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The temporal evolution of second and subsequent waves of
epidemics such as Covid-19 is investigated. Analytic
expressions for the peak time and asymptotic behaviours,
early doubling time, late half decay time, and a half-early
peak law, characterizing the dynamical evolution of number
of cases and fatalities, are derived, where the pandemic
evolution exhibiting multiple waves is described by the semi-
time SIR model. The asymmetry of the epidemic wave and
its exponential tail are affected by the initial conditions, a
feature that has no analogue in the all-time SIR model.
Our analysis reveals that the immunity is very strongly
increasing in several countries during the second Covid-19
wave. Wave-specific SIR parameters describing infection
and recovery rates we find to behave in a similar fashion.
Still, an apparently moderate change of their ratio can have
significant consequences. As we show, the probability of an
additional wave is however low in several countries due to
the fraction of immune inhabitants at the end of the second
wave, irrespective of the ongoing vaccination efforts. We
compare with alternate approaches and data available at the
time of submission. Most recent data serves to demonstrate
the successful forecast and high accuracy of the SIR model in
predicting the evolution of pandemic outbreaks as long
as the assumption underlying our analysis, an unchanged
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situation of the distribution of variants of concern and the fatality fraction, do not change dramatically

during a wave. With the rise of the α variant at the time of submission the second wave did not
terminate in some countries, giving rise to a superposition of waves that is not treated by the
present contribution.
publishing.org/journal/rsos
R.Soc.Open

Sci.8:211379
1. Introduction
Currently, many countries over the world have to cope with handling the subsequent (second, third…) wave
outbreaks of Covid-19 pandemic. The onset of a subsequent wave is most probably caused by a sudden
mutation of the virus resulting in an effective (about 40%) increase of the infection rate. Of high medical and
economic interest are reliable predictions on the duration, peak days and total amplitudes of both the number
of infections and the number of fatalities which are closely related to the maximum need for breathing
apparati inhospitals inordernot tooverburden themedical clinics capacities and toavoid fateful triagedecisions.

In the past reasonably accurate (within 50%) predictions on the first Covid-19 wave have been made
[1–4] adopting the Gaussian distribution for the daily rate of new cases and the corresponding
cumulative numbers (including both infections and fatalities) for many countries in the world with well-
monitored case rates. By modelling simultaneously both infection and fatality rates the dark number of
infections and the degree of herd immunity from the first wave has been determined in several countries
[5] by adopting a mortality rate of 0.5%, i.e. one out of 200 infected persons ultimately dies from Covid-
19. While the Gauss distribution can be justified both from the central limit theorem of statistics [1] and
for early times until the peak time from the susceptible-infectious-recovered/removed (SIR) epidemic
model [6–9], it is less accurate at late times of the wave evolution as compared to monitored data [10].

The SIR model [6,7] describes the time evolution of infectious diseases in human populations, and is
the simplest and most fundamental of the compartmental models and its variations. It had been solved
numerically using various approaches, including Monte Carlo methods, wavelets, fuzzy control, deep
learning etc. [11–31] and approximate solutions had been proposed [32–34]. Our recent work [35,36]
improved the analytical modelling of epidemics based on the well-established SIR epidemic model
invented nearly 100 years ago.

There are twovariants of implementing the SIRmodel, as described in detail previously [35,36]. The all-
time SIR model must use an initial condition that is compatible with the SIR equations of change, which
allows it to ‘predict’ both the past and present consistently. The semi-time SIR model can be used with
any initial condition, but makes predictions only about the future. Often the second variant is used
without noticing the inconsistency, while the inconsistency had already been noted by Kendall [6].
Assuming a constant ratio between infection and recovery rates, the all-time SIR model does predict a
single wave only, while the semi-time SIR model we are going to use in this work allows us to model
many waves with their own specific parameters, that capture only the future development in each case.

For both variants, the considered population of N≫ 1 persons is assigned to the three compartments
s (susceptible), i (infectious) or r (recovered/removed). Persons from the population may progress with
time between these compartments with given infection (a(t)) and recovery rates (μ(t)) which in general
vary differently with time. As demonstrated before [35], it is convenient to introduce with I(t) = i(t)/N,
S(t) = s(t)/N and R(t) = r(t)/N the infected, susceptible and recovered/removed fractions of persons
involved in the infection at time t, with the sum requirement I(t) + S(t) +R(t) = 1. Moreover, if t0,n
denotes starting time of the nth wave with the initial conditions I(t0,n) = η and S(t0.n) = 1− η, it is also
appropriate to introduce the dimensionless reduced time variable

tðtÞ ¼
ðt
t0,n

djaðjÞ, ð1:1Þ

accounting for arbitrary but given time-dependent infection rates a(t). With the introduction of the
reduced time (1.1) the following analysis includes and addresses the effects of non-pharmaceutical
interventions (NPIs). These affect the infection rate a(t) by lowering it to lower values providing
substantial differences to the simple linear relation τ = a0t of the reduced time as a function of the real
time t in case of an unchanged initial infection rate a0. This has been described and illustrated in
detail in §§2.2 and 2.3 of earlier work [10].

For the special and important case of a time-independent ratio K(t) = μ(t)/a(t) = k = const., analytical
results of the SIR model have been recently derived [35,36] both for the all-time and semi-time cases
appropriate for the first and subsequent wave evolution, respectively. For a growing epidemics outburst,
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exhibiting a peak at some timepast t0,n in the future, the constant ratio khas to be smaller than 1− 2η, where as

noted before η = I(t0,n) denotes the infected fraction at the starting time t0,n of the nth wave. The requirement
k < 1− 2η corresponds to the initial infection rate a0 at time t0,n being larger than the initial recovery rate μ0,
both in units of days−1. Alternatively, for initial ratios k > 1− 2η, the wave amplitude is purely decaying
from its maximum at t0,n without exhibiting a wave phenomenon [36]. Here, the time t0.n refers to the
observing time when the onset of a new nth wave is recognized by the monitoring of case rates.

It has been demonstrated [36] that the two parameters k and η determine the full evolution of each
subsequent wave in reduced time (1.1) including in particular the effects of NPIs which determine the
relation between reduced time and real time for non-stationary infection rates. Moreover, it is
important to emphasize that in the peak case where k < 1− 2η the SIR model not only provides a
causal connection between the early (before the peak) and late time development of the pandemic
wave, but that the parameters k and η obtained from fitting the early time evolution also determine
the final and maximum values of the cumulative and daily case rates.

Below, we will derive simple analytic expressions for all measurable amounts of cases and fatalities
during a pandemic evolution described by the semi-time SIR model, that share all relevant features with
the exact solution of the semi-time SIR model, including time and position of the peak of daily new
infections, as well as the asymptotic behaviours at small and large times. The expressions are so precise
that they can be used instead of a numerical solution of the SIR model. The advantage of an analytical
expression is obvious, as it allows us to quickly determine the SIR parameters from the measured data
well ahead of the peak time, and thus allows for predictions that serve as a prerequisite to make
decisions. We apply the approach to eight different countries from different continents. We begin by
summarizing the exact features of the semi-time SIR model, stating the approximants for the reliably
measurable quantities, and collect all the derivations of the new approximant in an appendix. The
occurrences of a clearly separated (in time) second wave in these countries provide very suitable data sets
to verify the forecasts of the SIR model which is one important motivation for this study here.

Throughout this work, we ignore the effect of vaccination campaigns on the temporal evolution which
we investigate elsewhere [37]. In that reference, it is demonstrated that the generalization to solutions with
vaccinations relies heavily on very accurate analytical solutions of the SIR model in order to interpolate
especially at small values of the ratio of vaccination to infection rates. It is precisely the purpose of this
study here to provide such accurate solutions of the SIR model. We furthermore assume an unchanged
situation of the distribution of variants of concern and the fatality fraction during a single wave.

In order for the interested reader to comprehend why our analysis is based on predictions made in
January 2021, we note that the original version of this manuscript had been received January 16, 2021 by
the Royal Society. It was passed over internally to Royal Society Open Science in April 2021. The original
forecast was based on data collected on January 11, 2021. For the purpose of this study, the original
forecast has not been revised using later data, but later data was added to compare with the original
forecast. The original preprint of this manuscript entitled ’Forecast made on January 11, 2021 for the
second Covid-19 wave based on the improved SIR model with a constant ratio of recovery to infection
rate’ is available since January 21, 2021 at preprints.org. The title had been modified as the forecast is
not a forecast anymore at the time of publication of this manuscript.
2. SIR-model results
2.1. Exact results
The exact solution of the SIR model with a constant ratio of the recovery to infection rate in the semi-time
case [36] (hereafter referred to as KS-SIR model) is given by

t ¼
ðJ
h

dy
nðyÞ ð2:1aÞ

and

nðyÞ ¼ ð1� yÞ½yþ k1þ k lnð1� yÞ�, ð2:1bÞ
with η = 1− e−ɛ, τ given by equation (1.1), and J = 1− S denoting the cumulative fraction of new cases.
Differentiating equation (2.1a) with respect to τ yields for the corresponding rate of new cases

jðtÞ ¼ dJðtÞ
dt

¼ ð1� JÞ½J þ k1þ k lnð1� JÞ� ¼ nðJÞ: ð2:2Þ

https://preprints.org
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As shown before [36] without explicit inversion of equation (2.1), equations (2.1) and (2.2) yield for the
final cumulative number fraction of infected persons J∞ = lim τ→∞ J(τ) and for the maximum rate of new
infections jmax occurring at J0 that

J1 ¼ 1þ kW0ðaÞ, a ¼ �ð1� hÞe�1=k

k
ð2:3Þ

J0 ¼ 1þ k
2
W�1ða0Þ, a0 ¼ 2a

e
ð2:4Þ

jmax ¼ nðJ0Þ ¼ ð1� J0Þð1� J0 � kÞ ð2:5Þ

¼ k2

4
�½1þW�1ða0Þ�2 � 1

�
, ð2:6Þ

in terms of the principal (W0) and non-principal (W−1) solutions of Lambert’s equation [35], the well-
known Lambert’s functions. The asymmetry of j(τ) about its peak time is encoded in a difference
between J0 and J∞/2. We emphasize again that the integral quantities J∞ and J0 refer to the pandemic
evolution in reduced time so it includes the effects of NPIs which determine the relation between real
and reduced time.
n
Sci.8:211379
2.2. Constrained second-order polynomial approximation
We approximately invert the solution (2.1) by using the constrained Taylor-expansions of the reciprocal
integrand

nðyÞ ≃ jcðyÞ ¼
X2
i¼0

ciðy� hÞi

¼ c0 þ c1ðy� hÞ þ c2ðy� hÞ2
ð2:7Þ

and

nðyÞ ≃ jdðyÞ ¼
X2
i¼1

diðJ1 � yÞi

¼ d1ðJ1 � yÞ þ d2ðJ1 � yÞ2
ð2:8Þ

about yc = η and yd = J∞ up to second order, respectively. Here c0, c1 and d1 are the respectively positively
valued Taylor expansion coefficients given by

c0 ¼ ð1� hÞh ð2:9Þ
c1 ¼ 1� k � 2h ð2:10Þ

and d1 ¼ J1 � ð1� kÞ: ð2:11Þ
Hereby, constrained expansion refers to choosing the second-order expansion coefficients c2 and d2 such
that the respective expansion evaluated at y = J0 yields the maximum value of the daily case rate, i.e.

jcðy ¼ J0Þ ¼ jdðy ¼ J0Þ ¼ jmax, ð2:12Þ

with jmax from equation (2.6). The requirement (2.12) then readily provides

c2 ¼ jmax � c0 � c1ðJ0 � hÞ
ðJ0 � hÞ2 ð2:13Þ

and

d2 ¼ jmax � d1ðJ1 � J0Þ
ðJ1 � J0Þ2

: ð2:14Þ

While c2 is negative for all k < 1− 2η, the coefficient d2 may have either sign. It is important to realize that
all quantities (2.3)–(2.6) and coefficients (2.9)–(2.11) as well as (2.13) and (2.14) are solely determined by
the two basic KS-SIR model parameters k and η.
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According to equations (2.7) and (2.8), we have thus constructed the approximation for the daily rate

j(J ) as a function of the cumulative number

jðJÞ ≃ c0 þ c1ðJ � hÞ þ c2ðJ � hÞ2 for J � J0
d1ðJ1 � JÞ þ d2ðJ1 � JÞ2 for J � J0,

(
ð2:15Þ

which is continuous at J = J0 where j(J0) = jmax attains its peak value. As shown in the following by
demanding that our approximation (2.15) attains the exact maximum value at J = J0 and a vanishing
final value at J = J∞ we obtain a very high agreement between the approximated analytical and the
exact numerical pandemic evolution as a function of the reduced time τ.

As we show next, inserting the approximation (2.15) then allows the analytical inversion of the
solution (2.1) providing J(τ) as a function of the reduced time τ which then can be used either in
equation (2.15) or equation (2.2) to infer also the rate j(τ) as a function of reduced time. The remaining
SIR quantities are then obtained from J(τ) as well via S(τ) = 1− J(τ), I(τ) = J(τ) + kɛ + kln[1− J(τ)] and
R(τ) = 1− S(τ)− I(τ) =−k[ɛ + ln(1− J(τ))].

2.3. Cumulative number and rate by exact inversion of the approximant
While we have expressed τ in terms of J above, for all practical purposes one is interested in the reverse
relationship, the time τ-dependent behaviour of J and also j. With the approximations (2.7) and (2.8) we
obtain for the solution (2.1)

t ≃
Ð J
h

dy
jcðyÞ for J � J0Ð J0

h
dy
jcðyÞ þ

Ð J
J0

dy
jdðyÞ for J � J0:

8<
: ð2:16Þ

Introducing the peak time scale

tm ¼
ðJ0
h

dy
jcðyÞ , ð2:17Þ

corresponding to J = J0 we may write equation (2.16) as

t ≃
tm � Ð J0J dy

jcðyÞ for t � tm

tm þ Ð JJ0 dy
jdðyÞ for t � tm

8<
: ð2:18Þ

In appendix A, the integrals appearing in equations (2.17) and (2.18) are calculated leading to

JðtÞ ≃
hþ J0�h

1þ
ffiffiffiffiffiffi
jmax
c0

q
sinh½c3 ðtm�t�

sinhðc3tÞ

for t � tm

J1 � J1�J0
jmax

d1ðJ1�J0Þ½e
d1 ðt�tmÞ�1� þ 1

for t � tm,

8>><
>>: ð2:19Þ

with the dimensionless peak time

tm ¼ 1
c3
artanh

2c3
c1 þ ð2c0=ðJ0 � hÞÞ , ð2:20Þ

and the abbreviation

c3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1=2Þ2 � c0c2

q
: ð2:21Þ

Note that equation (2.19) obviously exhibits the correct extremal behaviours, J(0) = η, J(τm) = J0 and limτ→∞

J(τ) = J∞.
Inserting the cumulative number J(τ) from equation (2.19) into equation (2.15), or alternatively, from

dJ/dτ, we obtain for the time dependence of the corresponding reduced rate (2.15)

jðtÞ
jmax

¼
sinhðc3tmÞ

sinhðc3tÞþ
ffiffiffiffiffiffiffiffiffiffiffi
jmax=c0

p
sinh½c3ðtm�tÞ�

� �2

for t � tm

ed1 ðt�tmÞ

(1þð jmax=d1ðJ1� J0ÞÞ[ed1ðt�tmÞ�1])2
for t � tm:

8><
>: ð2:22Þ

The solutions (2.22) correctly reduce to jmax for τ = τm. Moreover, j(0) = c0 = η(1− η) and lim τ→∞j(τ) = 0 are
obviously correctly captured. Details of the calculations leading to equation (2.22) are also collected in
appendix A. The relative errors of the approximants are reported in appendix C.
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2.4. Early and late reduced time evolution

For very late reduced time τ≫ τm the rate j(τ), second case in equation (2.22), approaches the decreasing
exponential function in reduced time

jðt � tmÞ ≃ d21ðJ1 � J0Þ2
jmax

e�d1ðt�tmÞ

¼ ½J1 � ð1� kÞ�2ðJ1 � j0Þ2
ð1� J0Þð1� k � J0Þ e�½J1�ð1�kÞ�ðt�tmÞ,

ð2:23Þ

with the decay half-reduced time [38]

t1=2 ¼ ln 2
J1 � ð1� kÞ �

0:693
J1 � ð1� kÞ , ð2:24Þ

defined by j(τ + τ1/2) = j(τ)/2. Similarly, for very early reduced time τ≪ τm, provided such a regime exists,
as its pronounced appearance depends on the values for η and k, the rate j(τ), first case in equation (2.22),
is an increasing exponential function in reduced time with the doubling time

t2 ¼ ln
ffiffiffi
2

p

c3
, ð2:25Þ

defined by j(τ + τ2) = 2j(τ).

2.5. Half-early-peak law
The early differential rate exhibits a very interesting feature referred to here as the half-early-peak law.
According to equation (2.22), the rate at half of the peak time j1/2 = j(τm/2) is given by

j1=2
jmax

¼ 4c0 cosh2ðc3tm=2Þ
ð ffiffiffiffi

c0
p þ ffiffiffiffiffiffiffiffiffi

jmax
p Þ2 ¼ 4jð0Þ cosh2ðc3tm=2Þ

ð ffiffiffiffiffiffiffiffiffi
jð0Þp þ ffiffiffiffiffiffiffiffiffi

jmax
p Þ2 : ð2:26Þ

The corresponding cumulative half-early-peak law follows from the first case of equation (2.19) as

J1=2 ¼ J
tm
2

� �
¼ hþ J0 � h

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmax=c0

p ð2:27Þ

or

1þ
ffiffiffiffiffiffiffiffiffi
jmax

c0

s
¼ J0 � h

J1=2 � h
: ð2:28Þ

With this equation the half-early-peak law (2.26) reads

j1=2
jmax

¼ 2ðJ1=2 � hÞ coshðc3tm=2Þ
J0 � h

	 
2

¼ 2½J1=2 � Jð0Þ� coshðc3tm=2Þ
J0 � Jð0Þ

	 
2
:

ð2:29Þ

In case of temporal wave distributions with an apparent peak the half-early-peak law (2.29) provides
an important test for the derived parameters of the wave as it relates directly the monitored quantities
J(0) = J(τ = 0), J0 = J(τm), j1/2, jmax and c3τm/2, where the latter can also be written in terms of the ratio
between peak time τm and early doubling time τ2 as c3tm=2 ¼ lnð21=4Þtm=t2 � 1

6 tm=t2.

2.6. Reintroducing dimensions: real time evolution
The rates (2.22) and the cumulative number (2.19) refer to the relative time τ defined in equation (1.1),
whereas the monitored data refer to real time t. We therefore adopt, well justified for the initial phase of
any new emergent wave, a constant infection rate a(t) = a0 throughout so that τ = a0(t− t0), where for ease
of exposition we drop the index n and simply write t0 = t0,n. We then obtain in real time for the peak time

tm ¼ t0 þ tm
a0

: ð2:30Þ
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Likewise, the pandemic time evolutions in real time follow readily from

JðtÞ ¼ Jðt ¼ a0ðt� t0ÞÞ
and _JðtÞ ¼ a0 jðt ¼ a0ðt� t0ÞÞ,

ð2:31Þ

and are written down in appendix B. Likewise, the doubling time at early times t≪ tm and the decay half-
time at late times t≫ tm are given by

t1=2 ¼
t1=2
a0

� 0:693
a0½J1 � ð1� kÞ�

and t2 ¼ t2
a0

¼ ln
ffiffiffi
2

p

a0c3
� 0:347

a0c3

ð2:32Þ

whereas the half-early-peak law in real time becomes

_J1=2
_Jmax

¼ 2ðJ1=2 � Jðt0ÞÞ cosh [c3a0ðtm � t0Þ=2]
J0 � Jðt0Þ

	 
2
: ð2:33Þ

This will be made more precise below, as we apply the semi-time SIR model to two waves, each with its
own onset.
:211379
3. Applications
The above derivations resulted in explicit expressions for the dimensionless fraction J of infected persons
and the dimensionless rate of infections j, both in terms of reduced time τ, the inverse reproduction
number k and the initial condition J(0) = η. Measured, reliable data is usually available for the
total number of deceased persons D(t) as function of time t in units of days, and the total population
N can be considered known. Since the number of deaths follows the number of infections with a
delay of about 10 days [2], we can use D(t) to make predictions about the number of infected persons
at t− 10 days.

To uniquely determine the model parameters from the data, which allows us then to draw
conclusions about the future time-evolution of measurable quantities, we need to assume a fixed
relationship between real and reduced time. To this end, we adopt for the time during each of the
pandemic waves a constant infection rate a0 so that t ¼ Ð tt0 djaðjÞ ¼ a0ðt� t0Þ where t0 is the real time
marking the beginning of the nth wave, and τ the reduced time that vanishes at the beginning of the
nth wave.

With the known fatality ratio of f≈ 0.005, the cumulative number of infected persons (including
those that have not been identified) is fD(t)/N. More precisely, J(τ) = f D(t)/N during the first
wave. Because the cumulative number accumulates during subsequent waves, it is more convenient to
model the measured daily rate _JðtÞ of newly infected persons instead of the cumulative numbers.
More precisely, one has jðtÞ ¼ f _DðtÞ=a0N, and it is this dimensionless j(τ) which we have expressed
in terms of k and η above, while η is contained in the initial condition, jð0Þ ¼ hð1� hÞ ¼ f _Dðt0Þ=a0N.
For each wave, there are thus three parameters to be determined, k, η and a0, or alternatively, k, t0
and a0. In practice, as the measured data is fluctuating considerably, especially at the beginning of a
pandemic wave, it turns out to be even more convenient to work with four unknowns, k, t0, η, and a0,
and to determine these parameters upon requiring that the absolute deviation between measured
and predicted j(τ) achieves a global minimum for each wave separately. Start values for the
global minimization are readily available from our above consideration about the early time
evolution, the position of the maximum in real time, tm = t0 + a0τm, the value of the dimensionless
J(τm) = J0 = fD(t0 + τm/a0)/N, where τm and J0 are known in terms of k and η. With the fitted parameters
at hand the model-predicted cumulative fraction of infected persons in real time t is
JðtÞ ¼ Ð tt0 _JðjÞdj ¼ a0

Ð t
t0
j½a0ðt0 � t0Þ�dt0 ¼

Ð t
0 jðt0Þdt0 and the model-predicted number of deceased

persons is thus D(t) = J(t)fN.
For the sake of clarity, because the number of infections is f−1 times the number of fatalities, and

because the number of fatalities is more reliably reported than the true number of infections, we do
not add any delay time when presenting figures, so that the time of outbreak of the pandemic can be
considered 10 days earlier than t0. Similarly, the peak time of daily new infections is roughly 10 days
earlier than the tabulated tm, which is the peak time of daily fatalities.
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In the following, we determine the two sets of four SIR parameters by fitting the early time evolution

before the peaks of first and second waves with the monitored early daily case rates j(t) during the
waves. The obtained numbers are tabulated in table 1 for selected countries, while the procedure has
been applied to more than 100 countries during the course of this study (supplementary website). The
measured data are compared with the SIR predictions in figures 1 and 2. With the four coefficients c1,
c2, t0 and a0 determined we then can infer

(1) the values of the parameters η and k characterizing the waves,
(2) the final number of infected persons NJ∞, the maximum daily rate jmax at the peak time τm according

to equations (2.3), (2.6) and (2.17) and
(3) the late time evolution of the second wave after its peak from equations (2.19) and (2.31)

determined by the coefficients d1 and d2 given uniquely by equations (2.11) and (2.14) in terms of
k, J∞, c0, c1 and c2, which in turn are given by equations (2.9), (2.10) and (2.13), i.e. finally, in
terms of k, the initial condition ɛ, and reduced time τ.

All these results are collected in table 1. In the last column of this table, we have added data that
became available in the meantime. Deviations between the early predictions from 11 January 2021
and the reported numbers for the second wave are about 10%. We regard this as a convincing
proof that the homogeneous SIR model equations successfully and highly accurately (within 10%)
forecast the evolution and outcome of Covid-19 pandemic events. At the same time, the model is
not able to capture the onset of a (n + 1)th wave, if it occurs simultaneously with the nth wave.
This is evident from the data for Italy shown in figure 1. At the time of submission of the original
manuscript, the α variant started to rise in Italy and shortly afterwards gave rise to a third wave.
This situation is not captured by the current approach, as it requires a clear time separation
between waves. Still, we estimated the second wave to terminate when the new variant started to
dominate (figure 3).

Despite the differences in the response of authorities to the emerging pandemic, length and
completeness of lockdowns etc. there are very comparable patterns for all countries. Both the inverse
reproduction number k and the infection rates a0 have significantly dropped during the second wave
when compared with the first wave. The decreasing k = μ0/a0 tends to increase the peak height, while
the decreasing a0 tends to lower it. The reduction of a0 comes as a surprise to us, but a decrease of a0
is in agreement with the observed broadening of the second wave.

One likely explanation may be that the early phases of the second waves in all considered
countries occurred under light lockdown conditions whereas no lockdown measures have been
taken during the initial phases of the first wave. Moreover, the infection rates a0 of the second
wave have dropped as a result of the overall, increasingly cautious, self-protective behaviour of
the population.

While the second peak times are comparable in Italy, Switzerland, France and Russia, they are
delayed in Canada, Germany and Great Britain. On the positive side, according to our analysis, the
peak time tm of the second wave has passed already in France, Belgium, Italy, Germany, Switzerland
and Russia, and more than half of the population in Great Britain will have been infected already
after the second wave, thus getting closer to herd immunity. In general, the second wave increased
the immunity more significantly than the first wave, as is obvious from the sharp rise of J∞ between
first and second wave (table 1). The last column in this table contains the SIR predictions for the
number of fatalities at the end of the second wave. While countries like Germany were hit by a
moderately low number of fatalities during the first wave, the number of fatalities will be increasing
by a factor of about 7 during the second wave, despite rigorous interventions. Still, the fraction of
seriously affected population remains slightly below in this country compared with countries like
Switzerland, that did not install a similarly rigorous scenario with hard lockdowns. The measured
data is captured by the semi-time SIR model by a relative error of about 5–10%. At present, the
situation in Great Britain is obviously the darkest for these sets of data. The trend is most likely
caused by the recent, more transmittable variant (SARS-CoV-2 VUI 202012/01) of the virus. As of
today (13 January 2021) the peak time in the death rate in Great Britain is still ahead.

Within the semi-time SIR model, the exponential behaviour of the differential rate of newly infected
persons j(τ) is characterized by the early doubling time τ2 and the late half decay times τ1/2, which we
have included in table 1. Their analytic expressions were given by equations (2.25) and (2.24). It seems
that τ1/2 is for all cases reported in our table approximately equal to the doubling time τ2. To see if
this is a generic feature of the SIR model, one has to just inspect the ratio τ2/τ1/2 = (J∞− 1 + k)/2c3,
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Figure 1. Number of infected persons, estimated from the reported fatality data for four countries (black), assuming a fatality rate of
f = 0.005, along with predictions resulting from the semi-time SIR model (green). The SIR parameters and related quantities are
listed in table 1. Shown are both the reported data known at the time of original submission, as well as data collected afterwards.
The datasets are separated by a red vertical line. (a) Daily new infected persons per 100 000 inhabitants (black), together with the
SIR prediction for the second wave (green). (b) Cumulated fraction of infected persons, and (c) weekly new infected persons per
100 000 inhabitants. Shown here is the analysis of data for Italy, Germany, Switzerland and Great Britain. For additional countries,
see figure 2.
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using the above explicit expressions for jmax and c3. For k close to unity, and small η≪ 1, the ratio
evaluates to

lim
h!0

t2
t1=2

¼ 1þ 2k
3

ð3:1Þ

in agreement with table (1), as k is sufficiently close to unity. To stress an important aspect, and because
we can take the opportunity to compare with related recent work [35], the ratio over the whole k range is
shown in figure 4 for various finite η. This ratio reflects the asymmetry of the pandemic wave, as J0− J∞/2
does. It is important to notice here that the initial condition affects not only the asymmetry of the wave
but the asymptotic behaviour qualitatively. The corresponding result for the all-time SIR model is shown
for comparison. It is however recovered by the semi-time SIR for sufficiently small η. The appearance and
relevance of power law and Gaussian rather than exponential tails, that are not predicted by the SIR
model with time-independent k, had been discussed in several recent works [1–4,40]. Early outbreak
estimates of k and their uncertainty have been discussed in detail [41].
4. Summary and conclusion
We have derived simple analytic expressions for all measurable amounts of cases and fatalities during a
pandemic evolution described by the semi-time SIR model, that share all relevant features with the exact
solution of the semi-time SIR model, including time and position of the peak of daily new infections, as
well as the asymptotic behaviours at small and large times. We show, in particular, how the asymmetry of
the epidemic wave and its exponential tails are affected by the initial conditions; a feature that has no
analogue in the all-time SIR model. The expressions are so precise that they can be used instead of a
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Figure 2. Same as figure 1 for additional countries: France, Belgium, Canada and Russia.
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Figure 3. Fraction of sequences (not cases) that fall into the variant groups 20A.EU1, 20A.EU2, 20I.Alpha.V1, 20H.Beta.V2,
20J.Gamma.V3 and 21A.Delta [39]. Note that all data are not necessarily representative. Sometimes some samples are more
likely to be sequenced than others [39]. Data shown for (a) ITA and (b) FRA (time frame: 1 January 2020 to 9 August 2021).
The vertical red line marks the date (16 January 2021) at which this manuscript had originally been submitted. This date
happens to roughly coincide with the time of rising relevance of the α variant, while the forecast for the second wave done
in the present manuscript assumes an unaltered majority of 20A variants.
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numerical solution of the SIR model. The advantage of an analytical expression is obvious, as it
allows us to quickly determine the SIR parameters from the measured data well ahead of the peak
time, and thus allows for predictions that serve as a prerequisite to make decisions. We applied the
approach to second waves in eight different countries from different continents. We summarized the
exact features of the semi-time SIR model, stated the approximants for the reliably measurable
quantities, and collected all the derivations of the new approximant in an appendix. Our analysis
reveals that the immunity is very strongly increasing during the second wave, while it was still at a
very moderate level of a few per cent in several countries at the end of the first wave. The wave-
specific SIR parameters μ0 and a0 describing the infection and recovery rates we find to behave in a
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similar fashion, while their ratio k = μ0/a0 was decreasing only by about 5% for the countries mentioned
in table 1 and figures 1 and 2. Still, an apparently moderate change of k can have significant consequences
for the relevant numbers like the final number of infected or deceased population, captured by J∞. For k
close to unity and small η≪ 1, our results imply jmax � 1

2 ð1� kÞ2 and J∞≈ 2(1− k), cf. figure 5. This
implies a typical duration of the differential fraction of newly infected persons, w≈ J∞/a0jmax ≈ 4/
a0(1− k), that decreases dramatically with decreasing k, but increases with decreasing a0. It is this
qualitative feature of the SIR model that leads to its counterintuitive parameters we reveal having
analyzed the two pandemic waves, and that has to be taken into account when speculating about
possible additional waves. As we have shown, the probability for an additional wave exceeding the
peak fatality rate of previous waves is however low in several countries due to the fraction of immune
inhabitants at the end of the second wave (second and third for cases where both waves are strongly
overlapping), irrespective of the currently ongoing vaccination efforts.

The SIR-modelling is founded on a mean-field approach where the injection and recovery rates are
averaged over a large number of persons in the considered countries. Therefore, the well-established
influence of pre-symptomatic and asymptomatic disease carriers on the spread of the Covid-19 is
washed-out and interwoven with the far more infected persons with less intense pathegonic
transmissions. For this reason, our results should only be applied to populations with large enough sizes.

Making use of data that became available during review time allowed us to test the original forecast.
The accuracy of our early predictions on the second wave temporal evolution is convincingly good. We
predicted the fraction of infected population at the end of the second wave (figure 1). E.g. for ITA we
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predicted 0.29 while the true value is 0.33 (13% off), for DEU we predicted 0.20 compared with 0.22 (10%
off), for CHE 0.24 versus 0.26 (8% off) and for GBR 0.41 versus 0.40 (2.5% off). This is an outstanding
agreement between predictions and measurements given all the parameters of the problem. This
comparison proves the high accuracy of the SIR model in predicting the evolution of pandemic
outbreaks.

At first sight, it seems that we were unsuccessful in forecasting possible further Covid-19 waves in
some countries. However, it is too early for such a statement since so far the appearance of such
additional waves did not show up clearly in the very reliable monitored death rates in six out of the
eight considered countries (with the exception of Russia and Canada) but only in the monitored rate
of new infections which are known to be highly incomplete and therefore less trustworthy. Secondly,
our analysis of the second waves has been based on the monitored death rates adopting a mortality
rate of 1/200 with respect to the rate of new infections, and it has assumed a clear separation of
second and potential third wave in time. The model could be extended to consider the occurrence
of simultaneous waves, non-local effects, multiple seeds, spreaders or outbreaks to the expense of
additional parameters, with the help of numerical simulation [42–56].
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Appendix A. Calculation of integrals
Equation (2.18) can be written as

t� tm ≃ �Ic for t � tm
Id for t � tm,

�
ðA 1Þ

in terms of the three integrals τm, Ic and Id,

tm ¼
ðJ0
h

dy
jcðyÞ ¼

ðJ0
h

dy

c0 þ c1ðy� hÞ þ c2ðy� hÞ2

¼
ðJ0�h

0

dx
c0 þ c1xþ c2x2

,

ðA 2Þ

Ic ¼
ðJ0
J

dy
jcðyÞ ¼

ðJ0�h

J�h

dx
c0 þ c1xþ c2x2

Id ¼
ðJ
J0

dy
jdðyÞ ¼

ðJ0
J

dy

d1ðJ1 � yÞ þ d2ðJ1 � yÞ2
ðA 3Þ

¼
ðJ1�J

J1�J0

dx
xðd1 þ d2xÞ ¼

ð1=ðJ1�JÞ

1=ðJ1�J0Þ

dw
d2 þ d1w

, ðA 4Þ

where in the last step we substituted x = 1/w. The integral (A4) then becomes for d1≠ 0

Id ¼ 1
d1

ln
1þ ðd1=d2ðJ1 � JÞÞ
1þ ðd1=d2ðJ1 � J0ÞÞ : ðA 5Þ

As the coefficient c2 < 0 is negative the expression

2c3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 � 4c0c2

q
. 0, ðA 6Þ
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is always real-valued and positive. Consequently, the two integrals (A 2) and (A 3) are given by

tm ¼ 1
2c3

ln
c2xþ ððc1 � 2c3Þ=2Þ
c2xþ ððc1 þ 2c3Þ=2Þ

	 
J0�h

0

¼ 1
2c3

ln
1� ð2c3=ðc1 þ 2c2xÞÞ
1þ ð2c3=ðc1 þ 2c2xÞÞ

	 
J0�h

0

¼ � 1
c3

artanh
2c3

c1 þ 2c2x

	 
J0�h

0

¼ 1
c3

artanh
2c3
c1

� artanh
2c3

c1 þ 2c2ðJ0 � hÞ
	 


¼ 1
c3

artanh
4c2c3ðJ0 � hÞ

c21 � 4c23 þ 2c1c2ðJ0 � hÞ
	 


¼ 1
c3
artanh

2c3
c1 þ ð2c0=ðJ0 � hÞÞ

ðA 7Þ

and

Ic ¼ 1
2c3

ln
c2xþ ððc1 � 2c3Þ=2Þ
c2xþ ððc1 þ 2c3Þ=2Þ

	 
J0�h

J�h

¼ 1
c3

artanh
2c3

c1 þ 2c2x

	 
J�h

J0�h

¼ 1
c3
artanh

4c2c3ðJ0 � JÞ
c21 � 4c23 þ 2c1c2b1 þ 4c22b2

¼ 1
c3
artanh

2c3ðJ0 � JÞ
2c0 þ c1b1 þ 2c2b2

,

ðA 8Þ

where in both calculations we made use of equation (A 6) in the last step. To make the expression (A8)
more readable, we used the abbreviations β1 = J0 + J− 2η and β2 = (J0− η)(J− η). As an aside, we note that
for J = η the last formula (A 8) correctly reduces to equation (A 7).

A.1. Early reduced times τ≤ τm
Collecting terms in equation (A 1), we obtain for early reduced times τ≤ τm with the abbreviation X =
c3(τm − τ) as well as

Y ¼ J � h, Y0 ¼ J0 � h ðA 9Þ
and

TðtÞ ¼ � 1
2c3

tanhðXÞ, ðA 10Þ
the linear relation

Y� Y0 ¼ ½2c0 þ c1ðYþ Y0Þ þ 2c2YY0�T
¼ ½2c0 þ c1Y0 þ ðc1 þ 2c2Y0ÞY�T:

ðA 11Þ

Inserting equation (2.13) for c2, we find

c1 þ 2c2Y0 ¼ 2jmax � ð2c0 þ c1Y0Þ
Y0

, ðA 12Þ

simplifying equation (A 11) to

Y� Y0 ¼ ð2c0 þ c1Y0Þ 1� Y
Y0

� �
þ 2jmaxY

Y0

	 

T: ðA 13Þ

From equations (A 10) and (A 7), we identify

Tð0Þ ¼ Tðt ¼ 0Þ ¼ � Y0

2c0 þ c1Y0
, ðA 14Þ

so that equation (A 13) becomes

2jmaxY
Y0ðY� Y0Þ ¼

1
T
� 1
Tð0Þ , ðA 15Þ
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and equation (A 15) is solved by

YðTÞ ¼ Y0

1� ðA=ðð1=TÞ � ð1=Tð0ÞÞÞÞ ¼
Y0

1þ ðATð0ÞT=ðT � Tð0ÞÞÞ , ðA 16Þ

with

A ¼ 2jmax

Y0
: ðA 17Þ

Using equation (A 10) then provides

1
T
� 1
Tð0Þ ¼ �2c3½cothðXÞ þ cothðc3tmÞ�

¼ �2c3
sinhðc3tÞ

sinhðXÞ sinhðc3tmÞ :
ðA 18Þ

Consequently, equation (A 16) reduces to

Yðt � tmÞ ¼ Y0

1þ ðA=2c3ÞðsinhðXÞ sinhðc3tmÞ=sinhðc3tÞÞ

¼ Y0

1þ ð jmax=Y0c3ÞðsinhðXÞ sinhðc3tmÞ=sinhðc3tÞÞ :
ðA 19Þ

We next offer two different routes A and B to come up with equivalent, but formally very different
expressions for both Y(τ≤ τm) and J(τ≤ τm). Route (A): Using τm from equation (A 7), we find

sinhðc3tmÞ ¼ tanhðc3tmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tanh2ðc3tmÞ

q

¼ c3Y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 þ c0c1Y0 þ c0c2Y2

0

q

¼ c3Y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0½c0 þ c1Y0 þ c2Y2

0�
q :

ðA 20Þ

According to the first equation (2.15)

jmax ¼ jðJ0Þ ¼ c0 þ c1Y0 þ c2Y2
0 ðA 21Þ

so that equation (A 20) becomes

sinh (c3tm) ¼ c3Y0ffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 jmax

p , ðA 22Þ

implying for equation (A 19)

Yðt � tmÞ ¼ Y0

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmax=c0

p ðsinhðXÞ=sinhðc3tÞÞ
ðA 23Þ

and hence

Jðt � tmÞ ¼ hþ J0 � h

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmax

c0

sinhðXÞ
sinhðc3tÞ

s
,

ðA 24Þ

confirming the first case in equation (2.19). For τ = τm, this solution correctly reduces to J0, whereas
for τ = 0 it correctly reduces to η.

Route (B): To derive alternative expressions, we start from equation (A 19) and note that equation
(A 7) provides

tanhðc3tmÞ ¼ 2c3Y0

2c0 þ c1Y0
, ðA 25Þ
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so that

coshðc3tmÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tanh2ðc3tmÞ

q ¼ 2c0 þ c1Y0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 jmax

p

and sinhðc3tmÞ ¼ tanhðc3tmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tanh2ðc3tmÞ

q ¼ c3Y0ffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 jmax

p :

9>>>>>>=
>>>>>>;

ðA 26Þ

The latter two equations can be combined to yield

jmax

c3Y0
¼ 1þ ðc1Y0=2c0Þ

sinhðc3tmÞ coshðc3tmÞ : ðA 27Þ

Inserting equation (A27) into equation (A19) leads to the alternative expression for Y,

Yðt � tmÞ ¼ Y0

1þ ð1þ ðc1Y0=2c0ÞÞðsinhðc3ðtm � tÞÞ=coshðc3tmÞ sinhðc3tÞÞ

¼ Y0

1þ ð1þ ðc1Y0=2c0ÞÞ½tanhðc3tmÞ cothðc3tÞ � 1�

¼ Y0

ðc3Y0=c0Þ cothðc3tÞ � ðc1Y0=2c0Þ ¼
c0

c3 cothðc3tÞ � ðc1=2Þ
¼ c0

c3 cothðc3tÞ � ðc1=2Þ

¼ c0ð1� e�2c3tÞ
c3 � ðc1=2Þ þ ðc3 þ ðc1=2ÞÞe�2c3t

,

ðA 28Þ
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where we used sinh[c3(τm− τ)] = sinh(c3τm) cosh(c3τ)− cosh(c3τm) sinh(c3τ) and equation (A 25). Consequently,

Jðt � tmÞ ¼ hþ hð1� hÞ
c3 cothðc3tÞ � ðc1=2Þ : ðA 29Þ

Thisvariant isparticularlyuseful to evaluate the limitingcasek= 0.Herewehave c1 = 1− 2η, c2 =−1and c3 = 1/2,
so that c3− (c1/2) = η and c3 + (c1/2) = 1− η. In this case, equation (A 29) simplifies to

Jðt � tmÞ ¼ h

hþ ð1� hÞe�t
ðk ¼ 0Þ: ðA 30Þ

Taking the derivative of equation (A 24), our result from route A, we obtain the corresponding rate

jðt � tmÞ ¼ dJðt � tmÞ
dt

¼ Y0c3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmax=c0

p
½1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jmax=c0
p ðsinhðXÞ=sinhðc3tÞÞ�2

� sinhðc3tÞ coshðXÞ þ coshðc3tÞ sinhðXÞ
sinh2ðc3tÞ

¼ Y0c3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmax=c0

p
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jmax=c0
p ðsinhðXÞ=sinhðc3tÞÞ

� 2 sinhðc3tmÞsinh2ðc3tÞ

¼ jmax
sinhðc3tmÞ

sinhðc3tÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmax=c0

p
sinhðXÞ

 !2

,

ðA 31Þ
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where we used equation (A 22) and the earlier introduced abbreviation X = c3(τm − τ). The same result is

obtained if we insert J(τ) from equation (2.19) into (2.15). This expression (A 31) confirms the first case in
equation (2.22). Using instead equation (A 29) obtained in route B, equation (A 31) can alternatively be
written as

jðt � tmÞ ¼ 4c0c23
½c1 sinhðc3tÞ � 2c3 coshðc3tÞ�2

ðA 32Þ
ng.org/journal/rsos
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A.2. Late reduced times τ≥ τm
Likewise, for large reduced times τ≥ τm we obtain for equation (2.1)

1þ d1
d2ðJ1 � J0Þ

	 

ed1ðt�tmÞ � 1 ¼ d1

d2ðJ1 � JÞ , ðA 33Þ

yielding

Jðt � tmÞ ¼ J1 � J1 � J0
1þ ðd2ðJ1 � J0Þ=d1Þð Þ ed1ðt�tmÞ � ðd2ðJ1 � J0Þ=d1Þ : ðA 34Þ

From equation (2.14), we find

d2ðJ1 � J0Þ
d1

¼ jmax

d1ðJ1 � J0Þ � 1, ðA 35Þ

so that

Jðt � tmÞ ¼ J1 � J1 � J0
ð jmax =d1ðJ1 � J0ÞÞ½ed1ðt�tmÞ � 1� þ 1

, ðA 36Þ

in agreement with the second case in equation (2.19). The late time solution correctly provides J0 for τ = τm
and J∞ in the limit τ→∞.

Taking the derivative of equation (A 36) with respect to τ, the corresponding rate becomes

jðt � tmÞ ¼ jmax
d1ðt�tmÞe

{1þ ð jmax=d1ðJ1 � J0ÞÞ[ed1ðt�tmÞ � 1]}2
, ðA 37Þ

confirming the second case in equation (2.22).
Appendix B. Dynamics in real time
As data are usually available in real time t, we here write down the cumulative and differential rates of
newly infected persons, which follow from their dimensionless counterparts equations (2.19) and (2.22),
upon using the transformation (2.31). The cumulative number of infected persons at time t is

JðtÞ ≃
hþ J0�h

1þ
ffiffiffiffiffiffiffiffiffiffiffi
jmax=c0

p
ðsinh½c3a0ðtm�t�=sinhðc3a0ðt�t0ÞÞ

for t � tm

J1 � J1�J0
ð jmax =d1ðJ1�J0ÞÞ½ed1a0ðt�tmÞ�1�þ1

for t � tm

8<
: ðB 1Þ

and the differential rate _JðtÞ ¼ dJðtÞ=dt reads

_JðtÞ
a0 jmax

¼
sinh½c3a0ðtm�t0Þ�

sinh½c3a0ðt�t0Þ�þ
ffiffiffiffiffiffiffiffiffiffiffi
jmax=c0

p
sinh½c3a0ðtm�tÞ�

	 
2
for t � tm

ed1a0ðt�tmÞ

(1þð jmax=d1ðJ1�J0ÞÞ[ed1a0 ðt�tmÞ�1])2
for t � tm

8><
>: ðB 2Þ

where all coefficients c0, c3, d1, J0, J∞, jmax are given in terms of k and η = J(0) in the above equations (2.9),
(2.21), (2.11), (2.4), (2.3) and (2.6), respectively.
Appendix C. Quality of the approximant
Here, we evaluate the quality of the analytic approximant for the solution j(τ) of the semi-time SIR model.
These calculations can be done for all remaining SIR quantities S(τ), I(τ), R(τ) as well as J(τ), but the results



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8
19
are very comparable. In figure 6a, we show the reduced time evolution of j(τ) for various k. The exact

solution (solid black) is visually matching the approximant (2.22) (solid red). For comparison, we
include (dashed red) the j(τ) calculated via the identity (2.2). The relative error of the approximant,
defined by the difference between approximant and exact solution, divided by jmax, is shown in
figure 6b, for the same k’s, and again for our approximant (solid) and for the j(τ) calculated from the
approximant J(τ) given by equation (2.19), and inserted into equation (2.2). The relative error of the
approximant is below 2% for the relevant regime of k≥ 8, and drops to about 5% for k = 0.6. It is
important to realize from figure 6b that the error is only large during a small interval in time, but
afterwards vanishes again, so that the deviations are negligible for any practical purposes. Similarly,
deviations between exact and analytic approximant for J(τ) vanish exactly at τ = τm and for both small
τ≪ τm, and large times τ≫ τm. This means for the differential rate j(τ) that deviations are not
accumulating, but compensating in time. Since the measured data is also fluctuating by amounts that
easily exceed 10% between subsequent days, the precision can be considered excellent. For the
readers’ convenience, we include a similar comparison for the so-called version II approximant we
derived in our previous work (figure 7). The present approximant has the neat features that it exactly
reaches the exact jmax at peak time τm, and that it possesses the correct asymptotic behaviour, which is
not fully reflected by watching the relative error. Furthermore, the present approximant has a smaller
error than the so-called version I approximant [36], and a simpler analytic form than the so-called
version II approximant [36].
:211379
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