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Abstract

Tensor-based morphometry (TBM) is a powerful approach for examining shape changes in

anatomy both across populations and in time. Our work extends the standard TBM for quantifying

local volumetric changes to establish both rich and intuitive descriptors of shape changes in

fibrous structures. It leverages the data from diffusion tensor imaging to determine local spatial

configuration of fibrous structures and combines this information with spatial transformations

derived from image registration to quantify fibrous structure-specific changes, such as local

changes in fiber length and in thickness of fiber bundles. In this paper, we describe the theoretical

framework of our approach in detail and illustrate its application to study brain white matter. Our

results show that additional insights can be gained with the proposed analysis.

1 Introduction

Tensor-based morphometry (TBM) is one of the most popular deformation-based

approaches for analyzing anatomy. It computes, for each voxel in the image domain, the

spatial derivatives of the transformations that align a set of input subject images to a

template of choice. These images can be acquired from different populations, enabling

cross-sectional study of anatomical differences between populations. TBM can also be

applied to study longitudinal changes in anatomy by examining the transformations that

match images acquired sequentially of the same subjects. The standard TBM has primarily

taken advantage of the determinant of the spatial derivative matrix (known as the Jacobian

matrix) [1, 2], which enables statistical mapping of local volumetric changes across

populations and in time.

A well-understood weakness of using only the Jacobian determinant is that significant

amount of information captured in the full matrix is being discarded. As a result, it will not

be able to detect many patterns of differences that involve anisotropic changes along

different spatial directions but result in no net volumetric changes. Recently, Lepore et al [3]

proposed the generalized TBM as a solution to this problem. The generalized TBM extends

the standard approach by applying multivariate statistics on the full deformation tensors

which are derived from the Jacobian matrices and completely capture shape changes

contained within them. The consistent gain in power to detect structural abnormalities makes

the approach highly desirable for drug trials or computer-assisted diagnosis. However, the
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multivariate approach makes it difficult to interpret the detected abnormalities in

anatomically intuitive terms.

In this paper, we propose a different approach for remedying the weakness of the standard

TBM. The approach is specifically tailored for examining fibrous structures such as white

matter and muscle. It is driven by the key observation that, for fibrous structures, the effect

of transformation depends not only on the properties of the transformation itself but also on

the configuration of the fibrous structure undergoing the warping. The proposed approach

leverages the configuration information of the fibrous structures available from diffusion

tensor imaging (DTI) and establishes both rich and intuitive descriptors of shape properties.

Its ability to gain additional insights is demonstrated in an application to examine gender-

related white matter differences in the aging population.

The paper is organized as follows: Section 2 describes the proposed approach in detail.

Section 3 describes the application of the proposed approach to examine gender difference

of white matter in the aging population. Section 4 summarizes the contribution and discusses

future works.

2 Method

2.1 Tensor-Based Morphometry

In the TBM framework, given an input subject, we first establish the spatial correspondence

between the subject and a template using a high-dimensional nonlinear image registration

algorithm. The correspondence between the two images is captured by some diffeomorphic

spatial transformation ϕ : Ω → Ω, where Ω ⊆ ℝn is the image domain (n = 2 for 2D and n =

3 for 3D). In particular, the Jacobian of the transformation, Jϕ : x → Dϕ(x), establishes a

local affine transformation model that maps the local neighborhood around a point x in the

template to the corresponding neighborhood around the point ϕ(x) in the subject, such that,

ϕ(x + ϵ) = ϕ(x) + Jϕ(x)ϵ + O ϵ
2

,

with Jϕ being a n × n matrix, the (i, j)th entry of which is (Dϕ)ij ≔ ∂ϕi/∂xj. Beause the

determinant of the Jacobian matrix Jϕ quantifies the volume change from mapping a local

neighborhood in the template to the corresponding one in the subject, a map of local

volumetric change can be produced by computing this quantity at each point in the image

domain [1, 2]. This approach is most commonly used in the TBM analysis, in part because

the descriptive nature of the measure makes it easy to understand and to interpret. On the

other hand, its inability to differentiate other patterns of shape changes that do not result in

volume change has motivated active research in identifying alternative complementary

measures.

2.2 Overview of the Proposed Framework

The proposed framework builds upon the standard TBM analysis by establishing a set of

descriptors of shape changes that are natural and specific for fibrous structures. We observe
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that the fiber orientation information encoded in DTI can be leveraged to decompose the

Jacobian matrix of a transformation into parts that can be interpreted in intuitive terms. This

observation is illustrated in Fig. 1, which depicts, in the left panel, the local neighborhood

around a point x in a DTI template, and in the right panel, the transformed version of this

neighborhood using some transformation ϕ. The original neighborhood around x is

represented using a shaded rectangle; its transformed version, which is centered around ϕ(x),

is represented using a shaded parallelogram. The diffusion tensor at x and its warped version

at ϕ(x) are shown as two lightly-shaded ellipses. The eigenvectors of each diffusion tensor

form a natural local reference frame for its neighborhood: their primary eigenvectors,

denoted by e1 at x and e1′  at ϕ(x), are parallel to the orientations of the underlying fiber

bundles; their secondary eigenvectors, denoted by e2 at x and e2′  at ϕ(x), are perpendicular to

the fiber orientations. The local trajectories of the underlying fiber bundles are depicted by

the pairs of dashed curves, which shall not be interpreted as the fiber bundle boundaries.

Observe that the effect of the Jacobian matrix Jϕ on the transformation of the original

neighborhood can be parsed into three steps: (1) rotating the rectangle such that e1 and e2

coincide with e1′  and e2′ , respectively; (2) compressing the rectangle along e2′ , and (3)

shearing the rectangle along e1′ . In other words, by factoring out some appropriate rotation

matrix, the action of the remainder of Jϕ can be interpreted intuitively in the local reference

frame of the warped underlying fiber bundle.

It turns out that this kind of decomposition of the Jacobian matrix can be done in general for

fibrous structures, provided the fiber orientation information is available. In this paper, we

consider the particular scenario in which the fiber orientation is derived from DTI

measurements. Specifically, given the diffusion tensor D at x, its eigenvectors {ei}1≤i≤n,

ordered in the descending order of the corresponding eigenvalues, form the basis of a natural

local reference frame for the underlying fiber bundle; the rotation matrix that constitutes a

change of basis from this local reference frame to the laboratory frame, which we will

denote by Q, has ei as its ith column. Similarly, the eigenvectors ei′ 1 ≤ i ≤ n
 of the warped

diffusion tensor D′ at ϕ(x) form the basis of a natural local reference frame for the warped

fiber bundle; the change-of-basis matrix from this local reference frame to the laboratory

frame will be denoted as Q′. The appropriate rotation matrix that matches the local

reference frame of D to the one of D′ is then Q′ Q−1. Therefore, we can write the Jacobian

matrix as

Jϕ = Q′RQ′ − 1 Q′Q−1 , (1)

with R denotes the remainder of Jϕ after factoring out the rotation Q′ Q−1 and being viewed

in the local reference frame of D′. The following section describes the computation of R and

shows that the structure of the matrix makes it particularly amenable to intuitive description

of its action similar to the example given in Fig. 1.

2.3 Computation of the Residual Deformation and Its Structure

The key to computing R is in finding the tensor corresponding to the fiber bundle

configuration after warping. This is known as the tensor reorientation problem, the solution
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to which has been established by the seminal work of Alexander et al. [4]. The authors

proposed and validated a number of strategies for tensor reorientation, including the finite

strain (FS) strategy and the preservation of principal direction (PPD) strategy. We choose to

use the PPD strategy, summarized in Algorithm 1, because it preserves the connectivity of

the underlying fiber bundle, crucial to the fidelity of warping. As illustrated in Fig. 2, the

preservation of connectivity requires that the appropriate reorientation depends both on the

warping transformation and the fiber configuration before warping, as done in the PPD

strategy. In contrast, the FS strategy applies an identical reorientation to all tensors

regardless of their fiber configurations, which evidently can disrupt fiber connectivity and

thus represents only an approximation to PPD.

Given our choice of the reorientation strategy, the computation of the residual deformation

viewed in the local frame of the warped tensor can now be summarized in Algorithm 2,

which uses Equation (1) and the fact that Q′ is orthogonal, i.e., Q′−1 = Q′T. The structure of

the residual deformation is formally stated with Theorem 1.

Algorithm 1.

PPD strategy for tensor reorientation

1: compute e1′ :e1′ = Je1/ Je1
2:

compute e2′ :e2′ = n/ n , where n = Je2 − Je2
Te1′ e1′

3: compute e3′ :e3′ = e1′ × e2′

Algorithm 2.

Compute the residual deformation R at a point x

1: compute the Jacobian matrix J at x

2: compute the matrix Q = (e1, e2, e3) with {ei}1≤i≤3 being the eigenvectors of the diffusion tensor D at x ordered in
the descending order of the corresponding eigenvalues

3: compute the matrix Q′ = e1′ , e2′ , e3′  with ei′ 1 ≤ i ≤ 3 being derived from J and {ei}1≤i≤3 using the PPD

strategy

4: compute the matrix R = Q′TJQ

Theorem 1.The residual deformation R, computed usingAlgorithm 2, is an upper-triangular
matrix with positive diagonal entries.

Proof. First, we simplify and rewrite Equation (1) as

JQ = Q′R . (2)

Recall that, by defintion, Q = (e1, e2, e3). Hence we have JQ = (Je1, Je2, Je3). Here we use a

different formulation of the PPD strategy that was pointed out by Cao et al [5]. They

recognized that the PPD strategy, as described in Algorithm 1, is in fact equivalent to the

application of the Gram-Schmidt orthonormalization procedure, which produces an
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orthonormal basis from a non-orthogonal but linearly-independent basis. In this case, the

non-orthogonal but linearly-independent basis is composed of the vectors Je1, Je2, and Je3.

The orthonormal basis that the Gram-Schmidt procedure generates from this basis consists

of precisely the vectors e1′ , e2′ , and e3′ . The procedure is summarized in Algorithm 3; its

equivalence to Algorithm 1 can be readily verified.

Algorithm 3.

Gram-Schmidt procedure applied to Je1, Je2, and Je3

1: Initialize vi = Jei for 1 ≤ i ≤ 3

2: compute u1: u1 = vl

3: compute u2:u2 = v2 − proju1
v2, where projab = (aTb)a/(aTa)

4: compute u3:u3 = v3 − proju1
v3 − proju2

v3

5: compute e1′ , e2′ , and e3′ :e1′ = u1/ u1 , e2′ = u2/ u2 , and e3′ = u3/ u3

The equivalence of Algorithms 1 and 3 is important because the Gram-Schmidt procedure

can be further viewed as the QR-decomposition of matrices which uniquely decompose any

invertible matrix A into an orthogonal matrix QA and an upper triangular matrix RA with

positive diagonal entries such that A = QARA (See [6] for a proof). In particular, the column

vectors of the orthogonal matrix QA are computed from applying the Gram-Schmidt

procedure to the column vectors of the matrix A. In our case, JQ is the matrix to be

decomposed with the QR-decomposition procedure. The matrix is clearly invertible since J
is the Jacobian matrix of a diffeomorphic transformation and Q is an orthogonal matrix. By

definition, Q′, whose column vectors are e1′ , e2′ , and e3′ , is precisely the orthogonal matrix

computed from the QR-decomposition of JQ. From Equation (2) and the uniqueness of the

QR-decomposition, it is evident that R is the upper-triangluar matrix with positive diagonal

entries. □

An additional property of the proposed decomposition can be seen by rewriting Equation (1)

as

Jϕ = Q′Q−1 QRQ−1 ,

which reads that the effect of Jϕ can also be seen as first applying the same residual

deformation but viewed in the local reference frame of D, then applying the same rotation Q
′ Q−1. In other words, the order in which the residual deformation and the rotation are

applied does not change the output.

2.4 Intuitive Descriptors for White Matter Morphometry

To derive intuitive descriptors for white matter morphometry, we first observe that, in white

matter, the primary eigenvector, e1, has been shown to provide a good estimate to the

orientation of the underlying axon fiber bundle [7]. On the other hand, the secondary and the
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tertiary eigenvectors, e2 and e3, can not be determined consistently or can be of any two

orthogonal unit vectors lying in the plane perpendicular to e1, because the secondary and

tertiary eigenvalues are often very close to one another or can not be consistently

differentiated due to noise. In this scenario, the residual deformation will take the following

more general form:

R =
s1 VT

0 S23
,

where V is a 2-dimensional vector and S23 is a 2-by-2 matrix. It can be viewed as the QR-

decomposition with the basis formed by e1 and the subspace orthogonal to it, spanned by e2

and e3. Because det R = s1 × det(S23), the structure of R enables us to decompose the

determinant of Jacobian, det J = det R, into two components, s1 and det S23. s1 measures

local changes along the eigenvector e1, i.e., elongation or compression along the fiber

bundle; det S23, referred to as s23 hereafter, measures local changes orthogonal to e1, i.e.,

expansion or shrinkage in the cross-sectional area of the fiber bundle.

3 Application

To demonstrate the utility of the proposed analysis, we applied the analysis to study gender

difference of white matter in the aging population. The subjects used in the present study

were extracted from the IXI brain database (http://www.ixi.org.uk) developed jointly by

Imperial College of Science Technology & Medicine and University College London. The

IXI database consists of brain MR images from 550 normal subjects between the age of 20

and 80 years acquired at three sites and freely available for downloads. We selected a total of

35 subjects (16 males and 19 females) with the following criteria: 65 years or older, scanned

at the same site, and with available DTI data of sufficient quality. To spatially normalize the

data, we applied the approach described in [8] which simultaneously constructs a

population-specific DTI template from the subject data and normalizes the subjects to the

resulting template. The approach is based on high-dimensional tensor-based image

registration and has been shown to outperform scalar-based registration.

After normalization, we applied both the standard TBM and the proposed approach to the

Jacobian matrix fields computed from the spatial transformations mapping the subjects to

the template. The standard voxel-based statistical mapping on the whole-brain white matter

was then computed for the Jacobian determinant map, the maps of the two proposed

descriptors. The white matter region is defined as the voxels with fractional anisotropy

above 0.2. The voxels with significant differences between the gender groups were

determined after FDR-based multiple comparison correction at the significance level pFDR <

0.05.

The results are shown in Fig. 3, which clearly demonstrates that additional insights can be

gained with the proposed approach. The two signifcant clusters were identified with the

standard TBM approach, shown on slice 49 and 75 respectively. The cluster on the slice 75

co-localizes with one of the clusters of s1, suggesting that local volumetric change at the
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location can be attributed to local change along the fiber bundle. On the other hand, the

cluster on the slice 49 co-localizes with one of the clusters of s23, indicating that local

volumetric change at the location can be attributed to local change in the cross-sectional area

of the fiber bundle. Furthermore, additional clusters, such as the examples on the slices 82

and 88, were identified by s1 and s23. These group differences were otherwise not detected

by the standard TBM alone.

4 Discussion

In summary, we have described a new approach for TBM tailored specifically for examining

fibrous structures. The approach derives the information on fibrous structure configuration

from DTI data and combines it with the transformations computed from image registration

to elucidate shape and orientational changes specific to fibrous structures. The resulting

descriptors are highly intuitive and specific. We note that additional orientational descriptors

can also be determined from the rotation matrix Q′ Q−1, e.g., e1
Te1′  which measures the angle

between e1 and e1′ . Future works will examine the application of such orientational

descriptors and apply this new theorectical framework to study cardiac laminar structures.

Acknowledgments.

The authors gratefully acknowledge support of this work by the NIH via grants EB006266, NS045839, DA022897.

References

1. Freeborough PA, Fox NC: Modeling brain deformations in Alzheimer disease by fluid registration
of serial MR images. J. Comput. Assisted. Tomogr22 (1998)

2. Gee JC, Bajcsy RK: Elastic matching: continuum mechanical and probabilistic analysis. In: Brain
warpingAcademic Press, San Diego (1999)

3. Lepore N, Brun C, Chou YY, Chiang MC, Dutton RA, Hayashi KM, Luders E, Lopez OL,
Aizenstein HJ, Toga AW, Becker JT, Thompson PM: Generalized tensor-based morphometry of
HIV/AIDS using multivariate statistics on deformation tensors. IEEE TMI27(1) (12008)

4. Alexander DC, Pierpaoli C, Basser PJ, Gee JC: Spatial transformations of diffusion tensor magnetic
resonance images. IEEE TMI20(11) (2001)

5. Cao Y, Miller M, Mori S, Winslow RL, Younes L: Diffeomorphic maching of diffusion tensor
images. In: Proc. MMBIA (2006)

6. Gallier J: Geometric methods and applications, for computer science and engineering. In: Texts in
applied mathematics. Springer, New York (2000)

7. Pajevic S, Pierpaoli C: Color schemes to represent the orientation of anisotropic tissues from
diffusion tensor data: application to white matter fiber tract mapping in the human brain. MRM42
(1999)

8. Zhang H, Avants BB, Yushkevich PA, Woo JH, Wang S, McCluskey LF, Elman LB, Melhem ER,
Gee JC: High-dimensional spatial normalization of diffusion tensor images improves the detection
of white matter differences in amyotrophic lateral sclerosis. IEEE TMI26(11), 1585–1597 (2007)

Zhang et al. Page 7

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1.
The schematic illustrates the local behavior of warping some fibrous structure with the

transformation ϕ. See the main text in Section 2.2 for the details.
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Fig. 2.
Tensor reorientation strategies for recovering correct fiber configuration after warping with a

horizontal shear transformation. From left to right, the image before warping, the warped

image using the PPD strategy, the warped image using the FS strategy. Observe how the

original fiber connectivity, indicated with identically colored ellipses, is intact when PPD is

used but is severely disrupted when FS is used.
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Fig. 3.
Results of the voxel-based statistical mappings on the Jacobian determinant (det), s1 and s23.

See Sec. 3 for the details
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