Table 2.
Experimental results on BraTs 2019 validation leaderboard. Our team “MLKCNN-COMSATS-MIDL” results are available on portal
Team | Architecture type | Dice_ ET | Dice_ WT | Dice_ TC | Sensitivit y_ET | Sensitivity_WT | Sensitivit y_TC | Hausdorf f_ET | Hausdorff_WT | Hausdorf f_TC | |
---|---|---|---|---|---|---|---|---|---|---|---|
Single-model method | Proposed MLKCNN | ML-KCNN | 0.73 | 0.88 | 0.81 | 0.77 | 0.89 | 0.79 | 6.47 | 8.52 | 7.45 |
Proposed MLKCNN + Post- Processing | ML-KCNN | 0.74 | 0.90 | 0.83 | 0.79 | 0.92 | 0.83 | 3.74 | 4.89 | 5.75 | |
Vu Hoang Minh et al. [42] | 3D Attention U- Net | 0.70 | 0.89 | 0.79 | 0.75 | 0.90 | 0.81 | 7.05 | 6.29 | 8.76 | |
Mehdi Amian et al. [39] | Two-way U-net architecture | 0.71 | 0.86 | 0.76 | 0.68 | 0.84 | 0.75 | 6.91 | 8.42 | 11.549 | |
Mohammad Hamghalam et al. [37] | 2D-Unet-based generative adverserial architecture | 0.76 | 0.89 | 0.79 | 0.76 | 0.89 | 0.77 | 4.64 | 6.99 | 8.43 | |
Rupal R. Agravat et al. [38] | Proposed dense module based U-Net | 0.59 | 0.73 | 0.65 | 0.59 | 0.67 | 0.64 | 9.02 | 16.70 | 16.69 | |
Ensemble-based method | McKinley et al. [43] | Ensemble of 3D-to-2D CNNs | 0.77 | 0.91 | 0.83 | - | - | - | 3.92 | 4.52 | 6.27 |
Vu [42] | TuNet:end-to-end hierarchical brain tumor segmentation using cascaded networks | 77.38 | 90.34 | 79.14 | - | - | - | 4.29 | 8.80 | 3.57 | |
Murugesan et al. [40] | Multidimensional and multiresolutional ensemble | 0.77 | 0.89 | 0.78 | - | - | - | ||||
Jiang et al. [41] | Cascade ensemble of 12 models | 0.80 | 0.90 | 0.86 | - | - | - | 3.14 | 5.4 | 4.2 |