Skip to main content
. 2021 Jul 29;34(4):905–921. doi: 10.1007/s10278-021-00486-7

Table 2.

Experimental results on BraTs 2019 validation leaderboard. Our team “MLKCNN-COMSATS-MIDL” results are available on portal

Team Architecture type Dice_ ET Dice_ WT Dice_ TC Sensitivit y_ET Sensitivity_WT Sensitivit y_TC Hausdorf f_ET Hausdorff_WT Hausdorf f_TC
Single-model method Proposed MLKCNN ML-KCNN 0.73 0.88 0.81 0.77 0.89 0.79 6.47 8.52 7.45
Proposed MLKCNN + Post- Processing ML-KCNN 0.74 0.90 0.83 0.79 0.92 0.83 3.74 4.89 5.75
Vu Hoang Minh et al. [42] 3D Attention U- Net 0.70 0.89 0.79 0.75 0.90 0.81 7.05 6.29 8.76
Mehdi Amian et al. [39] Two-way U-net architecture 0.71 0.86 0.76 0.68 0.84 0.75 6.91 8.42 11.549
Mohammad Hamghalam et al. [37] 2D-Unet-based generative adverserial architecture 0.76 0.89 0.79 0.76 0.89 0.77 4.64 6.99 8.43
Rupal R. Agravat et al. [38] Proposed dense module based U-Net 0.59 0.73 0.65 0.59 0.67 0.64 9.02 16.70 16.69
Ensemble-based method McKinley et al. [43] Ensemble of 3D-to-2D CNNs 0.77 0.91 0.83 - - - 3.92 4.52 6.27
Vu [42] TuNet:end-to-end hierarchical brain tumor segmentation using cascaded networks 77.38 90.34 79.14 - - - 4.29 8.80 3.57
Murugesan et al. [40] Multidimensional and multiresolutional ensemble 0.77 0.89 0.78 - - -
Jiang et al. [41] Cascade ensemble of 12 models 0.80 0.90 0.86 - - - 3.14 5.4 4.2