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melanocyte gene-regulatory mechanisms

Tongwu Zhang,1,7 Jiyeon Choi,1,7 Ramile Dilshat,2 Berglind Ósk Einarsdóttir,2 Michael A. Kovacs,1
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Summary
Although expression quantitative trait loci (eQTLs) have been powerful in identifying susceptibility genes from genome-wide associa-

tion study (GWAS) findings, most trait-associated loci are not explained by eQTLs alone. Alternative QTLs, including DNA methylation

QTLs (meQTLs), are emerging, but cell-type-specific meQTLs using cells of disease origin have been lacking. Here, we established an

meQTL dataset by using primary melanocytes from 106 individuals and identified 1,497,502 significant cis-meQTLs. Multi-QTL coloc-

alization withmeQTLs, eQTLs, andmRNA splice-junction QTLs from the same individuals together with imputedmethylome-wide and

transcriptome-wide association studies identified candidate susceptibility genes at 63% of melanoma GWAS loci. Among the three mo-

lecular QTLs, meQTLs were the single largest contributor. To compare melanocyte meQTLs with those from malignant melanomas, we

performedmeQTL analysis on skin cutaneousmelanomas from The Cancer Genome Atlas (n¼ 444). A substantial proportion of meQTL

probes (45.9%) in primary melanocytes is preserved in melanomas, while a smaller fraction of eQTL genes is preserved (12.7%). Integra-

tion of melanocyte multi-QTLs and melanoma meQTLs identified candidate susceptibility genes at 72% of melanoma GWAS loci.

Beyond GWAS annotation, meQTL-eQTL colocalization in melanocytes suggested that 841 unique genes potentially share a causal

variant with a nearby methylation probe in melanocytes. Finally, melanocyte trans-meQTLs identified a hotspot for rs12203592, a

cis-eQTL of a transcription factor, IRF4, with 131 candidate target CpGs. Motif enrichment and IRF4 ChIP-seq analysis demonstrated

that these target CpGs are enriched in IRF4 binding sites, suggesting an IRF4-mediated regulatory network. Our study highlights the

utility of cell-type-specific meQTLs.
Introduction

Expression quantitative trait locus (eQTL) studies have

been powerful for nominating candidate causal genes

for loci identified via genome-wide association studies

(GWASs) of many complex traits and diseases, including

cancer susceptibility. Most prominently, the Genotype-Tis-

sue Expression (GTEx) project has made eQTL data pub-

licly available for more than 50 tissue types.1 Most eQTL

datasets, including GTEx, however, are based on heteroge-

neous bulk tissues where cell-type-specific allelic regula-

tion of gene expression in rarer cell types may be obscured

by signals from other cell types and thus may go unde-

tected. Colocalization analyses with the most recent

GTEx dataset (v.8) demonstrated that a median of 21% of

GWAS loci from 87 tested complex traits colocalized with

a cis-eQTL when aggregated across 49 tissue types.1 While

cell-type-interacting eQTLs by computational deconvolu-

tion of bulk tissue data improves colocalization compared
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to that by standard eQTLs only,2,3 most GWAS loci none-

theless lack colocalizing eQTLs.

A recent melanoma GWAS meta-analysis identified a

total of 54 loci reaching genome-wide significance,4

increasing the total number of melanoma-risk-associated

loci by more than 3-fold compared to the largest existing

study.5 We previously demonstrated that eQTLs from

cultured melanocytes,6 the cell type of origin for mela-

noma, efficiently identified candidate susceptibility genes

for 25%5,6 and 16%4 of loci from two recent melanoma

GWASs through colocalization. Notably, as melanocytes

represent only a small fraction of typical skin biopsies,

even this moderately sized melanocyte eQTL dataset (n ¼
106) was able to identify candidate causal genes that

were not captured by GTEx skin tissue eQTLs from sample

sets three times larger,6 some of which were functionally

validated.7,8 These data highlighted the utility of cell-

type-specific QTL resources, however, eQTLs alone were

still not sufficient to explain the majority of GWAS loci.
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DNAmethylation of cytosine at CpG dinucleotides is an

important mode of epigenetic gene regulation. While CpG

methylation is interconnected with mRNA expression,

their relationship is rather complex. In tumors, hyperme-

thylation has been observed in the promoters of inacti-

vated tumor suppressor genes.9 Gene body methylation,

on the other hand, is usually correlated with higher

mRNA expression and tends to be inversely correlated

with promoter methylation.10 Further, it is not always

clear whether methylation/demethylation actively initi-

ates gene expression repression/activation or, instead,

methylation levels reflect repressed/activated expression

status.11 While DNA methylation has been more widely

studied as a marker of epigenetic regulation in population

studies (e.g., EWAS12), DNAmethylation is also under tight

genetic control where an individual’s heritable genotypes

could influence DNA methylation levels. Methylation

QTL (meQTL) studies have been performed to detect local

(cis-meQTL) and distant (trans-meQTL) correlation be-

tween the genotype of SNPs and CpG methylation. In

particular, trans-meQTL has been powerful in identifying

transcription-factor-mediated regulation networks and

large numbers of target CpGs,13–15 in contrast to relatively

small numbers of trans-eQTL genes or trans-splice QTL

(sQTL) genes when using gene expression data.1

meQTL studies to date have largely been limited to blood

and blood-related cell types13,14,16–22 with a few exceptions

of studies of normal bulk tissues15,23–25 and tumor tis-

sues.26,27 Overall, cell-type-specific meQTL studies from

non-blood samples have largely been lacking. Particularly

in the context of cancer, understanding a heritable compo-

nent of DNA methylation in the cell types where the tu-

mor originates may help answer questions about how

methylation and gene expression are co-regulated through

genetic variants and how much of that genetic regulation

is still observed during the malignant transformation

where multiple genetic and non-genetic events could

mask gene expression variance explained by germline

variants.

In this study, we explore the roles of cell-type-specific

meQTLs derived from human primary melanocytes

in explaining melanoma-risk-associated genetic signals

through multi-QTL colocalization as well as an imputed

methylome-wide association study (MWAS).28 We further

compare genetic control of DNA methylation in melano-

cytes with that of malignant melanoma tissues. We then

investigate whether eQTLs and meQTLs are connected by

common causal variants in melanocytes and further

identify a melanocyte-specific transcriptional hub through

trans-meQTL study.
Material and methods

Melanocyte samples
Primary cultures of melanocytes from 106 newborn males mainly

of European descent were used in this study as previously
1632 The American Journal of Human Genetics 108, 1631–1646, Sep
described.6 Of 106 individuals, 77 (73%) are of >80% European

ancestry (CEU) and 100 (94%) are at least 20% European on the

basis of ADMIXTURE29 analysis.6 Non-European samples include

three individuals of African (YRI) descent and three individuals

of Asian (CHB) descent at >80% and 23 individuals displaying

admixed ancestry (Figure S1).
DNA methylation profiling
Genome-wide DNA methylation was profiled on the Illumina

HumanMethylation450 BeadChip (Illumina, San Diego, USA).

Genomic DNA was extracted as previously described,6 and DNA

methylation was measured according to Illumina’s standard pro-

cedure at the Cancer Genomics Research Laboratory (CGR), Na-

tional Cancer Institute. Basic intensity quality control (QC) was

performed with the minfi R package.30 Briefly, we background cor-

rected and dye-bias equalized raw methylated and unmethylated

intensities to correct for technical variation in signal between ar-

rays.We applied the following criteria to filter probes and samples.

(1) Probes located on chrX and chrY were removed. (2) Probes

including common SNPs with minor allele frequency (MAF) >

5% (1000 Genomes, phase 3, EUR) were removed. No melanoma

GWAS loci were found within 1 Mbp of these SNPs. (3) Probes

located in repetitive genomic regions (repeatmask hg19 database)

were removed. (4) Probes with detection p value > 0.01 were

marked as missing. Probes with a missing rate > 5%were removed

and samples with a missing rate > 4% were removed. (5) Control

samples and samples without matched genotyping data were

removed. (6) For duplicate samples, the better one of the two

was selected on the basis of probe intensity, SNP call rate, and

the percentage ofmissing probes. No batch effects or plating issues

were identified across plates, wells, and barcode IDs on the basis of

the assessment of methylated and unmethylated intensities, failed

samples, and beta distributions.We used functional normalization

implemented in the minfi R package30 to calculate the final

methylation levels (beta value) after normalization. In total, we re-

tained 386,520 probes (average density 134.2 probes/Mb) and 106

samples for the downstream meQTL analysis. We also calculated

the top ten probabilistic estimation of expression residuals

(PEERs)31 as potential hidden covariates for QTL analysis.
Quantification of RNA splicing
We re-analyzed RNA-sequencing (RNA-seq) data of the same 106

melanocytes from our previous publication6 to quantify RNA

splicing. We used the processed BAM files to create the junc-

tion files and intron clustering based on the instructions of

LeafCutter.32 The normalized quantification of 117,570 junctions

was generated as the phenotype and ten principal components

(PCs) were included as covariates for splice QTL (sQTL) analysis.
meQTL and sQTL detection
cis-meQTL and cis-sQTL analyses were performed with the same

cis-QTL pipeline and the same processed genotype data (variant

call format [vcf]) as described in our previous cis-eQTL analysis.6

Briefly, we used FastQTL to perform cis-QTL mapping,33 and we

generated nominal p values for genetic variants located within

51 Mb of the target CpG site of each probe (cis-meQTL) or splice

junction (cis-sQTL) tested. For covariates of QTL analyses, we

included three PCs inferred on the basis of genotype data and in-

dependent methylation variables (Pearson correlation coefficient

< 0.8) from ten PEER factors (meQTLs) or independent splice junc-

tion usage variables (Pearson correlation < 0.8) from ten PCs
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(sQTLs). We then used the beta-distribution-adjusted empirical

p values from FastQTL to calculate q values,34 and we applied a

false discovery rate (FDR) threshold of %0.05 to identify probes

or junctions with a significant QTL (‘‘meProbes’’ or ‘‘sJunctions’’).

We used a similar method as that used for the GTEx study1 (using

FastQTL) to identify all significant variant-probe or junction pairs.

In summary, a genome-wide empirical p value threshold, pt, was

defined as the empirical p value of the probe or junction closest

to the 0.05 FDR threshold. We then used pt to calculate a nominal

p value threshold for each gene on the basis of the beta distribu-

tion model of the minimum p value distribution f(pmin) obtained

from the permutations for the probe or junction. Specifically, the

nominal threshold was calculated as F�1(pt), where F�1 is the in-

verse cumulative distribution. For each probe or junction, variants

with a nominal p value below the probe- or junction-level

threshold were considered significant and included in the final

list of genome-wide significant cis-QTL variants. The effect (slope)

of QTLs is relative to the alternative allele.
trans-meQTLs detection
For identification of trans-meQTLs, we followed the methods that

have been described previously by Shi and colleagues.15 Prior to

meQTL analysis, each methylation trait was regressed on batches

and independent PEER factors based on methylation profiles.

The regression residuals were then quantile-normalized to the

standard normal distribution N(0,1) for QTL analysis. We per-

formed the genetic association testing by using tensorQTL,35

adjusted for the top three PCs based on GWAS SNPs to control

for potential population stratification. To identify the threshold

for genome-wide-significant trans-meQTLs, we applied the

following statistical steps. For each CpG probe, the trans region

was defined as being more than 5 Mb from the target CpG site

in the same chromosome or on different chromosomes. For

the nth methylation trait with m SNPs in the trans region, let

(qn1,/,qnm) be the p values for testing the marginal association be-

tween the trait and the m SNPs. Let pn ¼ min(qn1,/,qnm) be the

minimump value form SNPs.We performed onemillion permuta-

tions for one random methylation trait with k SNPs in

the trans region. We calculated the minimal p value as pp

among these k SNPs for each permutation and then sorted all

permutation minimal p values as pp1 to pp1000000. We then con-

verted pn into the genome-wide empirical p value, padjn, by

ranking pn among pp1 to pp1000000. Because a cis region is very

short compared with the whole genome, padjn computed based

on SNPs in trans regions is very close to that based on permuta-

tions with genome-wide SNPs. Thus, we use the genome-wide

p value computed based on all SNPs to approximate padjn.

Furthermore, all quantile-normalized traits follow the same stan-

dard normal distribution N(0,1); thus, the permutation-based

null distributions are the same for all traits. We then applied the

Benjamini–Hochberg36 procedure to (padj1,/,padjN) to identify

trans-meQTLs by controlling FDR at 1%, which corresponded to

a nominal p value of 1.03E�11.
TCGA SKCM meQTL analysis
444 skin cutaneous melanoma (SKCM) samples from The Cancer

Genome Atlas (TCGA) with both genotype data and methylation

data were included in our study. For genotype data, we collected

our previously processed genotype data in vcf.6 The original raw

intensity idat files from the HumanMethylation450 array with

matched genotype data were downloaded from NCI Genomic
The American Jour
Data Commons Data Portal (GDC Legacy Archive). The same

DNA methylation processing pipelines for melanocytes described

above were applied to TCGA methylation data, which included

384,273 high-quality probes for the downstream analysis. We

selected the three PCs calculated from genotype data and uncor-

rected ten PEER factors from methylation data for the meQTL

analysis. In addition, we adjusted for copy number alterations

for each probe by including the segmentation’s logR value as a co-

variate for meQTL analysis. The segmentation CNV data was

calculated from the SNP array as TCGA level 3 dataset, which

was collected from the GDC portal.We followed the samemelano-

cyte cis-meQTL analysis pipeline for the TCGA SKCM meQTL

analysis. For trans-meQTL in TCGA SKCM, we only tested the as-

sociation of significant melanocyte trans-meQTLs (FDR < 0.05)

and applied a similar genome-wide p value threshold (1.03E�11)

between SNPs and distant CpG probes.

Pairwise meQTL sharing between primary melanocytes

and TCGA SKCM
To test the sharing of all significant SNP-CpG probe pairs of our

melanocyte cis-meQTLs with those identified in TCGA SKCM,

we calculated pairwise p1 statistics, where p1 is the proportion of

all genome-wide significant meQTLs (using a threshold of FDR <

0.05) from one dataset found to also be genome-wide significant

in the other. We used QVALUE34 to calculate p1, which indicates

the proportion of true positives. A higher p1 value indicates an

increased replication of meQTLs.

Multi-QTL colocalization
Melanoma GWAS summary statistics from a meta-analysis of

36,760 clinically confirmed and self-reported cutaneous mela-

noma cases were collected from a recent study,4 which included

54 significant loci with 68 independent SNPs. All study partici-

pants provided informed consent reviewed by IRBs, including

23andMe participants who gave online informed consent and

participation, under a protocol approved by the external

AAHRPP-accredited IRB, Ethical and Independent Review Services

(E and I Review). We performed multi-QTL colocalization analyses

among GWAS, eQTL, meQTL, and sQTL datasets. We used

HyPrColoc37 to perform colocalization analysis with the following

default parameters: prior.1 (1E�4) and prior.2 (0.980). We only

considered genome-wide-significant QTL SNPs within 5250 kb

of the GWAS lead SNP of each locus. Phased linkage disequilibrium

(LD) matrices from 1000 Genomes, phase 3 (EUR), and sample

overlap correction (as eQTL, meQTL, and sQTL datasets are com-

ing from the same 106 individuals) were used for the colocaliza-

tion analysis. We started with two-trait analyses comparing

GWAS and each QTL one at a time: GWAS-eQTL, GWAS-meQTL,

and GWAS-sQTL. Then, we performed three-trait (‘‘G-e-m,’’ ‘‘G-s-

e,’’ and ‘‘G-s-m’’) and four-trait (‘‘G-e-m-s’’) analyses. For each ma-

trix (trait 3 SNP), one gene/probe per trait is selected at a time.

Any matrix (trait 3 SNP) from two-, three-, and four-trait analyses

is dropped if there are fewer than 50 SNPs. The colocalization

events showing the consistent number of tested traits and colocal-

izing traits were included as the final result. For sensitivity anal-

ysis, we performed a similar multi-QTL colocalization with the

stricter prior.2 parameter in HyPrColoc: 0.990 and 0.995.

Imputed methylome-wide association study
We performed an imputed methylome-wide association study

(MWAS) by predicting genetically regulated methylation levels
nal of Human Genetics 108, 1631–1646, September 2, 2021 1633



of each CpG probe for the individuals from the GWAS dataset and

performing an association analysis between predicted methyl-

ation levels and melanoma status. We used the same melanoma

meta-analysis summary statistics as for the multi-QTL colocaliza-

tion4 and methylation and genotype data from both TCGA

SKCM and melanocyte data. We adapted TWAS FUSION,38 which

was originally designed for transcriptome-wide association studies

(TWASs), to perform the MWAS analysis. To summarize, we first

collected the summary statistics without any significance thresh-

olding. We then computed functional weights from our melano-

cyte methylation data one CpG probe at a time. Probes that failed

to pass a heritability check (minimum heritability p value of 0.01)

were excluded from further analysis. A cis-locus was restricted to

50 kb on either side of the CpG probe boundary. For melanocyte

data, from 386,520 probes meeting basic quality control, 21,252

probes passed the heritability check and were included as MWAS

weights for association analysis with the melanoma GWAS sum-

mary stats and 1000 Genomes, phase3 (EUR) LD reference. For

the MWAS results, a genome-wide significance cutoff (MWAS

p value < 0.05/number of probes tested) was applied.
eQTL/meQTL mediation analysis
We applied a workflow (Figure S2) to identify the potentially colo-

calized eQTL-meQTL pairs sharing a common causal variant, fol-

lowed by mediation and partial correlation analysis as originally

described by Pierce and colleagues.19 To identify candidate

eQTL-meQTL pairs, we first restricted the meQTL analysis to

4,997 lead SNPs (eSNPs) for each eGene from eQTL results and

13,274 significant CpG probes (meProbes) from meQTL results

to determine whether any of these eSNPs are significant cis-

meQTLs for local meProbes (51 Mb; FDR < 0.05). To reduce the

redundant associations with the same SNP linking to a cluster of

CpGs, we pruned our list of CpG probes by keeping only the

CpGs whose lead meSNP had the highest LD with a lead eSNP.

As a result, we identified each eGene paired with only one meCpG

(eGene-meCpG pair), whose lead meSNP was in the strongest

LD with the eSNP. In our melanocyte data, there were a total

of 2,374 eGene-meCpG pairs showing association with a

common SNP and available for colocalization analysis. We used

HyPrColoc37 to perform colocalization analysis with the param-

eter prior.1 ¼ 1E�4. A total of 841 potentially ‘‘colocalized’’

eQTL-meQTL pairs (including 296 common SNPs) were selected

for downstream mediation analyses on the basis of the posterior

probability of a common causal variant (CCV) above 0.8.

For mediation analysis, we used our melanocyte data on 106

genotyped individuals with both expression and methylation

data to conduct tests of mediation for two hypothesized pathways:

(1) SNP / methylation / expression, or ‘‘SME,’’ and (2) SNP /

expression / methylation, or ‘‘SEM.’’ For all lead eSNPs, the cis-

eQTL association was re-tested with adjustment for methylation

of the CpG (and vice versa). Note that we cannot statistically

exclude or account for a potential collider bias in both models.

The difference between the beta coefficients before and after

adjustment for the cis gene was expressed as the ‘‘proportion of

the total effect that is mediated’’ (i.e., % mediation), calculated

as |(bunadj – badj)|/|bunadj| where bunadj and badj represent the

total effect and the direct effect of the variant, respectively.19,39

All regression analyses were adjusted for PCs inferred

from expression or methylation data. The Sobel p value for

mediation was calculated with the same formula as in previous

publications.19,40
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We also performed partial correlation analysis by using the colo-

calized eQTL-meQTL pairs in our 106 melanocyte datasets. The

Pearson correlation coefficients between the gene expression and

the methylation levels were calculated after adjusting for expres-

sion and methylation PCs, respectively. Both the gene expression

and methylation levels were regressed on the lead eSNP, and the

residuals from these regressions were obtained as the expression

andmethylation values that lack the phenotypic variance because

of the effect of the SNP. We compared correlation coefficients

before and after SNP adjustment to identify the eGene-meCpG

pairs showing the partial correlation. To explore the extent to

which partial correlation could be due to secondary, colocalized

causal variants affecting both the expression trait and the CpG be-

ing analyzed, we also searched for secondary association signals

for the eGene-meCpG pairs with partial correlation p < 0.05 and

colocalization CCV > 0.8. For 73 pairs meeting these criteria, we

adjusted for both the primary and secondary lead eSNP-meSNP. Af-

ter this adjustment, 63 pairs were still significant (p > 0.05).

To explore the potential influence of CpG probe exclusion on

methylation-expression mediation analysis, we surveyed the

5,575 methylation probes that were dropped from melanocyte

meQTL analysis. These are probes with SNPs of MAF > 0.05 in

EUR (minfi function dropLociWithSnps with SNPs parameters:

‘‘SBE’’ and ‘‘CpG’’) were excluded to avoid technical artifacts’

affecting genotype effect on allelic methylation levels, as

suggested by other studies.14,41 Among them, 583 unique

methylation probes overlapped (within 51 bp) with 594 unique

melanocyte eQTL SNPs (595 unique probe-SNP pairs and 925

unique probe-SNP-gene trios). When overlaid with melanoma

GWAS-melanocyte eQTL colocalization results (using HyPrColoc),

none of the 594 eQTL SNPs overlapped with melanoma GWAS

colocalized SNPs (posterior probability > 0.8) or their proxies

(r2 > 0.8). Ten of the 594 eQTL SNPs were the strongest eQTL

SNPs of an eGene (eSNP). Predicted allelic transcription factor

binding for these ten SNPs was searched on Haploreg v.4.1.
Identifying cis-mediators for trans-meQTLs
To explore the mediation of trans-meQTLs by cis-eQTLs (e.g., of

potential transcription factors), we performed mediation analysis

by applying eQTLMAPT42 to the primary melanocyte meQTL

data. Only trios with evidence of both cis-eQTL and trans-meQTL

association were included. To detect the mediation effects, we

derived 152 candidate trios from significant cis-eQTL and trans-

meQTL associations (based on FDR < 0.05 and < 0.01, respec-

tively). We performed the mediation analysis with an adaptive

permutation scheme and generalized Pareto distribution approxi-

mation with parameters N ¼ 10,000 and a ¼ 0.05 for all candidate

trios. All PEER factors included in eQTL and meQTL analyses and

other covariates (top three genotype PCs) were adjusted and trios

with suggestive mediation were reported with mediation p value

threshold < 0.05.
Enrichment of melanoma GWAS variants in meQTLs
We generated quantile-quantile (QQ) plots to evaluate whether

melanoma GWAS variants were enriched in meQTLs of melano-

cytes or TCGA SKCM. To minimize the impact of LD on the

enrichment analysis, we performed LD pruning to identify inde-

pendent SNPs among all the GWAS variants by using PLINK

v.1.90 beta43 (r2 < 0.1 and window size 500 kb). QQ plots were

made with p values (�log10) from the melanoma GWAS4 for

non-meQTL SNPs versusmeQTL SNPs after LD pruning. Deviation
tember 2, 2021



from the 45-degree line indicates that melanoma GWAS SNPs are

enriched in meQTL SNPs.
Functional annotation of CpGs and meQTLs
Functional annotation of CpGs and meQTLs has been described

previously.14 We annotated ten genomic features of CpGs,

including CpGs located in CpG islands, low or high CpG regions,

promoters, enhancers, gene bodies, 3 prime untranslated regions

(30 UTRs), 5 prime untranslated regions (50 UTRs), 0–200 bases up-

stream of transcription start sites (TSS200), and 201–1,500 bases

upstream of transcription start sites (TSS1,500).We used hypergeo-

metric tests to evaluate whether the identified cis- and trans-

meQTL CpGs showed enrichment for CpGs annotated with those

genomic features. The significance threshold was defined by a fold

change of >1.2 or <0.8 and a Bonferroni-corrected threshold

p < 0.05/10 ¼ 0.005.

In addition, we determined the distribution of genome-wide

meCpG probes on the basis of their genomic position in relation

to CpG islands and nearby genes. Enrichment fold change was

calculated as the ratio of the fraction of meQTLs overlapping

with genomic annotations versus the fraction of randomly

selected SNPs overlapping with the genomic annotations; ‘‘epito-

ols’’ was used for this analysis.
Motif enrichment analysis for trans-meQTLs
Enrichment of known sequence motifs among trans-CpGs was

assessed with the PWMEnrich package in R. 131 CpG probes

with trans-meQTL association with rs12203592 were selected for

enrichment analysis. For PWMEnrich, the 101 bp sequence

around each interrogated CpG site was used, similar to a previous

study,13 and unique 2 kb promoters in humans were used as the

pre-compiled background set. Although there is no minimum

length of sequence required for the PWMEnrich analysis, it is rec-

ommended that the input sequences need to be longer than the

length of the core sequence of the motif in the database to ensure

the algorithm can properly compare them with a genomic back-

ground for score and p value calculation. Our detected top motifs

are well within the range of 101 bp, indicating that our criteria suf-

ficiently cover the necessary sequences.We also performed a sensi-

tivity analysis to test whether varying lengths (51, 101, 201, 401,

1,001, 2,001, and 4,001 bp) of sequences could affect the resulting

enriched motifs and found that all the different lengths of se-

quences, except 51 bp, identified IRF4 as one of the top three en-

riched motifs (data not shown).
IRF4 ChIP-sequencing in melanoma cells
To identify genome-wide binding sites of IRF4 in melanoma cells,

we performed ChIP-sequencing against eGFP-tagged IRF4. We

generated an inducible eGFP-tagged IRF4 cell line in 501Mel cells

by cloning eGFP-tagged IRF4 downstream of the tetracycline

response element in a PiggyBac transposon system.44 We used

the Tetracycline-ON system where the expression of eGFP-IRF4

can be induced by adding doxycycline or tetracycline. For ChIP ex-

periments, the eGFP-tagged-IRF4-expressing 501Mel cells were

cultured on ten 10 cm dishes, and 1 mg/mL of doxycycline was

added for the induction. Chromatin immunoprecipitation was

performed according to Palomero and colleagues45 as follows:

20 million cells were crosslinked with 0.4% formaldehyde for

10 minutes at room temperature and quenched by 0.125 M

glycine for 5 min at room temperature and chromatin was then

sheared by 5 min sonication (25% amplitude, 30 sec off and
The American Jour
30 sec on) via a probe sonicator (Epishear, Active Motif). Immuno-

precipitation was performed with Protein G Dynabeads (Life Tech-

nologies) with a total of 10 mg of anti-GFP antibody (3E6 fromMo-

lecular Probes, #A-11120). The bead-bound immune complexes

were washed five times with wash buffer (50 M Hepes [pH 7.6],

1 mM EDTA, 0.7% Na-DOC, 1% NP-40, and 0.5 M LiCl) and

once with Tris-EDTA. Crosslinking was reversed by washing the

immune complexes and sonicated lysate input in elution buffer

(50 mM Tris [pH 8], 10 mM EDTA, 1% SDS) overnight at 65oC.

Then the samples were treated with 0.2 mg/mL of RNase A for 1 h

at 37oC followed by treatment with 0.2 mg/mL proteinase K for

2 h at 55oC. DNA was extracted from the samples using phenol:-

chloroform. ChIP-seq DNA libraries were prepared from the puri-

fied ChIP DNA and input DNAwith the NEBNext ChIP-seq Library

Prep Kit (E6200, NEB). Libraries were prepared from 8 to 15 ng of

fragmented ChIP or input DNA, which were amplified with ten

PCR cycles. The amplified libraries were purified with Agencourt

AMPure XP beads (A63881, Beckman Coulter) and then were

paired-end sequenced. Approximately 30 million raw reads were

mapped of each sample to the human hg19 reference genome

via Bowtie 2.46 The aligned reads were then used as an input for

peak calling with MACS.47
IRF4 knockdown and RNA-seq
The human melanoma cell line 501Mel was cultured in RPMI-

1640 cell culture medium (Gibco) supplemented with 10% FBS

(Gibco) in a humid incubator at 5% CO2 and 37�C. IRF4 was

knocked down in three biological replicates of 501Mel cells via

transfection of the cells with Lipofectamine (RNAiMAX, Thermo

Fisher) with siRNA (Silencer Select #AM16708, Thermo Fisher)

for 48 h. Cells were harvested and RNA was extracted with

the Quick-RNA Mini prep (#R1055, ZYMO Research). IRF4

knockdown was verified by RT-qPCR before generating

sequencing libraries. RNA-seq was performed on the NovaSeq

6000 System, �150 million raw reads were mapped to human

transcriptome GRCh38with Kallisto,48 and differential expression

analysis was performed with Sleuth.49
Results

Identification of cell-type-specific melanocyte meQTLs

To establish a melanocyte-specific meQTL dataset, we as-

sessed DNA methylation levels in cultured melanocytes

from 106 newborn males mainly of European descent by

using Illumina 450K methylation arrays (material and

methods; Figure S3). We then performed cis-meQTL anal-

ysis assessing variants within 51 Mb of each CpG probe

and identified 13,274 unique CpG probes (meProbes)

with 1,497,502 significant cis-meQTLs (Table S1A). Most

cis-meQTL variants are clustered near CpGs (<�100 kb),

where variants closer to the target CpGs tended to have

lower p values and larger effect sizes (Figure S4). Among

13,274 meProbes, 29% were located in CpG islands and

34% in CpG-adjacent regions (shores and shelves), and

the rest (38%) were away from CpG islands (open seas)

(Figure S5). meProbes are also mainly located in or near

the gene body (73% are within 1,500 bp of TSSs, UTRs,

1st exon, or gene body), and the rest (27%) are in intergenic

regions. Compared to non-meProbes, meProbes are most
nal of Human Genetics 108, 1631–1646, September 2, 2021 1635



Figure 1. Melanocyte meQTL and multi-
QTL colocalization improved melanoma
GWAS annotation
Circos plot shows significant colocaliza-
tion of melanoma GWAS loci (top) with
eQTLs (right), sQTLs (bottom), and
meQTLs (left). Colocalization between in-
dividual GWAS loci with multiple QTL
traits is depicted by thicker, colored lines.
GWAS loci are sorted by genomic coordi-
nate and labeled with GWAS lead SNPs
with different colors; GWAS loci without
any colocalizing QTLs are shown in black.
QTL-associated gene symbols are also
labeled with the same color as the GWAS
loci they correspond to. Gene symbols are
assigned on the basis of eQTLs/sQTLs for
multi-QTL loci.
enriched in open seas and intergenic regions, while most

depleted in islands and 1st exons. At the variant level,

cis-meQTLs are also significantly depleted in CpG islands

and gene-promoter regions (Figure S6).

To supplement these meQTLs, as well as melanocyte-

specific eQTLs we previously identified,6 we also per-

formed mRNA splice junction QTL (sQTL) analysis by

using previously generated RNA-seq data from the same

melanocytes through which we identified 7,054 unique

splice junctions with 887,233 cis-sQTLs (Table S1A).

Together with our previous eQTL findings, we identified

a total of 1,039,047 non-overlapping eQTL/meQTL/sQTL

variants in melanocytes, a substantial proportion (40.4%)

of which are only detected by meQTLs (Figure S7). Of

meQTL variants, 27.4% and 21.8% were also detected as

eQTLs and sQTLs, respectively, and 13.3% of meQTLs

(n ¼ 87,158) were significant for all three QTLs. Among

eQTL variants, 42.3% and 36.7% were also detected as

meQTLs and sQTLs, respectively. Among sQTLs, 44.2%

and 40.5% displayed an overlap with eQTLs and meQTLs,

respectively.

Multi-QTL colocalization improved melanoma GWAS

annotation

To explore the contribution of cell-type-specific

meQTLs and other QTLs to melanoma GWAS annotation,

we first performed multi-trait colocalization by using

HyPrColoc37 with summary data from a recent melanoma

GWAS meta-analysis of 36,760 histologically confirmed

and self-reported cases.4 Melanocyte meQTLs colocalized
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with melanoma GWAS signals (poste-

rior probability > 0.8) at 13 of 54 loci,

while sQTLs displayed colocalization

at two loci (Figure 1, Tables S1B and

S2). Together, at least one of three

QTL types colocalized with melanoma

GWAS signal at 21of 54melanoma loci

(39%), which is a considerable

improvement from the 12 loci (22%)

explained by eQTLs alone via the
sameapproach (HyPrColoc;note that this percentagediffers

slightly from the 16% reported in Landi et al.,4 where eCA-

VIAR50 was used for colocalization). Sensitivity analysis, ad-

justing the second prior from 0.98 to 0.99 and 0.995, indi-

cated that 80% (61/76) and 64% (49/76) of colocalization

events were still detected for the same traits at posterior

probability> 0.8, respectively (Table S2). These data demon-

strated that cell-type-specific multi-QTL colocalization

could explain close to half of melanoma GWAS loci and

thatmethylationQTL is the largest contributor colocalizing

with 24% of the known loci.

Further, multi-QTL colocalization identified four loci

where more than one cell-type-specific QTL trait colocal-

izes with the melanoma GWAS signal (Figure 1, Table S2).

For three loci, both eQTLs and meQTLs colocalized with

the GWAS signal (MSC/RP11-383H13.1, OCA2/AC090

696.2, and MX2; Figures S8A–S8C). At the fourth locus,

all three QTL traits, including eQTL (CDH1), meQTL

(meCpG near CDH1), and sQTL (splice junction in

CDH3), were colocalized with the GWAS signal

(Figure S8D). For the locus near MX2 (MIM: 147890),

colocalization identified rs398206 as a common causal

variant for eQTLs, meQTLs, and melanoma risk, validating

our previous findings identifying this variant as a func-

tional cis-regulatory variant regulating MX2.7 Here,

meQTLs for two CpG probes in the gene body display

the same allelic direction of effect as that of the MX2

eQTL, where higher methylation levels are correlated

with the allele associated with increased MX2 expression,

consistent with the observations that DNA methylation



in the gene body is positively correlated with gene expres-

sion. OCA2 (MIM: 611409) is a known pigmentation gene

and, within this locus, the lead GWAS SNP located in the

HERC2 (MIM: 605837) gene, rs12913832, was identified

as a common causal variant for eQTLs, meQTLs, and mel-

anoma risk through the expression of both OCA2 and an

antisense HERC2 transcript, AC090696.2. These results

are consistent with the previous findings that a melano-

cyte-specific enhancer encompassing rs12913832 regulates

OCA2 expression through an allele-preferential long-range

chromatin interaction.51 The MSC (MIM: 603628)/RP11-

383H13.1 locus was initially identified as a novel locus

by melanoma TWAS with our melanocyte eQTL dataset6

and data from a prior melanoma GWAS meta-analysis,5

and this locus was subsequently identified as a genome-

wide-significant GWAS locus by the larger melanoma

GWAS.4 Our multi-QTL colocalization indicated that

DNA methylation is also involved in this locus in medi-

ating melanoma risk. Finally, for the CDH1/3 locus,

rs4420522 in the intron of CDH1 (MIM: 602118) was iden-

tified as a common likely causal variant for an eQTL

(CDH1), meQTL (CDH1 gene body open sea CpG), sQTL

(CDH3; MIM: 602120), and melanoma risk. Notably, the

eQTL (CDH1) and sQTL (CDH3) are for two different

neighboring genes encoding E-cadherin and P-cadherin,

respectively, that are located adjacent to each other. The

same variants’ being an eQTL for one gene and a sQTL

for another has been shown for a subset of GTEx sQTLs

in a recent study,52 but whether they share candidate

causal variants was not clear. Here, we show an example

of a common candidate causal variant affecting gene

expression or splicing of two different genes in the same

cell type.

Imputed MWAS identified novel melanoma-associated

loci

Given that meQTLs colocalize with a sizable proportion of

melanomaGWAS signals, we further performed an imputed

methylome-wide association study (MWAS)28 by using the

melanocyte methylation data. Adopting the approach

used for transcriptome-wide association studies (TWASs),38

we trainedmodels of genetically regulatedCpGmethylation

inourmelanocytedataset (material andmethods) andtested

the association of imputed methylation levels and mela-

noma risk by using the summary statistics from the mela-

noma GWAS. Significant MWAS was observed for 159

meCpGs (Bonferroni-corrected MWAS p < 0.05/21,252

tested probes), which overlapped 29 known genome-wide-

significant melanoma GWAS loci and further nominated

ten potentially ‘‘new’’ loci (Tables S3A and S4). Among these

new loci, six overlapped with GWAS loci previously identi-

fied in a pleiotropic analysis between melanoma and nevus

count and/or melanoma and hair color traits or loci

identified by melanocyte TWAS (new loci 1, 2, 6, 7, 9, and

13; Table S4),4 suggesting that the MWAS approach effec-

tively identifies bona fide susceptibility loci found via

complementary approaches. Besides these six loci, the other
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four loci included CpG probes on or near SPOPL, NUMA1

(MIM: 164009)/LRTOMT (MIM: 612414), SNORD41/TNP

O2 (MIM: 603002), EPB41L1 (MIM: 602879), and RPRD1B

(MIM: 614694). These results demonstrated the potential

of MWAS to nominate candidate susceptibility genes that

are missed in the single-variant analysis.

Consistent with our comparisons between eQTL and

meQTL colocalization, MWAS and TWAS together ex-

plained 54% of melanoma GWAS loci, which is a consider-

able improvement from 28% of GWAS loci by TWAS alone

(Table S3A).4 Combined with the findings from colocaliza-

tion analyses, melanocyte eQTLs and meQTLs together ex-

plained 63% of melanoma GWAS loci (Table S3B). TWAS,

MWAS, and multi-QTL colocalization cross-validated

each other in 18/54 (33%) of GWAS loci, where one or

more approaches pointed to the same affected genes

(Figure 2). Of the 16 genes that were supported by both

TWAS and MWAS (gene assignment is based on CpG

probes within 1.5 kb of the TSS, 50 UTR, 1st exon, gene

body, or 30 UTR of a gene), six genes displayed the same di-

rection of effect relative to melanoma risk (Z scores in the

same direction), while five genes displayed the opposite di-

rection of effect (Table S4). However, the other five genes

(NIPAL3, CDH1, SPIRE2 [MIM: 609217], MX2, and MAFF

[MIM: 604877]) were matched with CpG probes displaying

the effect in both directions. These data suggest potential

co-regulation of gene expression and promoter CpG

methylation in these loci, contributing to melanoma risk.

Through both colocalization and TWAS/MWAS, melano-

cyte eQTLs and meQTLs nominated a total of 107 unique

candidate melanoma susceptibility genes. Ingenuity

pathway analysis (Qiagen) identified biological pathways

enriched by these genes, including those inmelanin biosyn-

thesis (L-dopachrome biosynthesis, L-dopa degradation,

eumelanin biosynthesis), apoptosis (apoptosis signaling,

Myc-mediated apoptosis signaling, retinoic acid-mediated

apoptosis signaling), autophagy, adhesion junction

signaling (epithelial adherens junction signaling, remodel-

ing of epithelial adherens junctions), and melanoma-

specific signaling (melanoma signaling, Wnt/beta-catenin

signaling), among others (Table S5A). Of these, melanoma-

specific signaling and apoptosis pathways are strengthened

by adding meQTLs compared to a similar analysis using

only eQTLs in melanocytes and skin tissues.4 Notably, up-

stream regulator analysis identified the transcription factor

MITF (MIM: 156845) as the most significant regulator

of these genes (Table S5B), which is consistent with its

known role as the master regulator of melanocyte lineage53

and a melanoma susceptibility gene.54,55 Together, these

data demonstrated that meQTL data are complementary

to eQTL data and greatly increase the power to nominate

candidate causal genes.

Melanocyte meQTLs are substantially preserved in

melanomas

Given the large contribution of melanocyte meQTLs un-

derlying melanoma GWAS loci, we further investigated
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Figure 2. Manhattan plots of melanocyte TWAS and MWAS results combined with findings from eQTL and meQTL colocalization
Each circle represents the TWAS or MWAS Z score of a gene (TWAS) or a CpG probe (MWAS) reflecting significance and the direction of
effect relative to melanoma risk (red, higher level correlates with melanoma risk; blue, lower level correlates with melanoma risk).
Z scores are shown on the y-axis, and chromosomal positions are on the x-axis. Green arrows, overlappingmelanomaGWAS loci; orange
arrows, new loci detected by TWAS or MWAS; green lines, colocalization of eQTLs or meQTLs with melanoma GWAS loci; gray dashed
horizontal lines, significance threshold defined by 0.05/number of probes or genes tested.
whether and, if so, to what extent the genetic control of

CpG methylation in the melanocytic lineage is preserved

in malignant melanomas. For this, we performed a meQTL

analysis of 444 cutaneous melanomas from TCGA by using

data generated from the same 450Kmethylation array plat-

form and by using the same analytic approach, except for

adding regional genomic copy number as a covariate (ma-

terial andmethods). First, we identified 3,794,446 genome-

wide-significant cis-meQTLs for 15,308 unique meProbes

from TCGA melanomas, which are higher numbers than

those observed from melanocytes (15% more meProbes).

When meProbes were compared between datasets, 45.9%

of melanocyte meProbes were also significant in mela-

nomas, while 39.8% of melanoma meProbes were

observed in melanocytes (Figure S9A). Melanocyte meQTL

preservation in melanoma is even higher at the gene level,

showing 65% preservation when meProbes are assigned

to genes on the basis of their position relative to gene

bodies or promoters (Figure S9B). The effect sizes of the

best meQTL for each meProbe were highly correlated

for 6,087 common meProbes in both groups (p value <

2.2E�16; R ¼ 0.74), and 88.4% of them displayed the

same direction of effect (Figure S10). We further calculated

the true positive rates (p1) of top cis-meQTLs (FDR < 0.05)

frommelanocytes by examining their p value distributions

in melanoma meQTLs and vice versa. The true positive

rates (p1) were 0.825 and 0.822 for melanocyte meQTLs

in melanomas and melanoma meQTLs in melanocytes,

respectively, displaying a high level of meQTL preservation

between two datasets. Notably, the proportion of normal

melanocyte QTLs preserved in melanomas was much

smaller at the eGene level, where only 12.7% of melano-

cyte eQTL genes were preserved in melanomas

(Figure S9A), in contrast to the high preservation rate

of meQTLs (45.9%). Among 635 preserved eGenes, 230

(36%) were associated with one or more preserved eProbes.
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We then investigated whether melanoma-specific

meQTLs corroborate melanoma GWAS annotation

through colocalization andMWAS.MelanomameQTLs co-

localized with the melanoma GWAS signal at 11 of 54 loci

(20%) (Table S6), and melanoma MWAS overlapped with

19 GWAS loci (35%) and further identified six new loci

(Table S7). Among these were loci only explained by mela-

noma meQTLs but not by melanocyte QTLs; melanoma

meQTLs uniquely annotated five GWAS loci (CpG probes

on or near C2orf58, PPARGC1B [MIM: 608886], STN1

[MIM: 613128], and SHANK3 [MIM: 606230] and

cg07068045 in open sea) and identified four novel

MWAS loci (Table S8). Through colocalization and

MWAS, melanoma meQTLs explained 46% (25/54) of mel-

anoma GWAS loci, which, despite the >43 larger sample

size and an overall higher number of identified meProbes,

is considerably less than that by melanocyte meQTLs

(56%). Consistent with this observation, melanoma risk-

associated variants are more enriched for melanocyte

meQTLs than for melanoma meQTLs (Figure S11). Thus,

these data demonstrate that genetically regulated CpG

methylation observed in the melanocyte lineage is sub-

stantially preserved in tumors. Nevertheless, these data

also show that cancer susceptibility reflected in GWAS sig-

nals is better explained by DNA methylation from normal

homogeneous cells of disease origin than by that from het-

erogeneous tumor tissues, even with considerably larger

sample size. Overall, melanocyte multi-QTLs and mela-

nomameQTLs collectively explain 39melanoma-risk-asso-

ciated loci (Figure 3), representing 72% (39/54) of all

known genome-wide-significant loci.

Genetic control of DNA methylation and gene

expression in melanocytes

To investigate the genetic control of gene expression and

DNA methylation in primary melanocytes beyond their
tember 2, 2021



Figure 3. Summary of melanoma GWAS annotation with melanocyte multi-QTLs and TCGA-melanoma meQTLs
Known melanoma-associated loci (green circles) are defined by the findings from the newest melanoma meta-analysis. The new mela-
noma-associated loci (orange circles) are identified on the basis of TWAS or MWAS analysis. Known and new GWAS loci are sorted by
genomic coordinate. The top bar plot shows the total number of annotations per locus by multi-QTL colocalization (shown by QTL
types) or TWAS/MWAS frommelanocyte and TCGA datasets. The right marginal bar plot shows the percentage of GWAS loci annotated
by each approach (the percentage of the known loci is labeled in green).
contribution to melanoma risk, we sought to determine

whether eQTLs and meQTLs more broadly share the same

causal variants and whether one has a causal effect on the

other. For this, we performed colocalization of eQTLs and

meQTLs followed by mediation and partial correlation

analysis as previously described by Pierce and colleagues19

(Figure S2). We first took 4,886 unique eSNPs (strongest

eQTL SNP for each eGene) from eQTL data and re-identified

cis-meQTLs, limiting to these 4,886 SNPs and 13,274

meCpG probes (meProbes). After pruning overlapping

meProbes, we identified 2,374 unique eGene-meProbe pairs

linked by the same eSNP, 841 of which (35%) were colocal-

ized at a posterior probability> 0.8 via HyPrColoc (prior1¼
1E�4; prior2 ¼ 0.95; material and methods). We then per-

formed partial correlation analysis for those 841 eGene-

meProbe pairs, of which 197 (23%) displayed correlation

at a relaxed cutoff (p< 0.05) when conditioning on the pri-

mary variant and 50 (6%) displayed significant partial cor-

relation (FDR < 0.05). Of 197, 73 pairs also had a signifi-

cantly colocalizing secondary SNP and 63 of them

remained significant (p < 0.05) when conditioning on

both the primary and the secondary variants. These data

suggested a link between DNA methylation and gene

expression beyond that expected through common causal

variants (Figure S12A; Table S9; material and methods).

Next, we performedmediation analysis for 841 eGene-meP-

robe pairs to estimate the effect of SNPs on gene expression

mediated by DNA methylation and vice versa. The results

indicated that 32 unique eGene-meProbe pairs (4%) dis-

played significant mediation either of methylation on

expression (25 pairs; FDR < 0.05 and % mediation > 0) or

of expression on methylation (25 pairs; FDR < 0.05 and

% mediation > 0), where 18 pairs were significant under
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both hypotheses (Figure 4; Table S10). All 32 significantly

mediated pairs were included in 197 pairs displaying a mar-

ginal partial correlation (p < 0.05) (Figure S12B). Among

197 SNP-gene-probe trios, 69% (135 trios) displayed an

opposite allelic direction of effect between meQTLs and

eQTLs, while 31% (62 trios) displayed the same allelic direc-

tion of effect.

Our data suggest that a considerable proportion (�35%;

841 of 2,374) of eQTLs and meQTLs for eGene-meProbe

pairs may arise from the same causal variant in melano-

cytes. A subset (up to 23%; 197 of 841) of those displayed

some evidence of methylation/expression co-regulation,

where a majority displays an opposite directional effect.

Notably, 841 potentially colocalizing eGene-meProbe pairs

were significantly enriched in melanocyte eGenes that are

preserved in malignant melanomas compared to non-pre-

served eGenes (Fisher’s exact, p¼ 9.44E�7; OR¼ 1.68). We

do not observe the same type of enrichment in preserved

meProbes compared to non-preserved meProbes (p ¼
0.608; OR ¼ 1.04). However, colocalizing eGene-meProbe

pairs are significantly enriched in genes on or near the

preserved meProbes compared to those with non-pre-

servedmeProbes (p¼ 3.36E�5; OR¼ 1.58). These data sug-

gest that genetic influence on potentially co-regulated

DNAmethylation and gene expression in primary melano-

cytes tend to be well maintained during malignant

transformation.

Although conventional meQTL analyses using array-

based methylation measurement exclude SNPs overlap-

ping CpGs themselves, SNPs on CpG sites could

potentially have a high impact on allelic methylation

and target gene expression. Among all the SNPs in assayed

CpGs, 10.6% were significant eQTLs in melanocytes. Of
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Figure 4. Mediation analysis of potentially colocalizing SNP-
eGene-meProbes
The volcano plot shows themediation analysis results for both the
SEM (blue) and SME (orange) models. Sobel p indicates the signif-
icance of the mediation analyses, where the red horizontal line in-
dicates FDR ¼ 0.05 cutoff. The mediation proportion shows the
proportion of the total effect (cis-meQTL) mediated by a cis-gene
(SEM) or the proportion of the total effect (cis-eQTL) mediated
by cis-probes (SME). Mediation proportion can go in either direc-
tion depending on the directions of the effects of the confounders
with the cis-mediator, the confounder on the cis-gene or cis-
probes, and the non-reference allele on the cis-probes or cis-gene.
these, we focused on ten CpG SNPs that are the strongest

eQTL for an eGene (eSNPs) in our melanocyte dataset

(Table S11). A majority of these CpG probes were located

in promoter or enhancer regions near TSSs. While the

allelic changes from C or G to A or T are considered to

abolish the CpG sites preventing methylation, some of

them were predicted to create transcription-factor-binding

sites in exchange. In an example of cg16139068, a CpG

probe near the TSS of OGDHL (MIM: 617513), an allelic

change from CpG to CpA (rs61846889) dramatically in-

creases predicted binding affinity for the Ahr::Arnt::HIF1

complex (Haploreg v.4.1 position weight matrix from

Ward and Kellis56). rs61846889 is also a significant eQTL

for OGDHL across multiple tissues as well as melanocytes,

including sun-exposed skin (p ¼ 1.2E�20, normalized ef-

fect size relative to A allele ¼ 0.62; GTEx v.8). These data

hint at a hypothesis that CpG SNPs could lead to allelic

gene expression by directly affecting DNA methylation

while simultaneously affecting transcription factor bind-

ing. Together our data provide insights into an intersection

of eQTLs and meQTLs in the genetic control of gene

expression and DNA methylation in melanocyte biology.

Melanocyte trans-meQTLs highlight an IRF4

transcriptional regulatory network

Next, we performed trans-meQTL analysis of melanocytes,

testing SNPs outside the 55 Mb boundary of each CpG

probe or on a different chromosome. We observed 332

unique CpG probes with one or more significant trans-

meQTL at FDR < 0.01 (Table S12; Figure 5). For 65% (215
1640 The American Journal of Human Genetics 108, 1631–1646, Sep
of 332) of those CpG probes, the best trans-meQTL variant

was also a significant cis-eQTL in melanocytes. Among all

the significant trans-meQTL variants, only one variant

was a hot spot trans-meQTL for more than 10 CpGs across

the genome. Namely, rs12203592, a cis-eQTL for IRF4

(MIM: 601900) gene expression,6 was a trans-meQTL for

131 CpGs (40%). rs12203592 was previously shown as a

functional variant in the melanocyte lineage that regulates

the expression of the IRF4 transcription factor.57 In our

previous study of melanocyte eQTLs, we identified

rs12203592 as a significant cis-eQTL of IRF4 as well as a

genome-wide-significant trans-eQTL for four different

genes, TMEM140, MIR3681HG, PLA1A (MIM: 607460),

and NEO1 (MIM: 601907),6 a subset of which displayed

significant mediation by IRF4 cis-eQTLs. In the current

study, rs12203592 was identified as a trans-meQTL for

two CpG probes (cg14710552 and cg07972322) located

in TMEM140 and one CpG probe (cg04330122) located

in PLA1A, consistent with our findings in trans-eQTLs.

Furthermore, 95.4% (125 of 131) of rs12203592 trans-

meQTL-CpG pairs displayed a positive effect size relative

to the alternative T allele, where lower IRF4 expression

level is associated with higher methylation levels at the

target CpGs (Table S13). These results are similar to the

observation in blood samples, where trans-meQTL hot-

spots displayed consistent allelic directions.13,14 Our

findings are consistent with the hypothesis that altered

expression of IRF4 by the cis-eQTL SNP, rs12203592, affects

allelic methylation changes of those CpGs on or near mul-

tiple downstream target genes in melanocytes.

We then asked whether any cis-eQTL variant is driving

trans-meQTLs (i.e., via allelic expressionof transcription fac-

tors and the subsequent effect on methylation of down-

stream targets) by performing mediation analysis with

eQTLMAPT.42 For this, we tested 152 cis-eQTL variant:cis-

eQTL gene:trans-meQTL probe trios (FDR < 0.05 for cis-

meQTLs and < 0.01 for trans-meQTLs), of which 24 trios

displayed significant mediation at p < 0.05 (Table S14;

Figure S13). An overwhelming majority of the significant

trios (92%; 22 of 24) included rs12203592, where a cis-

eQTL of IRF4 expression mediates the trans-meQTL effect

of 18 putative target genes, further supporting IRF4-medi-

ated target gene regulation inmelanocytes. Notably, among

18 putative IRF4 target genes was a melanoma-risk-associ-

ated gene, MX2 (MX dynamin-like GTPase 2). MX2 is an

interferon-alpha-stimulated gene (ISG) with conventional

roles in the innate immune response against HIV infection

butwaspreviously shown tohave amelanocyte-lineage-spe-

cific function in promoting melanoma formation.7 Simi-

larly, IRF4was originally known as one of the IFN-regulatory

factors with roles in B and T lymphocytes58–60 but also

has melanocyte-lineage specific roles in pigmentation

traits,57 which is consistent with its association with

pigmentation traits,61,62 nevus counts,63 and melanoma

risk.4,63 These data suggest a melanocyte-specific functional

interaction between two melanoma-risk associated genes,

IRF4 andMX2.
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Figure 5. Melanocyte trans-meQTLs
Circos plot shows genome-wide significant
trans-meQTLs at FDR < 0.01. The yellow-
green gradient spikes show a hotspot trans-
meQTL SNP, rs12203592, located at 6p25.3
that is associated with 131 CpG sites.
Nearby genes of trans-meQTL-associated
CpG sites are labeled outside of the circos
plot.
To further investigate whether the targets of rs12203592

trans-meQTLs are regulated by direct IRF4 binding,

we performed IRF4 ChIP-seq by using 501Mel melanoma

cells ectopically expressing IRF4. Among 131 significant

trans-meQTL target CpGs (FDR < 0.01) of IRF4 cis-

meQTL SNP rs12203592, 54 (41.2%) CpGs overlapped

within 5100 bp of IRF4 ChIP-seq peaks (peaks detected at

p < 1E�5 in at least one replicate) (Table S13). We also per-

formed a motif enrichment analysis for the target CpGs of

rs12203592 trans-meQTLs by using PWMEnrich, which

showed that the motifs for IRF family proteins ranked at

the topand the IRF4motifwas the secondmost significantly

enriched motif (p ¼ 3.09E�14) (Table S15; Figure S14). We

further examined differentially expressed genes in 501Mel

cells with IRF4 knockdown. Among 804 differentially

expressed genes upon IRF4 knockdown (p < 0.01 and

|log2(fold change)| > 1), seven genes overlapped with

eight target CpG probes of rs12203592 trans-meQTLs

(VPS13B [MIM: 607817], NCKAP5 [MIM: 608789], E2F5

[MIM: 600967], RGMB [MIM: 612687], SMG6 [MIM:

610963], MYH10 [MIM: 160776], and MAP2K6 [MIM:

601254]) (enrichment OR ¼ 2.8, p value ¼ 0.1), while

none of them are near ChIP-seq peaks. These results

provide support for IRF4 as a melanocyte-specific transcrip-

tional regulator of multiple target genes. The data also sup-

port the hypothesis that allelicmethylation changes in trans

reflect altered gene expression driven by transcription factor

binding rather than methylation changes themselves

driving expression changes.
The American Journal of Human Genetics
Finally, we tested whether signifi-

cant melanocyte trans-meQTLs were

also present in melanomas. Among

15,179 trans-meQTL variant-meProbe

pairs found in melanocytes (FDR <

0.01), 11,714 were present in the

TCGA SKCM dataset. rs12203592 was

not present in the TCGA dataset and

could not be tested. Of the tested

variant-meProbe pairs, 9,868 (65% of

15,179 or 84% of 11,714), including

all 332 melanocyte trans-meProbes,

were significant in melanomas (p <

1E�11; equivalent to FDR < 0.01). A

strong correlation of trans-meQTL ef-

fect sizes was observed between mela-

nocyte and melanoma datasets (Pear-

son R ¼ 0.71; p < 2.2E�16)
(Figure S15). These data indicated that melanocyte trans-

meQTLs are highly preserved in malignant melanomas.
Discussion

To date, meQTL studies have mainly been performed in

blood and blood cell types,13,14,16–22 tumor tissues,26,27

and/or normal bulk tissues.15,23–25,64 However, cell-type-

specific meQTL studies using the cell of origin for many

diseases and traits have been largely lacking. Our study

presents a rare example of a single cell type meQTL dataset

accompanied by matching eQTL data. In this study, we

explored the roles of cell-type-specific meQTLs in charac-

terizing disease-associated genomic variants as well as

understanding their roles in gene expression regulation.

Using multi-trait colocalization and MWAS, we demon-

strated that melanocyte meQTL data generated from a

dataset of moderate sample size (n ¼ 106) provides sub-

stantial power to detect melanoma-associated CpG probes.

Comparison of meQTLs between melanocytes and malig-

nant melanomas revealed that melanocyte meQTLs are

far better preserved than eQTLs in melanomas. Together,

melanocyte multi-QTL and melanoma meQTL data nomi-

nated molecular phenotypes underlying 72% of known

genome-wide-significant melanoma GWAS loci (and iden-

tified multiple novel loci), which is higher than conven-

tional eQTL-colocalization-based findings.1 Pathway ana-

lyses of these genes highlighted melanoma- and
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melanocyte-lineage-specific signaling, as well as a master

regulator of melanocyte lineage, MITF, which was not

apparent from the analyses using only eQTLs. Melanocyte

meQTLs also extended our knowledge on genetic regula-

tion of gene expression involving DNA methylation.

eQTL-meQTL colocalization/mediation analyses and

trans-meQTL hotspot analysis highlighted the roles of

transcription factors in allelic methylation patterns,

including those through lineage-specific transcription fac-

tors and target genes.

Melanocyte trans-meQTL analysis identified a melano-

cyte-specific regulatory network involving a transcription

factor, IRF4. Previous studies suggested that trans-meQTL

hotspots could affect the expression of nearby transcrip-

tion factors (i.e., cis-eQTLs), which might be reflected on

the allelic methylation of their potential binding sites

across the genome.13–15 In our study, a trans-meQTL hot-

spot SNP, rs12203592, displayed multiple lines of support

for regulation by the IRF4 transcription factor. IRF4 is

primarily known as an interferon regulatory factor highly

expressed in lymphocytes and blood cells, but rs1220

3592 is located in a melanocyte-specific enhancer

element and seems to be regulated through a melano-

cyte-lineage-specific transcriptional program affecting

pigmentation phenotypes.57 Consistent with this obser-

vation, two large blood trans-meQTL studies using thou-

sands of samples did not identify trans-meQTL hotspots

through rs12203592.13,14 Among the target CpGs of

rs12203592 trans-meQTLs is the recently identified mela-

noma susceptibility gene, MX2, which also has pleio-

tropic roles in both melanoma promotion and immune

response, hinting at potential functional interaction be-

tween IRF4 and MX2 in melanomagenesis. By combining

eQTLs, meQTLs, and mediation analysis as well as ChIP-

seq and knockdown analyses, our study presents a

unique example of a cell-type-specific transcriptional

network mediated by a multi-function transcription fac-

tor. Notably, the IRF4-mediated regulatory network in

melanocytes was marginally detectable by trans-eQTLs,6

but trans-meQTL analysis in the current study revealed

orders of magnitude larger plausible downstream targets

(four genes at FDR < 0.1 versus 131 CpGs at FDR <

0.01). These data suggest that CpG methylation might

better represent the dynamic status of transcription-fac-

tor-binding-related chromatin changes than gross gene

expression changes do.

Our study provides a formal comparison of meQTLs and

eQTLs between tumor tissues and cells of tumor origin. We

show that a substantial proportion (45.9%) of genome-

wide-significant meCpG probes in melanocytes are pre-

served in melanomas. This is a much larger overlap

compared to that of eGenes observed in our previous

eQTL study using the same datasets, where only 12.7%

of melanocyte eGenes were preserved in TCGA mela-

nomas. One can speculate that the proportion of gene

expression variance explained by genotypes could become

relatively smaller and undetectable in malignantly trans-
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formed cells, where multiple factors, including alterations

of DNA methylation, chromatin modifications, genomic

copy number, genomic structures, as well as mutations in

somatic driver genes, could collectively influence local

and global gene expression levels. Loss of the majority of

normal tissue eQTLs in tumors has been observed in pros-

tate tumors, although this was not examined genome

wide.23 Our comparisons of eQTLs and meQTLs from the

same samples suggest that genetic control of lineage-spe-

cific CpG methylation is still largely detectable even in

the presence of presumably high variation of methylation

in tumor genomes. Our eQTL-meQTL colocalization anal-

ysis also indicated that a substantial portion of tested genes

in melanocytes are potentially co-regulated with DNA

methylation through common genetic variants. Impor-

tantly, these co-regulated genes and CpG probes are likely

to remain under genetic control during malignant trans-

formation even in the presence of somatic events. Consis-

tent with this idea, melanocyte trans-meQTLs (presumably

regulated through transcription factor binding) were pre-

served in melanomas at an even higher level (65%) than

cis-meQTLs. These data provide an insight into our under-

standing of gene expression regulation in tumors, where

both heritable and tumor-specific events contribute to

the total transcriptome profile.

While a formal comparison of melanocyte meQTLs

with those from other tissue types is warranted as more

of them become available, we performed an initial com-

parison with bulk skin tissue meQTLs in the context of

melanoma GWAS annotation. Roos and colleagues64 re-

ported a meQTL analysis of skin tissues (n ¼ 283, Euro-

pean ancestry) for 22 melanoma-risk-associated variants.

At the CpG probe level, among 21 of 22 SNP-CpG probe

pairs that passed our QC, only two SNPs were genome-

wide-significant meQTLs in melanocytes, while ten SNPs

were significant meQTLs in skin tissues on the basis of

the cutoff defined by each study (Table S16). However,

meQTL effect sizes between melanocytes and skin dis-

played a significant correlation (Pearson R ¼ 0.517, p ¼
0.028, with absolute values of effect sizes). Further, at

the gene level, when we inspected the local CpG probes

(5100 kb of the SNP) with the best meQTL p values for

21 SNPs in melanocytes, 11 of them were associated

with the same genes as the best CpG probes in skin. While

an in-depth comparison with the same regression model

is warranted, these data suggest that cell-type-specific me-

lanocyte meQTL data may share some similarities but are

complementary to skin meQTLs in annotating mela-

noma-risk-associated loci.

Although meQTL is powerful, sensitive, and reliable, we

acknowledge a few limitations of the current study. First,

our dataset has a relatively small sample size and limited

genome-wide meProbe coverage (i.e., �450,000 meCpGs),

which might have compromised statistical power for QTL

detection, especially formediation analysis. Second, our da-

taset is not of 100% European ancestry (73% European and

94% European or European-admixed ancestry; Figure S1),
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and although we adjusted genetic ancestry in our QTL ana-

lyses to account for this heterogeneity, we recognize a mi-

nor discrepancy in ancestrymight have affectedQTL-based

analyses relying on matched LD structures between GWAS

and QTL populations such as TWAS and MWAS. A sensi-

tivity analysis using a subset of strictly European individ-

uals (n¼ 77) demonstrated a significant and strong correla-

tion of meQTL effect sizes (Pearson R ¼ 0.91) between the

European subset and the full dataset, indicating the inclu-

sion of individuals with higher non-European ancestry

was not adversely impacting our analyses. Finally, we recog-

nize that assigning the effector genes to significantmeCpG

is still challenging in the absence of colocalizing eQTL sup-

port. Colocalization approaches with an improved detec-

tion power might help identify those left undetected with

the current approaches. Additionally, some of the GWAS-

colocalizing meQTLs without concurrent eQTL support

might reflect loci poised to be connected with allelic differ-

ences in gene expression upon appropriate stimulations

(e.g., UV exposure), which actively proliferating cultured

melanocytes cannot recapitulate.

In conclusion, our study demonstrated the utility of cell-

type-specific meQTLs in GWAS annotation and provided

insights into melanocyte-specific gene expression regula-

tion involving DNA methylation.
Data and code availability

The raw data of Illumina HumanMethylation450 BeadChips from

106 primary human melanocytes have been submitted to the

Gene Expression Omnibus (GEO) database under accession code

GEO: GSE166069; melanocyte genotype data, RNA-seq expression

data, and all meQTL association results are deposited in

Genotypes and Phenotypes (dbGaP) under accession dbGaP:

phs001500.v1.p1. IRF4 ChIP-seq and RNA-seq data are deposited

in GEO under accession code GEO: GSE167945. Data from the

2020melanoma GWASmeta-analysis performed by Landi and col-

leagues were obtained from dbGaP (dbGaP: phs001868.v1.p1),

with the exclusion of self-reported data from 23andMe and UK

Biobank. The full GWAS summary statistics for the 23andMe dis-

covery dataset will be made available through 23andMe to quali-

fied researchers under an agreement with 23andMe that protects

the privacy of the 23andMe participants. Please visit https://

research.23andme.com/collaborate/#dataset-access/ for more in-

formation and to apply to access the data. Summary data from

the remaining self-reported cases are available from the corre-

sponding authors of that manuscript4 (Matthew Law, matthew.

law@qimrberghofer.edu.au; Mark Iles, m.m.iles@leeds.ac.uk; and

Maria Teresa Landi, landim@mail.nih.gov).
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.06.018.
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MACS, https://github.com/macs3-project/MACS

minfi, https://bioconductor.org/packages/release/bioc/html/minfi.

html

NIH Biowulf Cluster, http://hpc.nih.gov

OMIM, http://www.omim.org

PLINK, https://www.cog-genomics.org/plink/

PWMEnrich, https://bioconductor.org/packages/release/bioc/html/

PWMEnrich.html

QVALUE, https://bioconductor.org/packages/release/bioc/html/

qvalue.html

Sleuth, https://pachterlab.github.io/sleuth/about

tensorQTL, https://github.com/broadinstitute/tensorqtl

The Cancer Genome Atlas (TCGA) Research Network, http://

cancergenome.nih.gov/

TWAS FUSION, http://gusevlab.org/projects/fusion/
nal of Human Genetics 108, 1631–1646, September 2, 2021 1643

https://research.23andme.com/collaborate/#dataset-access/
https://research.23andme.com/collaborate/#dataset-access/
https://doi.org/10.1016/j.ajhg.2021.06.018
https://doi.org/10.1016/j.ajhg.2021.06.018
https://cran.r-project.org/web/packages/epitools/index.html
https://cran.r-project.org/web/packages/epitools/index.html
https://github.com/QidiPeng/eQTLMAPT
http://fastqtl.sourceforge.net/
https://portal.gdc.cancer.gov
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
https://github.com/jrs95/hyprcoloc
https://pachterlab.github.io/kallisto/
https://davidaknowles.github.io/leafcutter/
https://github.com/macs3-project/MACS
https://bioconductor.org/packages/release/bioc/html/minfi.html
https://bioconductor.org/packages/release/bioc/html/minfi.html
http://hpc.nih.gov
http://www.omim.org
https://www.cog-genomics.org/plink/
https://bioconductor.org/packages/release/bioc/html/PWMEnrich.html
https://bioconductor.org/packages/release/bioc/html/PWMEnrich.html
https://bioconductor.org/packages/release/bioc/html/qvalue.html
https://bioconductor.org/packages/release/bioc/html/qvalue.html
https://pachterlab.github.io/sleuth/about
https://github.com/broadinstitute/tensorqtl
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://gusevlab.org/projects/fusion/


References

1. GTEx Consortium (2020). The GTEx Consortium atlas of ge-

netic regulatory effects across human tissues. Science 369,

1318–1330.

2. Kim-Hellmuth, S., Aguet, F., Oliva, M., Muñoz-Aguirre, M.,
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