Table 2.
Set | % pos | Combo | Roc | Avg precision | Accuracy | Precision | Recall |
---|---|---|---|---|---|---|---|
10X | 26.90% | distances | 0.581 | 0.295 | 0.727 | 0.307 | 0.230 |
Dist-atr | 0.566 | 0.265 | 0.739 | 0.315 | 0.197 | ||
Atchley | 0.669 | 0.443 | 0.807 | 0.742 | 0.132 | ||
Atchley-dist | 0.616 | 0.359 | 0.782 | 0.459 | 0.163 | ||
Atchley-dist-atr | 0.592 | 0.322 | 0.773 | 0.406 | 0.159 | ||
Dash | 7.33% | distances | 0.605 | 0.108 | 0.740 | 0.111 | 0.362 |
Dist-atr | 0.650 | 0.124 | 0.802 | 0.139 | 0.326 | ||
Atchley | 0.690 | 0.183 | 0.910 | 0.237 | 0.104 | ||
Atchley-dist | 0.611 | 0.180 | 0.799 | 0.133 | 0.316 | ||
Atchley-dist-atr | 0.648 | 0.147 | 0.824 | 0.154 | 0.311 | ||
Expt | 12.70% | distances | 0.733 | 0.332 | 0.730 | 0.275 | 0.688 |
Dist-atr | 0.707 | 0.454 | 0.714 | 0.250 | 0.625 | ||
Atchley | 0.809 | 0.698 | 0.786 | 0.333 | 0.688 | ||
Atchley-dist | 0.807 | 0.667 | 0.738 | 0.270 | 0.625 | ||
Atchley-dist-atr | 0.768 | 0.532 | 0.722 | 0.256 | 0.625 | ||
Atlas | 86.60% | distances | 0.463 | 0.852 | 0.840 | 0.866 | 0.964 |
Dist-atr | 0.504 | 0.863 | 0.777 | 0.864 | 0.881 | ||
Atchley | 0.570 | 0.897 | 0.866 | 0.866 | 1.000 | ||
Atchley-dist | 0.471 | 0.867 | 0.863 | 0.867 | 0.993 | ||
Atchley-dist-atr | 0.497 | 0.869 | 0.834 | 0.866 | 0.957 | ||
NewVdj | 0.70% | distances | 0.528 | 0.010 | 0.832 | 0.009 | 0.205 |
Dist-atr | 0.535 | 0.009 | 0.908 | 0.013 | 0.159 | ||
Atchley | 0.516 | 0.008 | 0.981 | 0.014 | 0.023 | ||
Atchley-dist | 0.549 | 0.010 | 0.953 | 0.004 | 0.023 | ||
Atchley-dist-atr | 0.559 | 0.009 | 0.953 | 0.000 | 0.000 |
Results of predicting the validation sets with the model trained on the STCRDab set, using different subsets of features. In each section, the best-performing model is highlighted in bold and underlined. The precision and recall are measured for the optimum SVC hyperplane giving the highest AUC.