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Abstract
The annual spread of influenza A virus (IAV) infection is a global concern. We examined the IAV-inactivating potential 
of theaflavin-concentrated tea extract TY-1, which contains abundant polyphenols, including concentrated theaflavins and 
catechins. TY-1 exhibited concentration- and time-dependent virucidal activity against IAV. Specifically, 5.0 mg/mL TY-1 
induced a 1.33 and ≥ 5.17 log10 50% tissue culture infective dose/mL reduction of the viral titer compared with dextrin as 
the diluent control within 30 min and 6 h reaction time, respectively. The high virucidal activity of TY-1 was attributed to 
the combined additive activities of multiple virucidal components, including theaflavins, which led to an investigation of 
the virucidal mechanism of action of TY-1. Western blotting revealed that TY-1 treatment reduced the band intensity of 
hemagglutinin and induced the appearance of additional high molecular mass bands/ladders. In addition, TY-1 treatment also 
reduced the band intensity of neuraminidase (NA). A hemagglutination assay revealed that TY-1 reduced hemagglutination 
activity, and an NA assay revealed reduced NA activity. These results indicated that TY-1 caused structural abnormalities in 
IAV spike proteins, possibly leading to their destruction. Reverse transcription polymerase chain reaction (PCR) targeting 
the IAV genome and electron microscopic observation of viral particles revealed that upon application of TY-1, the PCR 
products dissipated, which indicates that TY-1 destroyed the IAV genome, and the number of viral particles reduced. Overall, 
TY-1 exhibited multiple modes of IAV-inactivating activity. Our findings support the possible future practical use of TY-1 
as a virucidal supplemental agent that can contribute to IAV infection control.
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Introduction

Influenza A virus (IAV) is the only influenza virus type that 
causes pandemic, and it is also responsible for most influ-
enza-related hospitalizations [1]. Within the last 100 years, 
the world has witnessed four pandemics of novel strains of 
IAV that caused 500,000–50 million deaths [2]. Effective 
prophylaxis and antiviral remedies are essential factors for 
controlling highly contagious diseases. One of the most effi-
cient and common strategies for controlling infection is vac-
cination. However, because of antigenic drift and antigenic 
shift, IAV can evade the neutralizing activity of previously 
established antibodies, causing them to become ineffective 
against next-year infection [3]. Given this concept, other 
daily preventive measures appear essential for combating 
IAV infection. Such preventive measures usually involve 
recommended procedures such as wearing masks or hand 
washing [4]. Although hand washing is effective, it only 
removes viruses from the initial contact site, and it is more 
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operative when other reagents that can disrupt viruses are 
used concomitantly. Several virucidal agents exist [5]; nev-
ertheless, some of these chemical substances are toxic and 
corrosive, and they cause environmental pollution, thereby 
limiting their use as disinfectants for viruses on the human 
body and surfaces [6]. Several antiviral drugs exist for use. 
Even if therapeutic efficacy is elicited, the emergence of 
resistant viral strains is a matter of concern [7]. In addition, 
the side effects of some medicines have been reported [8]. 
Owing to the possible insufficient efficacy of currently avail-
able vaccines against novel strains, limitations of chemical 
virucidal agents, and the emergence of drug resistance, safe 
supportive interventions are required to prevent viral infec-
tion and worsening of severity.

The tea plant, Camellia sinensis, is an evergreen tree 
belonging to the family Theaceae, which is indigenous to 
China and Southeast Asia. The leaves of C. sinensis con-
tain all the structures and standard enzymes associated with 
plant cell growth and photosynthesis. The harvested leaf 
can be treated with various methods to produce three main 
types of teas: green, black, or Oolong tea. Uniquely, the teas 
produced from this plant contain relatively large quantities 
of polyphenols [9, 10]. Tea polyphenols have attracted the 
researcher’s attention as natural substances and safe thera-
peutic options for many diseases. It was proven in cell cul-
ture that epigallocatechin (EGC), EGC gallate (EGCG), and 
epicatechin gallate (ECG) present in green tea could inhibit 
the replication of adenovirus and influenza virus [11–13]. 
Black tea, which comprises 78% of tea consumed worldwide 
[14], can be synthesized by crushing and rolling the withered 
leaves of C. sinensis, which are then fully fermented [15]. 
Black tea is rich in theaflavins (TFs), polyphenols that are 
produced via the enzymatic oxidation and dimerization of 
green tea catechins, and their anti-inflammatory [16], anti-
microbial [17], and antiviral activities [16, 18, 19] have 
been reported. In a previous study, highly TF-concentrated 
tea extract powder TY-1 was produced from raw green tea 
leaves [20]. Briefly, fresh raw green tea leaves were added 
to water and green tea leaf extract; then, the leaves were 
crushed into a paste with a mixer. With this step, polyphenol 
oxidase, peroxidase, tannase, hydrolase, catechins, caffeine, 
and other components were released from the plant cells into 
the water. Then, the raw green tea leaves paste was gently 
stirred with minimum aeration for 10 min–8 h, which pro-
moted a reaction of various enzymes with components, thus 
resulting in the conversion of catechins into TFs and gallic 
acid production. The paste was then heated for sterilization, 
and the liquid layer was collected. TY-1 powder was pro-
duced by filtering and drying this liquid layer. By following 
this unique procedure, abundant and standardized TFs were 
obtained. The safety of TY-1 was confirmed by genotoxicity 
and mutagenicity tests such as the Ames test, micronucleus 
test, and comet assay. Accordingly, this study examined the 

virucidal effect of TY-1, which abundantly contains not only 
TFs but also other polyphenols, on IAV and elucidated its 
mechanism of action in an effort to introduce the substance 
as a promising supplement or alternative to the currently 
available antiviral therapies.

Methods

Virus and cells

IAV subtype H1N1 (A/Puerto Rico/8/1934 strain: ATCC​® 
Catalog No. VR-95TM) was obtained from ATCC (Manas-
sas, VA, USA), then propagated via inoculation into the 
allantoic cavity of 10-day-old embryonated chicken eggs. 
Allantoic fluids containing IAV were used as viral solutions 
unless otherwise stated. To prepare purified IAV, which was 
used for some studies, sucrose gradient ultracentrifugation 
was performed as previously mentioned [21]. A Micro BCA 
protein assay kit (Thermo Fisher Scientific Inc., Waltham, 
MA, USA) was used to estimate the purified IAV protein 
concentration. Madin–Darby canine kidney (MDCK) cells 
were kindly provided by Dr. H. Nagano (Hokkaido Institute 
of Public Health, Sapporo, Japan). For MDCK cell culture, 
Dulbecco’s modified Eagle’s minimal essential medium 
(DMEM; Nissui Pharmaceutical Co., Ltd., Tokyo, Japan) 
supplemented with 10% fetal bovine serum, 2 mM l-glu-
tamine, 0.15% NaHCO3 (FUJIFILM Wako Pure Chemical 
Co., Osaka, Japan), 2 μg/mL amphotericin B (Bristol-Myers 
Squibb Co., New York, NY, USA), and 100 μg/mL kana-
mycin (Meiji Seika Pharma Co., Ltd., Tokyo, Japan) was 
used as the growth medium. Following viral inoculation, 
viral growth medium consisted of DMEM supplemented 
with 0.2% bovine serum albumin, 0.15% NaHCO3, 0.01% 
glucose, 2.5 mM HEPES, and 0.0006% trypsin (FUJIFILM 
Wako Pure Chemical Co.) was used for MDCK cell culture.

Preparation of a TY‑1 stock solution and other test 
solutions

TY-1 powder was provided by Yokoyama Food Co., Ltd. 
(Sapporo, Japan). The components of TY-1 powder and 
their corresponding yields were analyzed by Eurofins Food 
Testing Japan, K.K (Shizuoka, Japan), and those are pre-
sented in Table 1. Specifically, the concentrations of TFs 
were analyzed by high-performance liquid chromatography; 
those of catechins, caffeine, theanine, and gallic acid were 
analyzed by liquid chromatography–tandem mass spectrom-
etry method; those of total polyphenol and dietary fiber were 
analyzed by the Folin–Ciocalteu method and Prosky method, 
respectively. Chen et al. revealed the chemical structures 
of TFs and its derivatives [22]. To prepare TY-1 stock 
solution, 1 g of TY-1 powder was dissolved in 100 mL of 
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phosphate-buffered saline (PBS), followed by centrifugation 
(9000×g for 10 min). After centrifugation, the water-soluble 
layer was filtered using a 0.2 μm syringe filter (Sartorius 
AG, Gottingen, Germany). The obtained solution was kept 
at − 80 °C until use. Because TY-1 powder contains 50% 
dextrin, dextrin solution prepared similarly as TY-1 solu-
tion was used as the diluent control. The measured pH was 
6.8 and 7.1 for the TY-1 and dextrin solutions, respectively. 
The final concentrations of the TY-1 and dextrin stock solu-
tions were 10 and 5 mg/mL, respectively. A 0.165 mg/mL 
TFs solution was prepared by dissolving 0.112 mg theaflavin 
(FUJIFILM Wako Pure Chemical Co), 0.043 mg theaflavin-
3′-gallate (FUJIFILM Wako Pure Chemical Co), 0.010 mg 
theaflavin-3,3′-digallate (FUJIFILM Wako Pure Chemical 
Co), and 5.000 mg dextrin in 1 mL PBS. A 0.067 mg/mL 
catechins solution was prepared by dissolving 0.067 mg 
catechin mixture from green tea (FUJIFILM Wako Pure 
Chemical Co) and 5.000  mg dextrin in 1  mL PBS. A 
0.232 mg/mL TFs + catechins solution was prepared by dis-
solving 0.112 mg theaflavin, 0.043 mg theaflavin-3′-gallate, 
0.010 mg theaflavin-3,3′-digallate, 0.067 mg catechin mix-
ture from green tea, and 5.000 mg dextrin in 1 mL PBS.

Evaluation of the virucidal activity of TY‑1

The virucidal activity of TY-1 against IAV was investigated 
as follows. Five concentrations of TY-1 and one concentra-
tion of dextrin solution were mixed with the viral solutions. 
The final concentrations of TY-1 were 0.3, 0.6, 1.3, 2.5, and 
5.0 mg/mL in the mixture. The concentration of dextrin 
used for the mixture was 2.5 mg/mL. Additionally, one con-
centration each of the catechins solution, TFs solution, and 
TFs + catechins solution was mixed with the viral solution. 
In the mixture, the final concentrations of the catechins, TFs, 
and TFs + catechins were 0.034, 0.083, and 0.116 mg/mL, 

respectively. The viral titer of the mixtures was adjusted to 
be approximately 7.45 log10 50% tissue culture infective dose 
(TCID50)/mL. These mixtures were incubated at 25 °C for 
different times (10 min, 30 min, 1 h, 3 h, 6 h, 24 h). Follow-
ing the incubation, the mixtures were inoculated into MDCK 
cells, and tenfold serial dilutions were performed. Three 
days later, the viral titers of the test solution-treated viruses 
were assessed by observing the cytopathic effects on the 
cells. The viral titer was calculated using the Behrens–Kär-
ber method [23]. The differences in viral titer between the 
test solution-treated groups and the dextrin solution-treated 
groups represented the virucidal activity of each test solu-
tion. The detection limit of viral titers in each group was 
determined according to the cytotoxicity of each test solu-
tion in MDCK cells in a virus-free condition. As the dextrin, 
catechins, TFs, TFs + catechins, and 0.3, 0.6, and 1.3 mg/mL 
TY-1 groups did not exhibit cytotoxicity, the detection limit 
of the viral titer in these groups was set to 1.25 log10 TCID50/
mL, according to our viral titer calculation. However, the 2.5 
and 5.0 mg/mL TY-1 groups showed moderate cytotoxicity, 
and the detection limit in these groups was set to 2.25 log10 
TCID50/mL.

Sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (SDS‑PAGE)

The mixtures containing 6.58 log10 TCID50/mL purified IAV 
and 5.0 mg/mL TY-1 or 2.5 mg/mL dextrin were incubated 
at 25 °C for 48 h. Then, the mixtures were combined with a 
one-third volume of 4× SDS sample buffer with and without 
2-mercaptoethanol (2-Me; FUJIFILM Wako Pure Chemical 
Co.). These samples were applied to SDS-PAGE, and then 
Coomassie brilliant blue (CBB) staining or western blot-
ting (WB) was performed as previously described [24]. For 
WB to detect IAV hemagglutinin (HA), rabbit anti-H1N1 

Table 1   Composition of 10 mg 
TY-1 powder

Item Value

Total theaflavins (TFs) (0.165 mg) Theaflavin (TF1) 0.112 mg
Theaflavin-3-gallate (TF2A) 0.029 mg
Theaflavin-3′-gallate (TF2B) 0.014 mg
Theaflavin-3,3′-digallate (TF3) 0.010 mg

Total catechin (0.067 mg) Epicatechin (EC) 0.035 mg
Epigallocatechin (EGC) 0.005 mg
Epigallocatechin gallate (EGCG) 0.025 mg
Epicatechin gallate (ECG) 0.002 mg

Caffeine 0.180 mg
Theanine 0.130 mg
Gallic acid 0.104 mg
Total polyphenol 1.600 mg
Dietary fiber 0.440 mg
Dextrin 5.000 mg



155Journal of Natural Medicines (2022) 76:152–160	

1 3

(A/Puerto Rico/8/34) HA polyclonal antibody (Catalog No. 
11684-T62, Sino Biological Inc., Beijing, China) and mouse 
anti-rabbit IgG peroxidase conjugate (Catalog No. A1949, 
Clone: RG-96, Sigma-Aldrich, Inc., St. Louis, MO, USA) 
were used as the primary and secondary antibodies, respec-
tively. For WB to detect IAV neuraminidase (NA), rabbit 
anti-H1N1 NA (Catalog No. GTX125974, Gentex Inc., 
Zeeland, MI, USA) and mouse anti-rabbit IgG peroxidase 
conjugate were used as the primary and secondary antibod-
ies, respectively.

Hemagglutination and NA assays

The mixtures containing 7.25 log10 TCID50/mL purified IAV 
and 5.0 mg/mL TY-1 or 2.5 mg/mL dextrin were incubated 
at 25 °C for 48 h. Thereafter, the hemagglutination and NA 
assays were performed in line with the WHO manual on 
animal influenza diagnosis and surveillance [25].

Reverse transcription‑polymerase chain reaction 
(RT‑PCR)

The mixtures containing 7.25 log10 TCID50/mL purified IAV 
and 5.0 mg/mL TY-1 or 2.5 mg/mL dextrin were incubated 
at 25 °C for 48 h. After the incubation, RNA extraction and 
RT-PCR were performed as previously mentioned [24]. The 
sequence of primers targeting the IAV M gene used and each 
PCR condition are presented in Supplementary Table 1.

Transmission electron microscopy (TEM)

The mixtures containing 6.58 log10 TCID50/mL purified IAV 
and 5.0 mg/mL TY-1 or 2.5 mg/mL dextrin were incubated 
at 25 °C for 48 h. A two-step protocol [21] was followed in 
which TEM samples were loaded on a 400-mesh carbon-
coated collodion grid (NISSHIN EM Co., Ltd., Tokyo, 
Japan). On the grids, by using 2% phosphotungstic acid (pH 
6.5), the treated viruses were negatively stained for 2 min. 
Then, the samples were examined using TEM (HT7700; 
Hitachi High-Tech Co., Tokyo, Japan).

Statistical analysis

Student’s t test was used to determine statistically significant 
differences between the dextrin and TY-1 groups in each 
conducted experiment to evaluate viral and hemagglutina-
tion titers. One-way analysis of variance (ANOVA), fol-
lowed by Tukey’s post hoc test were used to determine sta-
tistically significant differences among the viral titers of the 
dextrin, catechins, TFs, TFs + catechins, and TY-1 groups. 
P values less than 0.05 indicated the existence of significant 
difference between the selected items.

Results

Virucidal efficacy of TY‑1 against IAV

First, the virucidal activities of different concentrations of 
TY-1 against IAV were evaluated. As a result, all tested 
concentrations (0.3, 0.6, 1.3, 2.5, 5.0 mg/mL) of TY-1 
exhibited statistically significant IAV-inactivating activi-
ties within 24 h, and these activities were concentration- 
and time-dependent. The TY-1 concentration of 5.0 mg/
mL displayed statistically significant virucidal activity 
within 30 min (a 1.33 log10 TCID50/mL reduction of the 
viral titer compared to the dextrin group). The viral titer 
in this group was below the detection limit in 6 h (≥ 5.17 
log10 TCID50/mL reduction) (Fig. 1a). The 5.0 mg/mL 
TY-1 contained 0.034 mg/mL catechins and 0.083 mg/mL 
TFs (Table 1). To evaluate the contribution of catechins 
and TFs, which are two of the main virucidal components 
of TY-1, to IAV inactivation, virucidal activity of 5.0 mg/
mL TY-1 was compared to that of the 0.034 mg/mL cat-
echins solution, 0.083 mg/mL TFs solution, and 0.116 mg/
mL TFs + catechins solution. The viral titers of the dex-
trin, catechins, TFs, TFs + catechins, and TY-1 groups 
were 6.88, 6.56, 5.88, 5.88, and ≥ 3.06 log10 TCID50/mL, 
respectively, within 3 h. Additionally, the viral titers of the 
dextrin, catechins, TFs, TFs + catechins, and TY-1 groups 
were 6.13, 5.94, 4.88, 4.38, and ≥ 2.25 log10 TCID50/mL, 
respectively, within 24 h. With this reaction time, the viral 
titer of the TFs group was partially lower than that of the 
dextrin group, but that of the TY-1 group was below the 
detection limit. Although the viral titer of the catechins 
group was comparable to that of the dextrin group, that 
of the TFs + catechins group was slightly but significantly 
lower than that of the TFs group (Fig. 1b). The 5.0 mg/mL 
TY-1 treatment, which exhibited the strongest virus-inac-
tivating activity, was further tested against IAV to fully 
illustrate the mechanism of its virucidal activity.

Impact of TY‑1 on IAV proteins

The impacts of the TY-1 treatment on the functions and 
structures of IAV structural proteins were analyzed. Here, 
purified IAV was used to eliminate the influence of non-
viral proteins. After treatment with 5.0 mg/mL TY-1 for 
48 h, the viral titers decreased to below the detection limit 
compared to that in the dextrin group (Fig. 2a). The impact 
of the TY-1 treatment under the same conditions on the 
hemagglutination activity of the HA protein was evalu-
ated by a hemagglutination assay. The hemagglutination 
titer of IAV treated with 5.0 mg/mL TY-1 for 48 h was 
significantly lower than that of the dextrin group (Fig. 2b). 



156	 Journal of Natural Medicines (2022) 76:152–160

1 3

Subsequently, the impacts of TY-1 on the structures of 
viral proteins were analyzed via SDS-PAGE. As a result, 
CBB staining showed reduced intensity for some viral 
protein bands for TY-1-treated IAV. Such changes were 
observed for the viral HA0 protein detected in the absence 
of 2-Me and for HA1 and HA2 in the presence of 2-Me, 
and all changes were tentatively recognized according to 
their apparent molecular mass. Contrarily, the intensities 
of bands which were presumed to be the M1 and NP pro-
teins were not affected by TY-1 exposure (Fig. 2c). To fur-
ther evaluate the impact of TY-1 on viral HA proteins, WB 
was achieved using a primary antibody that detects the HA 
protein of IAV. In line with the CBB staining results, TY-1 
treatment strongly reduced the intensity of the ~ 60 kDa 
HA0 protein band. Additionally, the intensities of addi-
tional > 75 kDa bands/ladder were stronger under the TY-1 
treatment than the dextrin treatment (Fig. 2d-left). While 
the intensities of the HA1 and HA2 bands were weaker 
under the TY-1 treatment than the dextrin treatment, 
the intensities of additional bands/ladder with a higher 

molecular mass were stronger under the TY-1 treatment 
than the dextrin treatment (Fig. 2d-right). Meanwhile, the 
effect of TY-1 on the NA activity and quality of the NA 
protein were analyzed by NA assay and WB, respectively. 
TY-1-treated IAV displayed substantially lower NA activ-
ity than dextrin-treated IAV (Fig. 3a). Accordingly, the 
results of WB using an antibody against the NA protein 
of IAV revealed disappearance of the NA protein band 
in TY-1-treated IAV, whereas it was clearly identified in 
dextrin-treated IAV (Fig. 3b). 

Impact of TY‑1 on the IAV genome

The impact of TY-1 on the IAV genome was explored via 
RT-PCR, in which primers were designed to amplify three 
different regions of the IAV M gene and produce ampli-
cons of different lengths. After 48 h of treatment with 
5.0 mg/mL TY-1, no PCR products were detected, unlike 
the results for dextrin-treated IAV (Fig. 4).
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TEM analysis

To analyze whether the TY-1 treatment induced abnormali-
ties of the viral particle structure and a reduction in the parti-
cle numbers, TEM observation of IAV particles treated with 
5.0 mg/mL TY-1 for 48 h was performed. Although abnor-
malities of TY-1-treated viral particles were not observed 
compared to dextrin-treated viral particles, the number of 
virions drastically decreased under TY-1 treatment com-
pared to those under the effects of dextrin exposure to IAV 
(Fig. 5a, b).

Discussion

Natural products have been tested as alternatives to con-
ventional treatments for various diseases in recent decades. 
Among natural products, medicinal plants can provide safe 
and effective therapies for many diseases [26, 27]. Among 
promising plants extracts, tea might be the most exten-
sively consumed beverage globally with a rich historical 
background [28]. The virucidal activity of TY-1 was con-
centration- and time-dependent, which was in line with the 
results of Ohba et al. [29], who reported the effectiveness of 
TFs against caliciviruses. TY-1 contains not only abundant 
TF derivatives, catechins, and gallic acid, but also a high 
amount of other polyphenols. Although TY-1 contains caf-
feine and theanine (Table 1), the virucidal activity of caf-
feine against an enveloped virus has not been observed [30], 
and there have been no reports proving obvious virucidal 
activity of theanine. Conversely, polyphenols, especially 
TFs and catechins, are widely reported to have virucidal 
activities against various types of viruses [12, 29, 31–34]. 
Here, our results revealed that TFs partially contributed to 

the virucidal activity of crude TY-1. Meanwhile, additive 
IAV inactivation was observed under the TFs + catechins 
treatment compared to that under TF treatment alone, and 
the contribution of catechins to IAV inactivation was limited 
(Fig. 1b). This result suggests that TFs are active compounds 
in TY-1, but other multiple virucidal polyphenolic com-
pounds, such as catechins, contribute to the comprehensive 
virucidal activity of TY-1. Since it is expensive to prepare 
large quantities of pure TFs and other compounds with simi-
lar bioactive levels of TY-1, the application of TY-1 might 
be a more realistic approach to IAV infection control.

The results for the hemagglutination and NA assays and 
SDS-PAGE in the current study indicated the disruption of 
both the HA and NA proteins of IAV (Figs. 2 and 3, respec-
tively). Particularly, the target sites of TY-1 in the HA and 
NA proteins included regions that are involved in hemag-
glutination activity and NA activity, which may be involved 
in the virucidal activity of TY-1. The impact of TY-1 on the 
HA protein is consistent with previous reports in which TF, 
EGCG, and ECG affected hemagglutination activity of IAV 
[12, 13, 16]. Similarly, the impact of TY-1 on the NA protein 
is also consistent with previous reports in which the antiviral 
activity of TF, EGCG, and ECG on IAV was attributed to 
NA inhibition [13, 16, 35]. As a result of WB targeting HA 
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Fig. 4   Effect of TY-1 on the influenza A virus (IAV) genome. Dex-
trin  (Dex) and TY-1 were mixed with a solution containing purified 
IAV and stored at 25 °C for 48 h. The viral RNA extracted from the 
treated viruses was used for reverse transcription-polymerase chain 
reaction (RT-PCR). RT-PCR was performed using IAV-Primer sets 1, 
2, and 3, which amplify 982-, 253-, and 320-bp of the IAV M gene, 
respectively. The results are representatives of more than two individ-
ual experiments. M: marker
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Fig. 5   Transmission electron microscopy (TEM) of TY-1-treated 
influenza A virus (IAV) virions. Dextrin (a) and TY-1 (b) were mixed 
with a solution containing purified IAV and stored at 25 °C for 48 h. 
After treatment, the viral particles were observed using TEM. The 
results are representative of dextrin- and TY-1-treated viral particles 
within a single 6.25 μm2 field (upper panel) and 0.52 μm2 field (lower 
panel), respectively



159Journal of Natural Medicines (2022) 76:152–160	

1 3

protein, the TY-1-induced reduction of the band intensity of 
HA0, which consists of HA1 and HA2 subunits, seemed to 
be greater than the reduction of the band intensities of indi-
vidual HA1 and HA2 subunits. Additionally, TY-1 treatment 
enhanced the appearance of high molecular mass bands/lad-
ders (Fig. 2d). These bands/ladders are considered HA mul-
timers or HA aggregates. Similar appearances among high 
molecular mass bands/ladders of the viral spike protein have 
been observed via another polyphenolic compound treatment 
[36]. Polyphenols have been reported to interact with pro-
teins in both covalent and non-covalent interactions, which 
induces the cross-linking of proteins and formation of a high 
molecular mass complex [37]. Hence, our results suggest 
that polyphenolic compounds in TY-1 possibly interact with 
some sites in both HA1 and HA2 subunits, which caused 
the aggregation of these proteins. Therefore, the reduction 
of the band intensity of HA0, which has multiple sites of 
action located in both HA1 and HA2 subunits, may have 
been greater than those of individual subunits. Conversely, 
while the NA band almost disappeared after TY-1 treatment, 
high molecular band/ladders did not appear (Fig. 3b). This 
result suggests that TY-1 induces not only the aggregation 
of viral proteins but also their destruction. Discrepancies 
in the band patterns of TY-1-treated HA and NA proteins 
can be due to differences in their amino acid sequences and 
secondary/tertiary structures.

In addition, TEM analysis performed in this study 
revealed a substantial decrease in the number of IAV par-
ticles after TY-1 treatment, suggesting that TY-1 dam-
ages the morphology of virions and subsequently inhibits 
viral adsorption onto and penetration into host cells. It was 
also found that TY-1 disrupted viral genomes. This result 
agrees with previous reports that demonstrated other poly-
phenol-rich plant-derived extracts that induced the viral 
RNA destruction against multiple virus species [24, 36]. 
Our findings suggest that the virucidal activity of TY-1 
could be attributable to several factors rather than a single 
mechanism. It has been mentioned that the number of gal-
loyl groups on the chemical structure of TF and catechins 
appears to be directly related to their antiviral activities [13, 
18, 38]. In addition, the hydroxyl groups of TFs are report-
edly more important than the galloyl groups for antiviral 
activity against caliciviruses [29].

TY-1, with which the abundant polyphenol content, may 
be applicable as an antiviral mouthwash or troche. This idea 
is supported by previous reports that gargling with green tea 
and black tea extract decreased the incidence of influenza 
virus infection [39–41]. In addition, Lee et al. [42] found 
that water and diet comprising green tea components sup-
pressed influenza virus replication in animal experiments. 
Although our efforts in this study only focused on the direct 
virucidal activity of TY-1, further studies evaluating the 
anti-IAV activity of TY-1 in infected cells, animals, and 

patients are also important to clarify its effectiveness for 
IAV control measures. These studies may support the idea 
that the practical use of virucidal supplements developed 
from TY-1 for the control of IAV infection.

Conclusion

In conclusion, this study revealed the concentration- and 
time-dependent IAV-inactivating activity of TY-1 enriched 
with tea-derived TF derivatives and other virucidal poly-
phenols. Of note, TY-1 disrupted the IAV spike proteins 
and genome and destroyed viral particles. We anticipate that 
these findings support the promise of TY-1 as a virucidal 
supplement that contributes to the control of IAV infection.
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