and III with optic disc and blood vessel 
segmentation. The macula may or may not be visible in 
the images. The segmented optic disc was marked on the 
original images with the Circle Hough Transform during 
the post-processing. This work’s novelty estimated the 
macula center location required to calculate zone distances 
from the center of these optic discs and marked zone I and 
zone II. Zone III is beyond zone II temporally, for which 
the images are captured by positioning the camera probe 
at a different angle, and in this optic disc is not seen. Our 
model detects the images that do not have optic discs, with 
a specificity of 100%.

In summary, the contribution of this work is:

• Development of a novel assistive framework based on an 
Ensemble of U-Network and Circle Hough Transform 
and for identifying zones I, II, and III in fundus images 
of premature infants

Fig. 3  Standard form for docu-
menting zone

Table 1  Follow-up schedule

Sr. no Zone and stage of ROP Follow-up duration

1 Zone I, any stage Once a week or earlier
2 Zone II, stage 2 or 3 Once in a week
3 Zone III Once in 2–3 weeks
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• Estimation of macula center location from the optic disc 
center in the images where the macula is undeveloped

• Identification of zones from the location of the optic disc 
with developing retinal blood vessels irrespective of vis-
ibility of macula in the image

• Development of the segmentation framework for optic 
disc and blood vessels using two separate U-networks to 
mark the zones

• Development of four ROP datasets (not available pub-
licly) from the data collected from different imaging sys-
tems (Retcam and Neo)

• Preparation of ground truths for segmentation of optic 
disc and blood vessels

The rest of this paper is organized as follows. “Prior 
Work” section is the review of previous work done. “Data-
sets” section describes the datasets used. The methodology 
for segmentation of optic disc, blood vessels, detecting 
macula center location, and zone marking is described in 
the “Methodology” section. Experimental results are in the 
“Results” section, discussions in “Discussion and Limita-
tions” section followed by the conclusion in “Conclusion” 
section.

Prior Work

The study of ROP and subsequent computer-aided diagnos-
tic tools for ROP screening has been of interest to research-
ers worldwide. Traditional image processing and machine 
learning algorithms were developed for ROP screening 
using small datasets of images [17, 18]. Their limitation 
was that they were time-consuming and not accurate for 
complex problems as they use hand-crafted features. With 
the increasing number of images in the dataset and GPU 
availability, Deep learning is becoming popular in medical 
imaging. Unlike traditional Machine Learning algorithms, 
Deep learning allows machines to solve complex problems 
with higher accuracy even if the data set is very diverse and 
unstructured. A deep learning network learns high-level 
features of the data incrementally and eliminates the need 
for human expertise.

A deep neural network (DNN) based approach is proposed 
to detect ROP to assist the human expert in the ROP screen-
ing system [19–21]. The first automated system to detect 
ROP was developed using convolution Neural Networks 
(CNN) [22] to assist clinicians in ROP detection. A novel 
architecture of CNNs was proposed to detect ROP and its 
severity [23]. It consists of a sub-network to extract the fea-
tures and a feature aggregate operator to bind these features 
from various input images. Deep learning with U-Net archi-
tecture for vessel segmentation was used [24] to detect No 

ROP/ROP with pre-plus disease. DeepROP, an automated 
ROP detection system, was developed [25] using two spe-
cific DNN models: Id-Net was developed to identify ROP. 
Gr-Net was developed for ROP grading tasks. Two separate 
datasets, viz. identification dataset and grading dataset, were 
designed for the models. The DNN classifier was trained via 
a transfer learning scheme [26]. The authors used features 
automatically extracted by the pre-trained models, namely, 
AlexNet, VGG-16, and GoogLeNet trained on ImageNet for 
classification. A deep learning framework was also developed 
to detect zone I from RetCam images having both optic disc 
and macula [27].

Currently, the system that can help clinicians decide on 
the “time of discharge” from ROP screening is not avail-
able. It is a crucial decision, and one needs to balance 
between not missing vision-threatening ROP and avoiding 
the burden of unnecessary screenings finely. The decision 
to “discharge” depends on the status of retinal vasculariza-
tion in zone III. We develop a novel method for zones I, 
II, and III detections using an ensemble of Circle Hough 
Transform and optic disc and blood vessel segmentation 
from retinal fundus images of premature babies. These 
images need not have a macula visible in them. We esti-
mated the macula location in such images after the optic 
disc segmentation.

Segmentation of optic disc and blood vessels is chal-
lenging due to the complexity and non-uniform illumina-
tion of the retinal images and not reported in the literature 
on ROP datasets. Still, for Diabetic Retinopathy, it has 
been implemented successfully using deep learning [28]. 
The publicly available datasets such as DRIVE, RIGA, 
DRISHTI-GS, and RIMONE were used, and the results 
were compared with that of state-of-art available. Segmen-
tation of optic disc and cup was done using U-Net and its 
modifications for glaucoma detection [29–31]. Location 
and segmentation of optic disc were done using the optic 
disc as a salient object [32]. Optic disc segmentation was 
performed using a fully convolutional network with a depth 
map of retinal images [33]. The authors [34] modified the 
U-Net model with attention gates to segment the optic disc.

Blood vessel segmentation in retinal images was per-
formed using a parallel fully convolved neural network 
[35]. It contained two networks: one for extracting thick 
vessels and the other for thin vessel extraction. Convolu-
tional Neural networks (CNN) and support vector machine 
(SVM) were used together to segment the blood vessels 
[36]. Under-segmenting faint vessels and ambiguous 
regions in retinal images were improved, using a novel 
stochastic approach proposed [37] to train two deep neu-
ral networks. The U-Net architecture was proposed for 
simultaneous discrimination of retinal arteries-veins and 
vessel extraction [38].
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ROP datasets are not available publicly. Available algo-
rithms for detecting the severity of ROP are primarily based 
on private data of Retcam images and only report zone I’s 
detection. We have prepared our datasets from heterogene-
ous images of Retcam and Neo cameras. We will make them 
available publicly after completing this work.

Datasets

The process of dataset preparation is as shown in Fig. 4. 
Fundus images were captured by the technicians using Ret-
cam (image size 640 × 480) and Neo camera (image size 
2040 × 2040) from PBMA’s H.V. Desai Eye Hospital in 
Pune. The images of Retcam were more than that of Neo 

as the hospital has started using Neo cameras recently, 
whereas Retcam was used for many years. These images 
were obtained by the temporal, posterior, superior, nasal, 
inferior view (per eye images 2 to 12) to thoroughly observe 
an infant’s eye as shown in Fig. 5. A total of 10,000 Ret-
cam images (left and right eye) of 900 patients were col-
lected with gestation ages of 26–60  weeks and birth 
weight < 3000 g. The images were annotated in detail, speci-
fying zones and stages by a team of 5 trained and experi-
enced ROP specialists. We needed only posterior and tem-
poral views of the image for this work, thus excluding 8100 
images from the dataset. We got 1900 images of Retcam 
with the posterior view and temporal view.

Similarly, we collected 1100 annotated Neo images of 
300 patients. The images were labeled in ten ROP classes 

Fig. 4  Flow diagram for dataset preparation
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in detail, as shown in Fig. 6. The number of images in the 
“Mature retina” class was very high, whereas the number 
of images in “zone I stage 2” or “zone III stage 3” classes 
was very low.

Then four datasets were prepared from these images 
as follows:

– HVDROPDB Retcam dataset containing posterior and 
temporal view images of Retcam

– HVDROPDB Neo dataset with posterior and temporal 
view images of Neo

– HVDROPDB OD dataset having only posterior view 
images of Retcam and Neo for optic disc segmentation

– HVDROPDB BV dataset containing posterior and tem-
poral view images of Retcam and Neo for blood vessel 
segmentation.

HVDROPDB Retcam dataset contained 1000 posterior 
views and 900 temporal view Retcam images. HVDROPDB 
Neo dataset was prepared with a 550-posterior view and 
550-temporal view Neo images. For optic disc segmen-
tation, the HVDROPDB OD dataset was prepared with 
1000 images by combining 650 posterior view images 
of HVDROPDB Retcam and 450 posterior view images 
HVDROPDB Neo selected randomly. As HVDROPDB 
OD dataset images were only with the posterior view and 
many of the images did not have clear vessels visible in 
them to prepare the ground truths, HVDROPDB BV was 
prepared with 121 posterior and temporal view images of 
HVDROPDB Retcam, and 129 images of HVDROPDB Neo 
selected randomly for blood vessel segmentation as shown 
in Table 2. These 250 images were then increased to 500 by 
augmenting them using Adobe Photoshop graphics editor. 

Fig. 5  Different views of a 
fundus image

Fig. 6  Annotated ROP images
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Ground truth preparation and Datasets splitting are done as 
follows:

• Ground truths of 1000 images of the HVDROPDB OD 
dataset were prepared manually for optic disc segmenta-
tion using Adobe Photoshop graphics editor and verified 
by the ROP specialists’ team.

• Ground truths of 250 images of the HVDROPDB BV 
dataset were prepared manually by tracing the vessels 
and verified by the ROP specialists’ team. It is a complex 
task and still in progress.

• The HVDROPDB OD and HVDROPDB BV datasets and 
their ground truth datasets were then divided randomly 
into three sets: training, validation, and testing sets in 
ratio 70:15:15.

Methodology

Figure 7 presents the broad view of the ROP diagnosis sys-
tem. A Retcam/Neo imaging system captured the patient’s 
fundus images. The patient’s unique ID, name, age, weight, 
and other history were saved in the patient dataset with 
access only to the medical team. Image selection and annota-
tion are done with the help of ROP specialists. ROP datasets 
are prepared according to the annotation. They are parti-
tioned into training, validation, and testing sets. The ROP 
models are trained to segment optic disc, blood vessels using 
the train sets. The weights of these trained models will be 
used to detect zones and stages from the test sets. ROP spe-
cialist will read these details provided by the system and the 
patient’s history and prescribe him/her the next screening 
schedule. The updated data are in the patient’s dataset. Thus, 
regular screening from the early stages will be useful in early 
treatment prescription and subsequent control of the disease, 
as shown in Fig. 1.

We have divided the work into two parts: (a) zones I, II, 
and III detection and (b) detection of stages 1, 2, 3 from 
fundus images. The results will be combined to explain a 
class of ROP. In this work, we have developed a system to 

Table 2  Datasets

Dataset name Size Total images

HVDROPDB Retcam 640 × 480 1900 1900
HVDROPDB Neo 2040 × 2040 1100
HVDROPDB OD (640 × 480) and (2040 × 2040) 1000
HVDROPDB BV (640 × 480) and (2040 × 2040) 250

Fig. 7  ROP system architecture
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detect zones using U-Net and Circle Hough Transform. The 
detailed architecture is as shown in Figs. 8 and 9.

As shown in Fig. 8, the zone detection system consists of 
two separate U-networks for the segmentation (Fig. 9) of the 
optic disc and blood vessels as the ground truths were differ-
ent for both datasets. HVDROPDB OD and HVDROPDB 
BV datasets were used to train the two U-networks. Training 
models with the best accuracy were saved.

The infant’s image with a posterior view was captured 
and given to the saved models for testing. The segmented 

optic disc mask was then used to mark the optic disc on the 
infant’s image using Circle Hough Transform. The macula 
distance was calculated from the center of the optic disc, 
and then zone I was drawn as a circle with the optic disc as 
a center and radius equal to twice the distance between optic 
disc and macula. Similarly, zone II distance was estimated in 
terms of the distance between optic disc and macula. Zone 
III is beyond zone II temporally. Finally, the second U-net 
output, i.e., segmented blood vessels, was combined with 
the zones’ marked image.

Fig. 8  Zone detection system 
architecture

Fig. 9  Segmentation process
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U‑Net Architecture

We used the original U-Net, with modified parameters 
and image size reduced to 128 × 128 × 3 for optic disc 
segmentation. U-Net is a fully connected network [15], 
and its architecture is symmetric like U, consisting of two 
parts: the contraction path and the expansion path. The 
contraction path is used to extract spatial features from 
the image, and the expansion path is used to construct the 
segmentation map from the encoded features. Convolu-
tion followed by max-pooling operations was performed 
for downsampling in the contraction path. We used a 3 × 3 

kernel and 16 filters followed by a max-pooling layer of 
2 × 2 which reduced the image size to 8 × 8 after the con-
traction path.

The expansion path performed the convolution transpose 
followed by concatenation and convolution operations to 
up-sample the feature maps, and we got an upsized original 
image of size 128 × 128. Sigmoid and ReLU activation func-
tions were used in this architecture. The main advantage of 
U-Net is that it requires fewer images for training. U-Net 
architecture with input and output is as shown in Fig. 10.

U-net training began with an image of size 128 × 128 × 3, 
a kernel of size 3 × 3, a stride of 2, and the number of filters 

Fig. 10  U-Net architecture
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16 applied to the first convolutional layer contraction path. 
The number of channels increased to 32 after the second 
convolutional layer. The next layer was the max-pooling 
layer, in which the size of the image was halved down to 
64 × 64 × 32. This formula was repeated three times, which 
gave the image of size 8 × 8 × 256.

The first transposed convolution was applied to the 
image that doubled the image’s size and halved the num-
ber of channels (16 × 16 × 128) in the expansion path. This 
image’s concatenation was then performed with the contrac-
tion path’s corresponding image, which made the image size 
16 × 16 × 256. After that, two convolution layers were added 
for upsampling. Again, this formula was repeated three times 
to get the image of the original size.

Circle Hough Transform

Zones are identified with the optic disc center, its radius, 
and macula center. The optic disc center location is impor-
tant than its shape in ROP diagnosis. We used Circle Hough 
Transform to mark the optic disc detected by U-Net output 
on the original image, as shown in Fig. 11. Circle Hough 
Transform has been used in many commercial and industrial 
applications like object recognition, biometrics, and medical 
applications  [39]. It is used to detect a circle’s parameters, 
i.e., center (a, b) and radius (r). Circle Hough Transform 
is based on the equation of a process and its parametric 
equations.

To select the parameters such as the accumulator 
threshold for the detected circle centers, minimum and 
maximum circle radii in the HoughCircles function, 
experimentation was done on 100 images of HVDROPDB 

Retcam HVDROPDB Neo. The radius of the optic disc 
was observed in these images. Then minimum and 
maximum circle radii was varied from 10 to 40, and the 
outputs were monitored. If the accumulator threshold 
was kept small, it detected more false circles. If it was 
increased more, the actual circle was not shown. After 
testing on 100 images, again and again, these parameter 
values were fixed.

Macula and Zone Detection

After marking the optic disc, we found the macula center 
to draw zones on the image. As the macula is not devel-
oped fully in premature babies, it was not visible in many 
images. To find the macula’s location, we plotted the 
macula with the distance varying from 2.5 to 3.75 times 
the optic disc diameter on 50 nasal images of Retcam and 
Neo [40, 41]. Then, zone I was drawn as a circle with the 
optic disc as a center and radius equal to twice the dis-
tance between the optic disc and macula. Similarly, zone 
II distance was calculated and marked. Zone III is beyond 
zone II temporally. The senior ROP specialist with her 
team verified these distances repetitively and finally con-
firmed them according to the definition of ICROP. The 
macula’s location was decided as 3 × d (d is the optic disc 
diameter) for Retcam images, and for Neo images, it was 
determined as 2.75 × d. With these distances, zones I and 
II were marked on the original image.

Figure 12 demonstrates the optic disc indicated with the blue 
circle with center o, macula center m, and optic disc radius r. 
Zone I is displayed with the red arc, and zone II with the green 
curve. Zone III could not be marked on the image as it is beyond 

Fig. 11  Marking of optic disc 
on the original image
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Zone II. For this, we tested the temporal view image in which 
the optic disc is not present, but zone III is seen (Fig. 6e–i). 
Marking the zones on these images is our ongoing work.

U‑Net for Blood Vessel Segmentation

We trained the second U-Net for blood vessel segmentation 
with the parameters described in the “U-Net Architecture” sec-
tion and image size reduced to 256 × 256 × 3 for better accu-
racy. The blood vessels were detected clearly in most testing 
images even if the images were poor, as shown in Fig. 13. 
Figure 13a, c are original images, whereas Fig. 13b, d show 
their segmented blood vessels.

Finally, these U-net results were combined with the image 
in which zones were marked, as shown in Fig. 14. Original 

images (a, c, e) are shown with their corresponding outputs 
(b, d, f) in the figure.

Results

Segmentation Using U‑Nets

The two U-nets were trained using the training and valida-
tion set of HVDROPDB OD and HVDROPDB BV data-
sets. The number of training, validation, testing images, 
number of epochs, validation accuracy, and the time to 
train the models are shown in Table 3.

Fig. 12  Marking of zones

Fig. 13  Blood vessel segmentation with U-Net: a, c original images, 
b, d segmented images

Fig. 14  Zone detection with blood vessels. a, b Zone I immature. c, d 
Zone II immature. e, f Zone III immature

Table 3  Validation accuracy and training time

Dataset Validation 
accuracy

No. of 
epochs

Training 
images

Validation 
images

Testing 
images

Training 
time

HVDROPDB 
OD

0.998 50 700 150 150 4 min

HVDROPDB 
BV

0.943 100 300 75 75 10 min
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Validation accuracy graphs are shown in Fig. 15a, b. 
The evaluation metrics such as true positive rate (TPR), 
true negative rate (TNR), false positive rate (FPR), false 
negative rate (FNR), precision, dice, and accuracy of seg-
mentation were used for performance evaluation of the 
datasets [42].

Tables 4 and 5 show the values of evaluation metrics 
for optic disc and blood vessel segmentation, respectively. 
Image1, image2, and image3 indicate random sample 
image values, and the mean of all images is the mean of 
all 1000 metric values.

The receiver operating characteristic curve (ROC) 
or area under the ROC curve (AUC) is also plotted for 
training, validation, and testing sets of HVDROPDB 
with TPR on the y-axis and FPR on the x-axis as shown 
in Figs. 16 and 17. For an excellent model, AUC is 0.9 
to 1. For optic disc segmentation (Fig. 17), AUC is 1 for 
training, validation, and testing sets. For blood vessel 
segmentation (Fig. 17), AUC is 0.95 for training, with 

a coefficient of 0.94 for validation and 0.94 for testing, 
indicating them as excellent models.

As the public dataset of ROP is not available for com-
parison, we used the DRION dataset available for Diabetic 
Retinopathy for optic disc segmentation comparison with 
radius modified. DRION dataset has a total of 110 images, 
out of which we selected 80 images randomly, which 
were divided into training:validation:testing set in ratio 
70:15:15. The sensitivity of optic disc detection obtained 
on testing images was 99.1%, comparable to 99.09% 
obtained by deep convolution networks [43].

Classification Using Circle Hough Transform

Apart from the HVDROPDB OD and HVDROPDB BV 
testing sets, we used 50 unknown test images of Retcam 
and Neo, which were not included in these datasets pre-
pared. The model was run on an NVIDIA GEFORCE 
GTX GPU and took around 30 ms to test one image. The 

Fig. 15  Validation accuracy for a optic disc segmentation, b blood vessel segmentation

Table 4  Evaluation metrics for optic disc segmentation

Image TPR TNR Precision Dice Accuracy

Image 1 0.865 0.999 0.933 0.898 0.998
Image 1 0.919 0.999 0.928 0.923 0.999
Image 1 0.942 0.999 0.915 0.928 0.999
Mean of all images 0.816 0.999 0.899 0.844 0.998

Table 5  Evaluation metrics for blood vessel segmentation

Image TPR TNR Precision Dice Accuracy

Image 1 0.516 0.984 0.752 0.612 0.945
Image 1 0.596 0.971 0.621 0.608 0.943
Image 1 0.586 0.973 0.793 0.674 0.916
Mean of all images 0.528 0.978 0.696 0.59 0.94
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sensitivity and specificity of optic disc detection were 
measured by calculating TP, TN, FP, and FN manually. 
Sensitivity was 98% because of one very poor image, and 
specificity was 100%.

Zone Detection with Blood Vessels

Zones were detected correctly in the images in which the 
optic disc was identified, as shown in Fig. 14 with an 
accuracy of 98%. Public datasets are available for Diabetic 
Retinopathy research work, and zones are not relevant in 
diabetic retinopathy. HVDROPDB trained models cannot 
be used for testing diabetic retinopathy datasets as their 
optic disc size is different. As there is no ROP dataset 
available publicly to compare results, they were verified 
by the ROP specialists’ team. The accuracy of zone detec-
tion was measured by calculating TP, TN, FP, and FN 
manually.

Discussions and Limitations

Our algorithm can detect zones I, II, and III with blood ves-
sels required for assessing the extent of retinal vessel growth 
or ROP severity in images acquired from two independent 
sources. Present ROP detecting systems report more about 
the “Plus disease” and “Mild/severe” categories of the ROP. 
Identifying zones I and II in ROP images with and without 
macula is not reported so far.

We have identified zones from fundus images with and 
without macula. It can help categorize infants into “ high risk” 
or “low risk” depending on whether retinal vessels are reach-
ing zones I/II. Such categorization can help design a protocol 
for follow-up for these babies (for example, “high risk” babies 
to be reviewed weekly and “low risk” to be reviewed on a 
fortnightly basis). Customized follow-up protocols can reduce 
the burden on the health system, which is already constrained 
by resources.

Fig. 16  ROC for a training, b validation, and c testing set of HVDROPDB OD
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Detecting zones and stages in the temporal view of images 
are our ongoing work. We are also working on increasing the 
accuracy of blood vessel segmentation.

Conclusion

This paper discussed the very relevant problem of Retinopathy 
of Prematurity and the development of an assistive framework 
for automated screening. ROP is a very important problem, 
especially in developing countries like India, where premature 
births are significant (close to 2 million per year). Out of them, 
babies with ROP are also large in number (about 38%). ROP 
experts’ dearth to cater to such a huge population of premature 
babies affected by ROP makes this work very important and 
relevant.

ROP severity is determined by three zones and five stages 
of the retina involved. Zones are identified from the loca-
tion of the optic disc and macula with developing retinal 
blood vessels. We have developed the framework using an 
ensemble of Circle Hough Transform and Deep Learning 
network to automatically identify Zones I, II, and III with 

blood vessels from fundus images of premature babies in 
which macula may not be visible. It will help to predict the 
class of ROP to decide the next schedule of screening. The 
model’s training time is very less (14 min), and an accuracy 
of 98% is achieved. This model can be used for the grading 
of ROP, which will assist the clinicians in screening.

An important aspect of this work is the development of the 
datasets. Such comprehensive ROP data sets are not available 
in the public domain, and upon completion of this work, the 
dataset developed will be made open for public use. ROP 
specialists’ team has separated the images as posterior view 
and temporal view images and then annotated the images 
in different ROP classes in detail. They have also verified 
the ground truths of training datasets. The dataset created is 
large (3000 images), heterogeneous, and robust (containing 
the poor images). Separate ground truth datasets for optic 
disc and blood vessel segmentation are also available. Future 
work will involve collecting more images in the dataset to 
improve segmentation metrics and detect the stage.

Additionally, this system can help patients in low-income 
setups if modified for smartphone screening. Smartphones 

Fig. 17  ROC for a training, b validation, and c testing set of HVDROPDB BV
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and 20 diopter lenses are used as ROP screening tools [44]. It 
is a relatively cheap way of screening for ROP and can be used 
for remote screening. Limitations of smartphone screening are 
the following: (1) it is cumbersome and time-consuming, and 
(2) it cannot differentiate the zones clearly [45].
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