
Brain network mechanisms of visual shape completion

Brian P. Keanea,b,*, Deanna M. Barchc, Ravi D. Milld, Steven M. Silversteina,b,e, Bart 
Krekelbergd,1, Michael W. Coled,1

aUniversity Behavioral Health Care, Department of Psychiatry, and Center for Cognitive Science, 
Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA

bDepartments of Psychiatry and Neuroscience, University of Rochester Medical Center, 601 
Elmwood Ave, Rochester, NY 14642, USA

cDepartments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington 
University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA

dCenter for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 
197 University Ave 07102, USA

eDepartment of Ophthalmology, University of Rochester Medical Center, 601 Elmwood Ave, 
Rochester, NY, USA

Abstract

Visual shape completion recovers object shape, size, and number from spatially segregated 

edges. Despite being extensively investigated, the process’s underlying brain regions, networks, 

and functional connections are still not well understood. To shed light on the topic, we 

scanned (fMRI) healthy adults during rest and during a task in which they discriminated pac­

man configurations that formed or failed to form completed shapes (illusory and fragmented 

condition, respectively). Task activation differences (illusory-fragmented), resting-state functional 

connectivity, and multivariate patterns were identified on the cortical surface using 360 predefined 

parcels and 12 functional networks composed of such parcels. Brain activity flow mapping 

(ActFlow) was used to evaluate the likely involvement of resting-state connections for shape 
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completion. We identified 36 differentially-active parcels including a posterior temporal region, 

PH, whose activity was consistent across 95% of observers. Significant task regions primarily 

occupied the secondary visual network but also incorporated the frontoparietal dorsal attention, 

default mode, and cingulo-opercular networks. Each parcel’s task activation difference could be 

modeled via its resting-state connections with the remaining parcels (r=.62, p<10−9), suggesting 

that such connections undergird shape completion. Functional connections from the dorsal 

attention network were key in modelling task activation differences in the secondary visual 

network. Dorsal attention and frontoparietal connections could also model activations in the 

remaining networks. Taken together, these results suggest that shape completion relies upon a 

sparsely distributed but densely interconnected network coalition that is centered in the secondary 

visual network, coordinated by the dorsal attention network, and inclusive of at least three other 

networks.
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Secondary visual network; Dorsal attention network; Frontoparietal network; Resting-state 
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1. Introduction

Visual shape completion plays a fundamental role in normal seeing, extracting object shape, 

size, position, and numerosity from the relative alignments and orientations of spatially 

segregated edges. Converging evidence from human and non-human primates suggests that 

the process relies upon V4, LO, V2, and V1, with feedback cascading from the former to 

the latter two regions. For example, transcranial magnetic stimulation applied earlier to LO 

(100–122 ms) or later over V1/V2 (160–182 ms) worsened discrimination of completed 

shapes (Wokke et al., 2013). Multielectrode array recordings of V4 revealed differential 

activity for completed shapes within ~150 ms, which could plausibly precede low-level 

visual activations (Cox et al., 2013). In single-cell recordings, deep layer V2 cells responded 

~100 ms post-stimulus onset and deep layer V1 cells responded ~120–190 ms (Lee and 

Nguyen, 2001). In addition to feed-back, long-range horizontal excitatory connections 

between V1 pyramidal cells also bolster edge integration (Iacaruso et al., 2017). These 

four regions —V1, V2, V4, and LO —have been termed the “classical” regions of shape 

completion (Keane, 2018) given their inter-connectedness and well-established role in the 

process. 1

What other regions participate in shape completion? At present there is no consensus (M. 

M. Murray and Herrmann, 2013; Seghier and Vuilleumier, 2006). Fusiform gyrus, V3A, and 

V3B/KO have been implicated (Mendola et al., 1999; M. Murray et al., 2002), although 

the last region has been found mainly, but not exclusively, with dynamic illusory contour 

stimuli (Kruggel et al., 2001). In a magnetoencephalography (MEG) study, adults passively 

viewing briefly-presented pac-man stimuli (30 ms) exhibited more orbitofrontal (OFC) 

activation relative to a control stimulus 340 ms post stimulus onset (Halgren et al., 2003). 

1Shape completion effects in IT (Huxlin et al., 2000; Sáry et al., 2008) also count as evidence for classical regions since this structure 
is a plausible LO homologue (Orban et al., 2004).
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The OFC effect has not been replicated perhaps because older fMRI studies had coarser 

spatial resolution, more partial voluming, and thus more signal drop-out near the sinuses 

(due to magnetic field inhomogeneities). Other studies reported activation in the frontal 

or posterior parietal cortices for illusory “Kanizsa” shapes, but in certain instances there 

was no control condition or the effects did not eclipse those found for a control condition 

(Doniger et al., 2002; Foxe et al., 2005; M. M. Murray et al., 2004). A more recent review 

of illusory contour perception did not report any role for frontal/prefrontal or frontoparietal 

cortex (M. M. Murray and Herrmann, 2013). Finally, many of the studies that searched for 

shape completion effects across cortex invoked MEG, EEG, or lower-resolution MRI, and 

thus had limited ability to locate activations with spatial precision.

Another unanswered question pertains to the functional connections and large-scale 

networks of shape completion. A search of relevant key terms on PubMed retrieved 

892 items on shape completion but the list dwindled to zero when either “functional 

connectivity” or “functional network” was conjoined to the search. 2 Couching a process 

in terms of its encompassing network is useful. It allows for a better interpretation of 

co-modulated regions that fall within that same network. It allows functional interactions to 

be understood in a larger context and motivates further tests on how the networks interact. 

Finally, because net-works are much larger functional units and much more readily aligned 

between subjects, network-based results are easier to generalize across subjects (Ji et al., 

2019).

There are good reasons to document the neural basis of shape completion. The process is 

phylogenetically primitive and ontogenetically early, underscoring its importance for normal 

seeing (Nieder, 2002; Valenza and Bulf, 2010). Moreover, shape completion deficits arise 

during brain injury (Vuilleumier et al., 2001), developmental agnosia (Gilaie-Dotan et al., 

2009), sight restoration (Ostrovsky et al., 2009), and neuropsychiatric illness (Keane et al., 

2019). Knowing the neural basis of shape completion constitutes a first step for developing 

novel pharmacologic or stimulation-based interventions.

We investigated the brain network mechanisms of shape completion with four task scans and 

one resting-state scan. Our ability to detect effects was augmented by having used a higher 

spatial resolution (voxel = 2.4 mm iso) to reduce signal drop-out near the ventral surface, 

a cortex-wide surface-based analysis to improve anatomical accuracy (Glasser et al., 2013), 

and a parcellation scheme to non-arbitrarily segregate cortex into a manageable number of 

functional units. In the task scans, participants discriminated pac-man configurations that 

formed or failed to form visually completed shapes (illusory and fragmented condition, 

respectively) (Ringach and Shapley, 1996). Shape completion was operationalized as the 

difference in performance or activation between the two conditions. This so-called “fat/thin” 

task was chosen because it has been extensively investigated via psychophysics, fMRI, EEG, 

and TMS and because it relies upon the classical brain regions just mentioned (Gold et al., 

2000; Keane et al., 2007; Maertens et al., 2008; M. M. Murray et al., 2006; Pillow and 

Rubin, 2002; Wokke et al., 2013). The resting-state scan data allowed us to compute the 

resting-state functional connectivity (RSFC) matrix between all pairs of regions, which in 

turn allowed us to assess the likely utility of the functional connections for shape completion 

via a recent brain activity mapping procedure dubbed “ActFlow” (Cole et al., 2016). The 
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ActFlow method estimates the actual task activation difference (illusory-fragmented) for a 

given target region by taking the sum of all other task activation differences (in all other 

regions) weighted by their functional connectivity strength to that target. If the correlation 

between actual and estimated activation differences is greater than zero across regions 

for a subject and if this correlation is significantly above zero across subjects (evaluated 

via a t-test), then the resting-state connections are likely involved in shape completion. 

The ActFlow approach is justified since task and rest generate highly similar brain-wide 

functional connectivity (Cole et al., 2014) and since integrating RSFC into ActFlow has 

yielded accurate inferences of task- evoked activations in previous studies (Cole et al., 

2016).

The results are described in six sections. First, we performed a task activation analysis 

comparing the task conditions, with careful consideration given to between-task difficulty 

differences. Second, null V1/V2 effects in the univariate analysis motivated us to perform a 

post-hoc multivariate pattern analysis (MVPA) to probe for finer-grained task effects. Third, 

we divided the parcels into 12 different functional networks (Ji et al., 2019) and quantified 

each network’s contribution to shape completion by applying MVPA to parcel-wise task­

activations. Fourth, we determined the inter-connectedness of task regions by computing 

the resting-state functional connectomes (RSFC matrices). Fifth, we demonstrated the 

likely utility of these functional connections for shape completion via ActFlow; that is, 

we showed that the task activation difference in each parcel could be inferred from the 

resting-state connections to that parcel along with the task activation differences of the 

remaining parcels. Finally, again using ActFlow, we determined which network contained 

the most informative resting-state connections for inferring differential task activity in the 

secondary visual network (whose relevance was established in Step 3) and in all remaining 

networks. This last step was done by adding each network individually to determine how 

ActFlow inferences changed (improved). We conclude by suggesting the existence of a 

shape completion network coalition, which is seated in the secondary visual network, is 

coordinated by the dorsal attention net-work, incorporates pieces of three other networks, 

and interacts with early visual areas at a vertex-wise spatial resolution.

2. Materials and methods

2.1. Participants

The sample consisted of healthy controls who participated in a larger clinical study on 

the neural basis of abnormal visual perceptual organization in schizophrenia and bipolar 

disorder. These results are thus considered a first step in identifying how the brain represents 

visually completed shapes in health and disease. (Patient data collection is still ongoing 

and will be reported once sufficient sample sizes are achieved.) The sample comprised 20 

psychophysically naïve participants (2 left handed, 8 females) from the Newark, NJ (USA) 

area with an average age of 37.6 and a racial composition of 35% African American, 10% 

Asian, 35% Caucasian, 15% mixed, and 5% unknown. A quarter of the participants were 

of Hispanic ethnicity. To obtain a more representative sample, we preferentially recruited 

controls without four-year college degrees, so that the average number of years of education 

was 14.8.
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The inclusion/exclusion criteria were: (1) age 21–55; (2) no electro-convulsive therapy in 

the past 8 weeks; (3) no neurological or pervasive developmental disorders; (4) no drug 

dependence in the last three months (i.e., participants must not have satisfied more than one 

of the 11 Criterion A symptoms of DSM-5 substance use disorder in the last three months); 

(5) no positive urine toxicology screen or breathalyzer test on the day of testing; (6) no 

brain injury due to accident or illness (e.g., stroke or brain tumor); (7) no amblyopia (as 

assessed by informal observation and self-report); (8) visual acuity of 20/32 or better (with 

corrective lenses if necessary); (9) the ability to understand English and provide written 

informed consent; (10) no scanner related contraindications (no claustrophobia, an ability to 

fit within the scanner bed, and no non-removable ferromagnetic material on or within the 

body); (11) no DSM-5 diagnosis of past or current psychotic or mood disorders; (12) no 

current psychotropic- or cognition-enhancing medication; (13) no first-degree relative with 

schizophrenia, schizoaffective, or bipolar disorder (as indicated by self-report).

2.2. Assessments

Psychiatric diagnosis exclusion was assessed with the Structured Clinical Interview for 

DSM-5 (SCID) (APA, 2000; First et al., 2002). Intellectual functioning of all subjects 

was assessed with a brief vocabulary test that correlates highly (r=0.80) with WAIS-III 

full-scale IQ scores (Shipley et al., 2009, p. 65; Canivez and Watkins, 2010). Visual acuity 

was measured with a logarithmic visual acuity chart under fluorescent overhead lighting 

(viewing distance = 1 meters, lower limit =20/10), and in-house visual acuity correction 

was used for individuals without appropriate glasses or contacts. Written informed consent 

was obtained from all subjects after explanation of the nature and possible consequences of 

participation. The study followed the tenets of the Declaration of Helsinki and was approved 

by the Rutgers University Institutional Review Board. All participants received monetary 

compensation and were naive to the study’s objectives.

2.3. Experimental design and statistical analysis

2.3.1. Stimulus and procedure—Participants performed a “fat/thin” shape 

discrimination task in which they indicated whether four pac-men formed a fat or thin 

shape (“illusory” condition) or whether four downward-facing pac-men were uniformly 

rotated left or right (“fragmented” condition) (see Fig. 1). The fragmented task is a suitable 

control in that it involves judging the lateral properties of the stimulus—just like the illusory 

condition—and in that it uses groupable elements (via common orientation, Beck, 1966). 

As described below, the two tasks share most stimulus and procedural details (stimulus 

timing, pac-man features, spatial distribution, etc.). Accordingly, the two tasks rely on 

many of the same processes: (1) learning two response alternatives from a limited number 

of practice exemplars and instructional screens (novel task learning); (2) transferring the 

learned alternatives to long term memory (consolidation); (3) attending to four discrete 

spatial regions (divided attention); (4) continuously monitoring the display over specific 

trial intervals (temporal attention); (5) capturing and extracting spatial information from 

briefly presented arrays (visual short term memory); (6) discerning fine-grained orientation 

differences (orientation perception); and (7) repeating the foregoing processes over the 

task duration (sustained motivation) (Keane et al., 2019). Perhaps because of all these 

similarities, the two tasks generate similar performance thresholds (Keane et al., 2014) 
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and are highly correlated behaviorally (Keane et al., 2019), which should not be taken for 

granted being that extremely similar visual tasks are often uncorrelated even with large 

samples (Grzeczkowski et al., 2017). In sum, by having employed a closely matched and 

already tested control condition, we are in a position to identify mechanisms relatively 

unique to shape completion.

Subjects viewed the stimuli in the scanner from a distance of 99 cm by way of a mirror 

attached to the head coil. There were four white sectored circles (radius = .88 deg, or 

60 pixels) centered at the vertices of an invisible square (side = 5.3 deg, or 360 pixels), 

which itself was centered on a gray screen (RGB: 127; see Fig. 3). Stimuli were initially 

generated with MATLAB and Psychtoolbox code (Pelli, 1997) with antialiasing applied for 

edge artifact removal; images were subsequently presented in the scanner via PsychoPy 

(version 1.84; (Peirce, 2007) on a MacBook Pro. Illusory contour formation depended on the 

geometric property of “relatability” (Kellman and Shipley, 1991): when the pac-men were 

properly aligned (relatable), the illusory contours were present (the “illusory” condition); 

when misaligned (unrelatable), they were absent (“fragmented” condition).

Within each of the four runs, there was one block of each task condition, which has the 

advantage of heightening task-related activation differences. In the illusory block, subjects 

indicated whether four pac-men formed a fat or thin shape; in the fragmented block, subjects 

indicated whether four downward-facing pac-men were each rotated left or right (see Fig. 

1). Block ordering (illusory/fragmented or vice versa) alternated from one run to the next. 

Each block had two difficulty levels, corresponding to the magnitude of pac-man rotation 

(+/− 10 degrees “easy”, or +/− 3 degrees of rotation, “hard”). Within each block, there 

were 20 task trials and 5 fixation trials. Half of the task trials were easy, and half were 

hard; half of these two trial types were illusory, and half were fragmented. The ordering of 

these trial types (including fixation) was counterbalanced. Each trial consisted of a 250 ms 

pac-man stimulus (task trial) or 250 ms fixation dot (fixation trial), followed by a 2750 ms 

fixation dot. Subjects needed to issue a response before the end of a task trial; otherwise, 

a randomly selected response was assigned at the end of that trial and the following trial 

ensued. Feedback was provided at the end of each run in the form of accuracy averaged 

cumulatively across all test trials.

Subjects received brief practice outside of and within the scanner before the actual 

experiment. During practice, subjects were reminded orally and in writing to keep focused 

on a centrally-appearing fixation point for each trial. To ensure that subjects thoroughly 

understood the task, pictures of the fat/thin stimuli were shown side-by-side and in 

alternation so that the differences could be clearly envisaged. Subjects issued responses with 

a two-button response device that was held on their abdomens with their dominant hand; 

subjects practiced with this same type of device outside of the scanner facility. Feedback 

after each trial was provided during the practice phase only (“correct”, “incorrect”, or“slow 

response”).

2.3.2. fMRI acquisition—Data were collected at the Rutgers University Brain Imaging 

Center (RUBIC) on a Siemens Tim Trio scanner. Whole-brain multiband echoplanar 

imaging (EPI) acquisitions were collected with a 32-channel head coil with TR = 785 ms, 
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TE = 34.8 ms, flip angle = 55°, bandwidth 1894 Hz/Px, in-plane FoV read = 211 mm, 

60 slices, 2.4 mm isotropic voxels, with GRAPPA (PAT = 2) and multiband acceleration 

factor 6. Whole-brain high-resolution T1-weighted and T2-weighted anatomical scans were 

also collected with 0.8 mm isotropic voxels. Spin echo field maps were collected in both 

the anterior-to-posterior and posterior-to-anterior directions in accordance with the Human 

Connectome Project preprocessing pipeline (version 3.25.1) (Glasser et al., 2013). After 

excluding dummy volumes to allow for steady-state magnetization, each experimental 

functional scan spanned 3 min and 41 s (281 TRs). Scans were collected consecutively 

with short breaks in between (subjects did not leave the scanner). An additional 10-minute 

resting-state scan (765 TRs) occurred in a separate session, with the same pulse sequence. 

Note that collecting multiband (rather than single-band) data allowed better detection of 

structures along the ventral cortical surface (by minimizing partial voluming) (Merboldt 

et al., 2000; Smith et al., 2013). There is also evidence that—at least with some pulse 

sequences—multiband increases the effective temporal signal-to-noise ratio (with its higher 

temporal resolution) and improves the detection of group-level resting-state and task-evoked 

networks (Bhandari et al., 2020).

2.3.3. fMRI preprocessing—Preprocessing steps are highly similar to earlier studies 

(Ito et al., 2017) but are repeated below. Imaging data were preprocessed using the publicly 

available Human Connectome Project minimal preprocessing pipeline which included 

anatomical reconstruction and segmentation, and EPI reconstruction, segmentation, spatial 

normalization to standard template, intensity normalization, and motion correction (Glasser 

et al., 2013). All subsequent preprocessing steps and analyses were conducted on CIFTI 

64k grayordinate standard space. This was done for the parcellated time series using the 

Glasser et al. (2016) atlas (i.e., one BOLD time series for each of the 360 cortical parcels, 

where each parcel averaged over vertices). The Glasser surface-based cortical parcellation 

combined multiple neuroimaging modalities (i.e., myelin mapping, cortical thickness, task 

fMRI, and RSFC) to improve confidence in cortical area assignment. The parcellation thus 

provides a principled way to parse the cortex into manageable number of functionally 

meaningful units and thereby reduce the number of statistical comparisons. Note also that 

there are 97 newly-defined cortical areas in this parcellation, making it possible to identify 

entirely new shape completion regions. To conduct a follow-up MVPA analysis within V1 

and V2 (see Results), we also per-formed an otherwise identical preprocessing pipeline 

on the vertex-wise data. In all cases, we performed nuisance regression on the minimally 

preprocessed task data using 24 motion parameters (6 motion parameter estimates, their 

derivatives, and the squares of each) and the 4 ventricle and 4 white matter parameters 

(parameter estimates, the derivates, and the squares of each) (Ciric et al., 2017). For the task 

scans, global signal regression, motion scrubbing, spatial smoothing, and temporal filtering 

were not used. Each run was individually demeaned and detrended (2 additional regressors 

per run).

The resting-state scans were preprocessed in the same way as the parcellated task data 

(including the absence of global signal regression) except that we removed the first five 

frames and applied motion scrubbing (Power et al., 2012). That is, whenever the framewise 

displacement for a particular frame exceeded 0.3 mm, we removed that frame, one prior 
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frame, and two subsequent frames (Schultz et al., 2018). Framewise displacement was 

calculated as the Euclidean distance of the head position in one frame as compared to the 

one preceding.

Functional and anatomical scans were visually inspected for quality. In addition, an MRI 

quality control package (“MRIQC”) and an accompanying random forest classifier were 

used to confirm that all T1 anatomical scans were artifact free (Esteban et al., 2017). (Two 

other participants, not included in our analyzed sample, had been flagged by MRIQC as 

having low quality T1 scans.) The mean framewise displacement across scans before motion 

correction or scrubbing was remarkably similar in the visual completion and rest scans: 

0.142 mm for visual completion (averaged across scans) and 0.143 mm for rest. The average 

number of frames remaining after scrubbing for the rest scan was 696 [range: 548–760].

For the task scans, there were 6 task regressors, one for each instructional screen (illusory/

fragmented) and one for each of the four trial types (illusory/fragmented,easy/hard). A 

standard fMRI general linear model (GLM) was fit to task-evoked activity convolved 

with the SPM canonical hemodynamic response function (using the function spm_hrf.m). 

Betas for the illusory and fragmented condition were derived from all trials of the relevant 

condition across all four runs. For the classifier analyses, described below, task activation 

betas were derived separately for each run, but all other steps were the same as described.

2.3.4. Task activation and multivariate pattern analyses—Analyses were 

performed with RStudio (Version 1.2.1335) and MAT-LAB R2018b. Cortical visualizations 

were created with Workbench (version 1.2.3). There were eight parcels of a priori interest in 

each hemisphere. These ROIs have been given different names in different research studies 

(shown in parentheses) and are as follows: V1 (17, hOC1, OC, BA17), V2 (18, hOC2, 

OB, BA18), V4 (V4d, V4v, hV4, hOC4v, hOC4lp), V4t (LO2), LO1 (LO2, hOC4la); LO2 

(LO1, hOC4la), LO3 (hOC4la), and V3CD (V3A,V3B, hOC4la) ( Glasser et al., 2016, see 

p. 81 of Supplementary Neuroanatomical Results). Note that V3CD was included because 

it corresponds to the anterior third of the middle and inferior lateral occipital gyri (area 

hOc4la as labeled by Malikovic et al., 2016). Statistical correction, when applied, was via 

the False Discovery Rate (FDR) method (Benjamini and Hochberg, 1995). For the univariate 

task activation analysis, regions that were and were not of a priori interest were separately 

FDR-corrected. (Statistical correction is indicated explicitly in the text below via pcorr 

values).

For the group-level task activation analyses, betas for each subject were derived for each 

parcel, averaged across difficulty condition, and subtracted (illusory-fragmented). These 

values were then compared to zero across subjects with a one-sample t-test. As a control 

analysis, we did the same as just described, except that we averaged across task condition 

and contrasted the easy/hard conditions. As a further demonstration of the robustness of the 

univariate results, we performed individual subject parcel-wise task activation analyses for 

the illusory/fragmented contrast (Table 1), using the subject’s estimated covariance matrix, 

task betas, and MATLAB’s linear hypothesis test function (linhyptest).
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The location and role of each parcel was considered within the con-text of their functional 

network affiliations. We used the Cole-Anticevic Brain Network partition, which comprised 

12 functional networks that were constructed from the above-mentioned parcels and that 

were defined via a General Louvain community detection algorithm using resting-state 

data from 337 healthy adults (Ji et al., 2019 see Fig. 4 A). This partition included: 

well-known sensory networks—primary visual, secondary visual, auditory, somatosensory; 

previously identified cognitive networks—frontoparietal, dorsal attention, cingulo-opercular, 

and default mode; a left-lateralized language network; and three entirely novel networks—

posterior multimodal, ventral multimodal, and orbito-affective. (For a full list of parcels 

in the networks central to our analyses, see Supplementary material) This partition passed 

several quality control measures of stability and reliability, was biologically motivated and 

statistically principled, and was able to demonstrate increased levels of task activations at the 

network level.

Multivariate pattern analyses were performed on the activation betas at two levels of spatial 

granularity. First, we examined whether 12 different functional networks could individually 

classify task condition (illusory vs fragmented) or difficulty condition (easy vs hard) using 

their within-network mean parcel activations as features. Next, on a follow-up post-hoc 

analysis, we examined, for each parcel, whether vertex-wise activations could classify task 

condition. MVPA classification accuracy in each case was assessed via leave-two-runs-out 

cross validation. For example, when classifying task condition for each participant, we 

examined whether the betas for each of the two left-out runs better correlated to the illusory 

or fragmented betas averaged across the remaining runs. Note that each run contained 

an equal number of trials from each of the two conditions, ensuring balanced condition 

types across test and training. Pearson correlation served as the minimum distance classifier 

(i.e., 1-r) (Mur et al., 2009; Spronk et al., 2018). Results were averaged for each subject 

across the 6 possible ways to divide the four runs between test and validation. Statistical 

significance was determined via permutation testing, which generated a null distribution of 

classification accuracies through the same procedure with 10,000 samples. That is, for each 

sample, the “illusory” and “fragmented” labels were shuffled for each subject and run, and 

the classification results were averaged across subjects and across the 6 possible divisions of 

testing and validation data sets.

2.3.5. Resting-state functional connectivity derivation—We determined the 

resting-state functional connections for each parcel. Specifically, for each target parcel 

time series, we decomposed the time series of the remaining (N = 359) parcels into 100 

components, regressed the target onto the PCA scores, and back-transformed the PCA betas 

into a parcel-wise vector. The average amount of variance explained by the components 

across subjects was 84% [range: 81–88%]. The RSFC computation is equivalent to running 

a multiple regression for each parcel, with all other parcels serving as regressors. An 

advantage of using multiple regression is that it removes indirect connections (Cole et al., 

2016). For example, if there exists a true connection from A to B and B to C, a Pearson 

correlation, but not regression, would incorrectly show connections between A and C. 

PC regression was preferred over ordinary least squares to prevent over-fitting (using all 

components would inevitably capture noise in the data). Aside from revealing the functional 
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connectedness of task-modulated regions, the RSFC matrix allowed an assessment of the 

utility of these connections for estimating task activation differences via ActFlow.

2.3.6. Activity flow mapping—Fig. 6 illustrates how we used resting-state data 

to predict illusory-fragmented task activation differences across cortex (“Activity Flow 

mapping” or simply “ActFlow”). For each subject, the task activation difference in a held­

out parcel (‘j’ in Fig. 6 A) was predicted as the weighted average of the activation difference 

of all other parcels, with the weights given by the resting-state connections. That is, for each 

subject, each held out region’s predicted value was given as the dot product of the values in 

the remaining regions (‘i’ in Fig. 6 A) and the subject’s restFC between j and i (using the FC 

weight from the appropriately oriented regression, i.e., j as the target and i as the predictor). 

The accuracy of the activity flow predictions was then assessed by computing the overlap 

(Pearson correlation) between the predicted and actual task activation difference vectors. 

Overlap was expressed by comparing actual and predicted activation differences for each 

subject, and then averaging the resulting Fisher-transformed r values (rz) across subjects 

(subject-level overlap). Statistical significance was determined by comparing the vector of r 

z values to zero via a one-sample t-test. Overlap was expressed by averaging the predicted 

values across subjects and then comparing that to the averaged actual values, which will 

yield a single Pearson r value (group-level overlap). If a given RSFC matrix can be used to 

predict task activation differences, that would show that those same functional connections 

likely contribute to shape completion. Below, we applied ActFlow once to the full RSFC 

matrix and once to the matrix involving only the task modulated regions.

Since the secondary visual network was central to the shape completion network coalition, 

we also examined how ActFlow estimates improved in that network, when any of the 

remaining four networks were individually added (Fig. 7). This change was determined 

simply by comparing via a paired t-test the prediction accuracies (correlations) before and 

after adding each network. A significant improvement would indicate which other networks, 

if any, guide activity flow in the secondary visual network. The success of the ActFlow 

method also prompted us to also consider whether adding connections from any of the five 

task modulated networks could improve ActFlow accuracy in the remaining networks. A 

significant improvement would indicate which other net-work, if any, explains differential 

activity in the remaining networks.

3. Results

3.1. Behavioral task performance

Employing a 2 (task condition) by 2 (difficulty) within-subjects ANOVA (type III sum 

of squares), we found that performance was better in the fragmented than illusory 

condition (89.6% versus 82.9%, F(1,19)= 14.8, p< .01) and better in the (“easy”) large­

rotation condition than the (“hard”) small-rotation condition (F(1,19)= 133, p<10−9) (See 

Supplementary Fig. S1 for graphical depiction of the behavioral results). The accuracy 

difference between illusory and fragmented conditions did not depend on difficulty level, 

although there was a trend toward a greater difference on the smaller rotation condition 

(two-way interaction: (F(1,19)= 3.6, p=.07). The marginal interaction probably arose from 
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ceiling effects for the fragmented condition since there was no corresponding interaction in 

the reaction time data (F(1,19)= .14, p=.7). Reaction time data where in other ways entirely 

predictable from the accuracy results, with faster performance in the fragmented than the 

illusory condition (F(1,19)= 5.1, p=.04), and faster performance in the easy than the hard 

condition (F(1,19)= 21.3, p<.001). The no-response trials were infrequent, occurring on 

only 5.5% of the trials on average. The frequency of no-response trials did not vary with 

difficulty level or task condition nor was there an interaction between difficulty and task 

condition (ps>.25). Consistent with past results (Keane et al., 2019), the fragmented and 

illusory conditions were highly correlated (accuracy—r=.74, p<.001; RT—r=.81, p<.0001), 

confirming that they were reliant upon a common core of mechanisms. The correlations 

were robust and remained significant when calculated with non-parametric tests or after 

log-transforming the RT data.

3.2. Shape completion effects across five large-scale functional networks

A general linear model task activation analysis determined the parcels that were 

differentially active in the illusory versus fragmented condition. Overall, 36 parcels reached 

significance in five different net-works (Table 1; Fig. 2). Of these parcels, 29 (81 percent) 

were more activated for illusory relative to fragmented trials (Fig. 2). A priori ROIs, 

when significant, were all more active relative to the control condition; these include 

bilateral V3CD, V4, L01, and left L02. With the exception of left V4, the ROI effects 

were robust enough to survive a cortex-wide FDR correction. Notable null results were 

V2 and V1 which will be discussed further below. Additional positively and significantly 

activated regions resided in the posterior parietal, dorsolateral prefrontal, and orbitofrontal 

regions; they belonged primarily to the secondary visual, dorsal attention, and frontoparietal 

networks. All seven of the regions that were negatively activated in the illusory-fragmented 

contrast belonged to the default mode network. Note that this finding reflects this network’s 

established on-task deactivation profile (Anticevic et al., 2012), i.e. greater deactivation for 

the illusory relative to the fragmented condition, consistent with greater task engagement in 

the illusory condition.

Because task difficulty was greater in the illusory task, perhaps task difficulty, rather than 

shape completion, drove the effects just described. We addressed this concern in three ways. 

First, we performed a contrast comparing activation in the easy versus hard trials, averaged 

across task conditions. To make the results comparable to before, FDR correction was 

applied separately to regions that were and were not ROIs. We found 51 parcels that were 

differentially active, but only eight overlapped with the illusory-fragmented contrast (see 

Fig. 3). Five of these parcels were less active in both the hard-easy and illusory-fragmented 

comparisons, and all belonged to the default mode network: bilateral a24, right d23ab, 

right 31pv, and right PGi. Three parcels were more active in both contrasts (bilateral IFJp, 

left MIP). None of the 16 ROIs of visual shape completion were related to task difficulty. 

Thus, on this analysis, while the above-mentioned eight parcels were confounded with task 

difficulty, the remaining 28 significant parcels in the illusory/fragmented comparison were 

not confounded.
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To further assess the extent to which task difficulty might account for the aforementioned 

shape completion effects, we ran an additional analysis that was restricted to the 10 

participants who did the best in the illusory relative to the fragmented condition, so that 

there was no longer an accuracy difference (t(9)=−0.443, p=0.669, Mean difference in pro­

portion correct=−0.011). In this sample, there was also no reaction time difference between 

task conditions (t(9)=1.63, mean RT difference=−.06 seconds, p=.14)). As shown in Table 1, 

with the exception of left V4, the ROIs that were significant in the earlier analysis remained 

significant in this restricted sample; these include L01 and V3CD in each hemisphere, left 

LO2, and right V4 (all p<.05, uncorrected). Of the eight regions that were significant on 

both the hard/easy and illusory/fragmented contrast, five remained significant (left MIP, 

bilateral a24, bilateral IFJp) and are thus are more plausibly independent of task difficulty. 

The foregoing results were about the same if either 9 or 11 participants were included in this 

accuracy-matched analysis (See Supplementary materials). Other regions that continued to 

be significant on this accuracy matched analysis are shown in Table 1.

Finally, we considered whether—across all subjects—there were significant correlations 

between relative accuracy differences (illusory vs. fragmented) and relative task activation 

differences. None of the 360 correlations survived FDR correction (all |r|<.48, all p>.03, 

before multiple comparison correction) suggesting again that the relative performance 

differences did not play a large role in driving our parcel-wise effects.

To examine the robustness of the task activation effects, we additionally report the 

percentage of subjects showing significant effects (illusory-fragmented) in the group 

direction on an individual subject analysis (with a linear hypothesis test, see Methods). This 

was done for regions that were significant on the task activation analysis as well as for other 

regions that were of a priori interest. As can be seen from Table 1, about 80% of subjects 

showed activation differences in the group di- rection (ranging from 65–95%, depending 

on the parcel) and about half of subjects (35 – 80%) showed effects that were statistically 

significant. Intriguingly, the posterior temporal region PH–which was not of a priori interest

—was most associated with shape completion, with 80% of subjects showing a significant 

effect in the left and right hemispheres, and at least 90% showing group differences in each 

hemisphere in the group direction. This region’s surprising role in shape completion will be 

discussed further below.

3.3. Probing for multivariate traces of shape completion in early visual areas

Task activation analyses did not reveal shape completion effects in V1 or V2. Because 

a region could conceivably encode a completed shape in its vertex-wise pattern rather 

than in its univariate mean (Haynes, 2015), we performed MVPA on vertices within 

these parcels. For completeness, we considered effects within all 360 parcels. The 

following were significant: L_LO2 (p=.02, accuracy=58%), L_V3CD (p=.04, accuracy= 

58%), R_V4 (p=.049, accuracy=56%), R_LO1 (p=.03, accuracy=57%), and R_LO3 (p=.04, 

accuracy=56%). These effects were not corrected for multiple comparisons but are credible 

given the strong prior evidence for their involvement (see Introduction). Outside of the 

ROIs, the only region that was significant after FDR correction was R_PGp (pcorr<.0001, 

accuracy=66%). Given the hemispherically similar task activations and the bilateral stimulus 
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displays, we performed the same analysis as above, except that vertices were aggregated 

(with-out averaging) across hemisphere to increase sensitivity. The effects were similar 

to before with effects for: V4 (p=.02, accuracy=58%), LO2 (p=.02, accuracy=57%), and 

V3CD (p=.04, accuracy=56%). There was a marginal effect for V1 (p=.09, accuracy =55%). 

For regions that were not of a priori interest, the following reached significance after 

FDR corretion: PGp (pcorr=.04, accuracy=60%) in the secondary visual network; MIP and 

IP0 in the dorsal attention network (pcorr=.04, accuracy=61%; pcorr=.04, accuracy= 61%, 

respectively); and IP1 in the frontoparietal network (pcorr<.001, accuracy=63%). In sum, 

neither V1 nor V2 exhibited a robust vertex-wise shape completion effect; however, several 

ROIs (V4, LO2, V3CD), several other univariate, task-activated regions (e.g., IP1), and a 

new region, PGp, were consistently significant on this analysis. Possible reasons for null 

effects are considered in the Discussion.

3.4. A dominant role for the secondary visual network in shape completion

As shown in Fig. 4, most significant parcels resided in the secondary visual network, 

followed by the dorsal attention, frontoparietal, default mode, and cingulo-opercular 

networks. To better quantify the network contributions and compare them to one another, we 

trained MVPA classifiers separately for the 12 functional networks (Ji et al., 2019), using 

parcel-wise activations as features (see Methods). After FDR correction (across tests for the 

12 networks), the secondary visual network could distinguish the illusory and fragmented 

conditions at a rate above chance (pcorr<.001, accuracy=63%), but no other network could 

do so (all pcorr>.24, accuracies<57%). Paired t-tests showed that, after FDR correction, 

the secondary visual network was marginally more predictive than 8 of the remaining 11 

networks (all pcorr≤.10). Note that there was no correlation between network classification 

accuracy and parcel count (r=.05, p=.88), suggesting that smaller networks were not unduly 

handicapped.

3.5. Modulated task parcels were densely inter-connected during rest

To determine how modulated task regions were functionally inter-connected, we derived a 

whole-cortex RSFC matrix with Pearson correlation (which is more commonly reported) 

and then with multiple regression (Fig. 5A,B; see Methods). We then homed in on the 

significant task regions that remained significant when the illusory/fragmented conditions 

were matched on accuracy/RT. Since the task activations were hemispherically symmetric, 

contralateral homologues were included so that there was a 42 × 42 RSFC matrix. The 

betas from the regression-based RSFC matrix were compared to zero for each connection 

across subjects (one sample t-test) and were FDR-corrected (thresh-olded) across all 

connections (Fig. 5 C). An assessment of Fig. 5 C shows that parcels had higher within- than 

between-hemisphere RSFC (210 versus 169 significant connections), a greater proportion of 

significant cross-hemisphere versus within-hemisphere connections for sensory (visual) than 

for non-sensory networks (93% versus 33%, excluding connections between parcels and 

their controlateral homologues), and higher RSFC between parcels and their contralateral 

homologues than with other contralateral regions. These results are consistent with past 

work (Power et al., 2011; Stark et al., 2008) and demonstrate that the RSFC matrices were 

yielding sensible results.
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A major question was whether the significantly modulated task regions were inter-connected 

during rest. After applying FDR corrections to each matrix separately, we found that the 

restricted RSFC matrix (42 × 42) contained three times as many significant resting-state 

connections as the full (360 × 360) matrix, (43% versus 14%). To put this in perspective, 

two of the twelve resting-state networks—default mode and or-bitoaffective—had a lower 

proportion of significant within-network connections (35% and 25%, respectively). This 

suggests that the significant task regions, despite falling within five different networks, 

composed a densely inter-connected network coalition or supra-network. Note that these five 

networks, as a whole, were not unusually connected to one another: If all regions from all 5 

networks were included in the above calculations (to form a 260 × 260 RSFC matrix), the 

total number of significant resting state connections would still only be 17%. Thus, it is the 

specific regions within these five networks that appear to be more interconnected during rest.

To examine these results in a different way, we examined for each subject the average 

within-network connection weight and the average out-of-network connection weight across 

the 42 task parcels (where “network” consisted of just these parcels), and simply compared 

these two averaged weights across subjects. Shape completion regions cohered more 

strongly with one another than with other regions (t(18)=22.6, p<10−13,d=8.0; within: 

M=.0088, SD=.0012; between: M=.0019, SD=.00016).

The RSFC matrices offers clues as to how the regions were communicating. As can be 

observed from Fig. 5 D, the secondary visual network most often connected to the dorsal 

attention network regions, which in turn had the most significant out-of-network connections 

(168 connections). Moreover, there appear to be a number of routes between frontal cortex 

and the mid-level vision ROIs. Dorsal lateral prefrontal cortex (p9–46v) connects with 

MIP, IP0, and IP2 (in posterior parietal cortex), which in turn connect with all of the 

significant ROI regions. Intriguingly, area 11l (OFC) connected directly with area LO2. 

Hence there exist clear routes for conceptual or value-laden information to loop back into 

areas traditionally associated with shape completion, but in most cases these routes must 

traverse the dorsal attention network and particularly parts of posterior parietal cortex.

3.6. Resting-state connections are relevant for visual shape completion

We have shown that regions that were differentially activated during visual shape completion 

were also connected during rest. However, despite some indirect evidence from other work 

(see Introduction), it remains unclear whether these connections in these same subjects 

played a mechanistic role in shape completion. To address the question, we leveraged a 

recently-developed predictive modeling approach—activity flow mapping (“ActFlow”)—to 

assess whether the resting-state connections (derived via multiple regression) were likely 

instrumental in carrying the flow of activity between regions during task performance 

(Cole et al., 2016). In this method, the activation difference (illusory minus fragmented) 

in a held-out “target” parcel was computed as the linear weighted sum of the activation 

differences in all other parcels, with the weights being given by the resting-state connections 

to the target (see Fig. 6a). This can be thought of as a rough simulation of the movement 

of task-evoked activity between brain regions that likely contributed to each brain region’s 

task-evoked activity level. This allowed us to assess whether the observed resting-state 
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connections mechanistically supported the perceptual processes associated with shape 

completion. Prediction accuracy was gauged as the correlation between the actual and 

predicted activation differences. As can be seen in Fig. 6B, the predictions were highly 

significant at the whole-cortex level (r=.64, p<10−9). If we were to first average the 

predicted differences across subjects, then average the actual differences across subjects, and 

then correlate the two, the resulting group-level accuracy estimate would increase (r=.89), 

probably by increasing the signal-to-noise ratio (Cole et al., 2016).

We next applied a task activation analysis to the ActFlow predicted data (via one-sample 

t-tests, as before) and compared the results to the original task activation results (shown in 

Fig. 2). The percentage of parcels that remained significant (sensitivity) with ActFlow was 

86%; the percentage of non-significant parcels that remained non-significant (specificity) 

was 81% (see Fig. 6C). These results again suggest that the observed resting-state 

connections describe the routes over which task-evoked activity flows during shape 

completion (controlling for orientation judgement).

To assess the relevance of resting-state connections between regions that were modulated 

during the task, we restricted activity flow mapping only to those regions and their 

contralateral homologues. To minimize the chance of task difficulty effects, we again used 

only regions that remained significant when conditions were matched on accuracy/RT so 

that each held-out parcel’s activation was predicted by 41 other connections/parcels. Despite 

eliminating 89 percent of the connections for each parcel, the prediction accuracy estimates 

(r-values) across subjects were still high (illusory-fragmented: r=.61, p=3.0 ∗ 10−9) and 

did not significantly differ (p=.28) from the ActFlow correlations with the full matrix 

(as assessed with a paired t-test). This suggests that much of shape completion can be 

understood by only examining the connections and activations of task modulated regions.

3.7. Dorsal attention regions can model activity flow in the secondary visual network

According to the task activation and network-wise MVPA results (Table 1 and Fig. 4, 

respectively), shape completion was most undergirded by the secondary visual network. 

To examine which other net-works might plausibly contribute to the illusory/fragmented 

activation differences in this network, we determined which ones could improve the 

ActFlow predictions, using the same significant task regions as before (see Fig. 6). More 

explicitly, for each subject, we computed a single correlation between the actual and 

ActFlow parcel difference values across the 12 significant secondary visual network parcels. 

We then re- computed this correlation, when each of the 12 parcels could also be predicted 

by parcels and connections from one other network. Finally, we Fisher-z transformed 

the correlations, subtracted the two, and then performed a one-way t-test to see if the 

correlations increased as a result of the network’s inclusion. The dorsal attention network 

improved the predictions for the secondary visual network (Δr≈ΔrZ =.37, pcorr=.01); no 

other network generated a significant effect. The improvement from the dorsal attention 

regions were significant also if we were to use all 360 regions and all possible resting-state 

connections (rather than restricting to the significantly activated regions (Δr≈ΔrZ =.11; 

pcorr=.04).
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3.8. Dorsal attention and frontoparietal regions can model activity flow across all 
remaining networks

Is there a particular network that plays a dominant role in orchestrating the activity of 

the other regions? We examined this possibility by using the same approach as just 

described; that is we calculated, for each subject, the ActFlow accuracy for all regions 

outside of a held-out network and considered how that accuracy improved—that is, how the 

Fisher-Z correlations increased (ΔrZ)—when the held-out network regions were allowed 

to contribute (Mill et al., 2020). This was done for each of the five networks, using 

only the significant task regions (viz., 42 regions were treated as targets for ActFlow in 

Fig 6A). Consistent with observations from the functional connectivity matrix, the dorsal 

attention network significantly improved inferences for the significant regions within the 

remaining four networks (Δr≈ΔrZ =.10;t(18)=3.84, pcorr=.006). The frontoparietal network 

issued a somewhat weaker but still detectable effect (Δr≈ΔrZ=.06;t(18)=2.83, pcorr=.03). 

Interestingly, the other three networks—including the secondary visual—failed to influence 

the results on this analysis (all pcorr>.6). The improvement from the dorsal attention regions 

and frontoparietal regions would also be significant if we were to use all 360 regions and 

all possible resting-state connections (rather than restricting to the significantly modulated 

regions; dorsal attention: Δr≈ΔrZ=.03; t(18)=3.55, pcorr=.007; frontoparietal: Δr≈ΔrZ=.05; 

t(18)=4.55, pcorr=.002).

4. Discussion

Visual shape completion plays a critical role in extracting object shape, size, position, and 

number from edge elements dispersed across the field of view. The process relies on lateral 

occipital and early visual areas, but it is unclear what other regions might be utilized, how 

they are functionally connected, or what networks they reside within. To shed light on the 

foregoing, we scanned participants during rest and during a task in which they discriminated 

pac-man quartets that either formed or failed to form visually completed shapes. Six major 

findings emerged.

One is that although only a few dozen parcels were differentially activated, the effects 

were impressively consistent, with one region—parcel PH—exhibiting similar effects across 

90–95% of subjects in each hemisphere. Next, the secondary visual network played a 

dominant role in shape completion but parcels within the dorsal attention, frontoparietal, and 

default mode, and cingulo-opercular network were also influential, suggesting that shape 

completion is a distributed process. Third, task-activated parcels were highly connected 

during rest, being significantly more connected to one another than to other regions. 

Fourth, resting-state connections could accurately predict illusory/fragmented task activation 

differences via ActFlow, which implies that these same connections were employed for 

shape completion. Fifth, dorsal attention regions could model activity in the secondary 

visual network, and across all remaining networks, indicating that this network may 

orchestrate activity across cortex during shape completion. Finally, frontoparietal cortex 

appears to globally coordinate activity during shape completion as well. Below, we discuss 

these findings in more detail, provide a sketch of how these regions might interact during 

shape completion, identify potential limitations, and suggest future directions.
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4.1. The role of visual networks in shape completion

The secondary visual network played a central role for shape completion. It contained 31 

percent of all significantly activated parcels and the parcel-wise task activation differences 

in this network—but not others—could classify task condition. A priori regions of interest—

V4, LO1, LO2, V3CD—were all significant in at least one hemisphere on the task activation 

analysis; V4, LO2, and V3CD were each significant in at least one hemisphere on the 

vertex-wise MVPA analysis. Significant visual parcels were categorically more active in the 

illusory than fragmented condition without regard to accuracy and were spatially contiguous 

on the lateral surface (see swath of purple in the lateral views of Fig. 4A), suggesting 

that shape completion could potentially be augmented by transcranially stimulating this 

network. Such interventions could potentially treat conditions that impair shape completion 

such as developmental agnosia (deactivated mid-level visual areas), schizophrenia, brain 

injury (infarct/hemorrhage), or recent recovery from congenital blindness (cataract removal) 

(Gilaie-Dotan et al., 2009; Keane et al., 2019; Ostrovsky et al., 2009; Vuilleumier et al., 

2001).

There was no robust MVPA or task activation result for V1 or V2. A likely reason is that—

according to a population receptive field mapping approach (Kok and de Lange, 2014)—the 

illusory shape surface region (corresponding to a portion of V1 vertices) is more activated 

in V1 relative to baseline and the inducer (pac-man) regions are less activated. A similar 

result was reported for V2. Therefore, averaging across these two retinotopic region types 

will reveal no changes in overall activity nor will MVPA be revelatory when individual 

voxels are responding to both the inducer and the shape regions simultaneously. This may 

also explain why, historically, the methods with the highest spatial resolution were those 

that provided the most convincing evidence for illusory contour formation in V1 and V2 

(Grosof et al., 1993; Kok and de Lange, 2014; e.g., Lee and Nguyen, 2001) and why many 

lower-resolution neuroimaging studies have often failed to find effects at this level (Seghier 

and Vuilleumier, 2006). For example, a study using the fat/thin discrimination task with 3 

mm voxels found no modulation of early visual areas (Stanley and Rubin, 2003) whereas a 

behaviorally similar study using 2 mm voxels and a surface-based analysis revealed effects 

(Maertens et al., 2008). Another implication of the population receptive field result is that 

larger stimuli will make it easier to distinguish up- and down-regulated retinotopic regions. 

Again, the data speak to this possibility: We used illusory shapes that were 5 degrees on a 

side, Stanley and Rubin used stimuli 5 degrees on a side, but Maertens et al used squares that 

were 7.4 deg on a side. Therefore, higher resolution fMRI and larger illusory shapes, may be 

needed to better bring effects more fully within V1 and V2.

4.2. Area PH: A potential “classical region ” for shape completion and a link to reading

Area PH is a recently re-defined region in the posterior temporal cortex, corresponding 

to the superior part of PH in the von Economo and Koskinas atlas (Glasser et al., 2016; 

Triarhou, 2007); it is not commonly reported in the neuroimaging literature and was not of 

a priori interest. Nevertheless, in our study it was the most consistently active parcel across 

subjects (when considering both hemispheres), the most frequently significant parcel within 

subject, and the most densely connected task-modulated visual parcel, communicating 

directly with lateral occipital cortex (V3CD), consistent with past research (Glasser et al., 
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2016). In light of these results, PH should be considered a candidate “classical region” for 

shape completion along with other more recognized areas such as lateral occipital cortex. 

Strong activation of PH could also explain why the fusiform face area has been occasionally 

reported in past studies of shape completion (Halgren et al., 2003; Larsson et al., 1999) 

since PH is immediately bordering the fusiform face complex and since signal leakage 

or improper delineation of PH would inevitably result in false positives. Finally, PH has 

been considered by some to be the best atlas-based alternative to the functionally-defined 

visual word form area (VWFA; Weiss et al., 2019). The VWFA has been shown to have 

high functional connectivity to the dorsal attention network (Vogel et al., 2012). Consistent 

with this finding, we showed that area PH was significantly connected to task-modulated 

dorsal attention regions in each hemisphere (MIP, LIPd, PFt, AIP, PHT, IP0); Fig. 5C). 

An interesting possibility is that visual shape completion ability may be compromised 

in those with dyslexia (Monzalvo et al., 2012) and may correlate with reading skills in 

non-clinical populations. A related possibility is that area PH may help explain why people 

with schizophrenia exhibit both reading (Revheim et al., 2014) and completion deficits 

(Keane et al., 2019), why patients with worse shape completion exhibit worse premorbid 

scholastic performance (ibid), and why patients with schizophrenia are more susceptible to 

developmental dyslexia (Whitford et al., 2018).

4.3. Frontoparietal feedback to mid-level vision via the dorsal attention network

Frontoparietal network regions were differentially active in or- bitofrontal, dorsolateral 

prefrontal, and posterior parietal cortex, and activations within this network were able to 

estimate activations in the remaining modulated task regions. Despite receiving little regard 

in the literature (M. M. Murray and Herrmann, 2013; Seghier and Vuilleumier, 2006), 

frontoparietal involvement is not wildly unexpected. In the aforementioned MEG study, peak 

orbitofrontal modulation from passively-viewed Kanizsa shapes arose 340 ms post stimulus 

onset (Halgren et al., 2003). In eight month- (but not six month-) old infants, gamma band 

oscillations (40 HZ) from Kanizsa shapes were generated over frontal electrodes between 

240–320 ms (Csibra et al., 2000).

Frontoparietal regions may create expectation-based predictions (Bar, 2003) for amplifying 

less salient illusory contours and thereby improving task performance. For example, blurry 

lightness-induced surfaces (so-called “salient regions; Stanley and Rubin, 2003 ) generate 

a delayed LOC activation relative to standard Kanizsa shapes (Shpaner et al., 2009), 

potentially reflecting the brain’s late-arriving best guesses about the precise shape of the 

incoming stimulus. In a fat/thin discrimination behavioral study, biasing observers to see 

edge elements as disconnected worsened the discrimination of illusory but not fragmented 

shapes (Keane et al., 2012), suggesting again that noticing and using illusory contours for 

shape discrimination requires appropriately conceptualizing the stimulus. Top-down signals 

may additionally allow observers to cognitively infer (or “abstract”) missing contours 

that cannot be formed via illusory contour formation such as when edge elements are 

extremely sparse, misaligned, or misoriented (Keane, 2018; Wyatte et al., 2014). Finally, the 

frontoparietal network may communicate with mid-level visual structures primarily by way 

of the dorsal attention network (Cavada and Goldman-Rakic, 1989). As evidence, all nine 
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modulated frontoparietal parcels in our resting-state analysis were significantly connected to 

at least one dorsal attention region, most typically in the posterior parietal cortex.

Note that high-level feedback of the type described is compatible with a fast, automatic 

and overall modular illusory contour formation process (Keane, 2018) that does not require 

conscious access (Vandenbroucke et al., 2014; Vuilleumier, Valenza, & Landis, 2001). 

Illusory contours begin forming at 70 ms post-stimulus onset in V2 (Lee and Nguyen, 2001) 

and 90 ms in LOC (M. Murray et al., 2002). Prefrontal feedback during object recognition 

plausibly occurs at 150 ms post-stimulus onset, according to TMS, backward masking, 

and EEG/MEG studies (Wyatte et al., 2014). Therefore, prefrontal cortical signals probably 

arrive too late to influence contour completion in its initial stages. Higher-order cortical 

feedback may also be ineffectual after its arrival, if it must compete with persistently salient 

bottom-up signals (Desimone and Duncan, 1995; Keane, 2018; McMains and Kastner, 

2010). Parietal neglect patients with damage to inferior parietal cortex can form illusory 

contours (Vuilleumier, Valenza, & Landis, 2001) and people with prefrontal cortical lesions 

can integrate disconnected contour elements (Ciaramelli et al., 2007), suggesting again 

that these areas may not be necessary for forming illusory contours. Thus, frontoparietal 

signals—and their dorsal attention conduits—may primarily be important for performing 

computations on contours already formed in mid-level vision or for enabling conscious 

access to such contours. Others have also argued via visual evoked potentials for a 

dissociable automatic illusory contour formation stage and an effortful shape discrimination 

stage (M. M. Murray et al., 2006).

4.4. Objections, limitations, and opportunities for future research

An objection is that the illusory and fragmented conditions required observers to judge 

different aspects of the stimulus (orientation or shape), and so differences in “task set ” 

rather than shape completion may explain our results. To address this objection, we first note 

that any adequate control condition will lack shape completion and will require seeing the 

stimulus as categorically different. Therefore, it is not possible to perfectly control for task 

set without obliterating the difference of interest. Second, differences in task set—at least 

in our study—did not make our two conditions incommensurable since the two were highly 

correlated in accuracy and reaction time (rs>.7.s, ps<.001). These correlations—which are 

consistent with an earlier study (Keane et al., 2019)—are noteworthy because most visual 

tasks are only weakly correlated despite having high test-retest reliability (Grzeczkowski et 

al., 2017). Such correlations, coupled with the a priori considerations of there being shared 

processes (see Methods), suggest that the left/right task successfully controlled for processes 

that were not of central interest (visual short term memory, spatial attention, vigilance, etc.).

Another objection is that eye movement differences could have confounded our results. This 

objection is weakened by five considerations: 1) all subjects were repeatedly asked to fixate 

within and outside of the scanner; 2) pac-men locations were equidistant from fixation, 

equally informative within a trial, and matched between conditions, reducing the chance 

of systematic differences between tasks; 3) the illusory and fragmented conditions were 

correlated in RT and accuracy, even for the accuracy matched sub-sample (n=10; rs >.8, 

ps<.01), suggesting again that any possible eye movement differences impacted performance 
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minimally; 4) saccading after stimulus onset would offer little benefit since saccade latency 

is ~200 ms (Sumner, 2011) and the stimuli appeared for only 250 ms at unpredictable times 

during a block; and, 5) there is little evidence that eye movements impact visual shape 

completion in non-translating displays and some evidence that it has no effect relative to a 

control “fragmented ” condition (Cox et al., 2013; see the fixational heat maps in their Fig. 

S2). Thus, while we cannot completely rule out eye movement confounds, they are unlikely 

to explain our results.

Resting-state functional connectivity methodology is far from perfect and thus our results 

may be questioned on that basis alone. For example, non-neural factors such as head motion, 

physiological artifacts, and the scanner environment can generate correlated noise across 

regions; image reconstruction introduces spatial smoothing artifacts; and so on (Reid et 

al., 2019). We mitigated some of these shortcomings, for example, by using PC multiple 

regression (to avoid overfitting and to reduce spurious connections), by censoring high­

motion frames (to avoid over-estimating short-distance connections and underestimating 

far-distance connections; Power et al., 2012), and by using smaller voxel sizes (to reduce 

autocorrelation between parcels). The fact that our functional connectivity matrices could 

generate approximate task activation results via ActFlow and the fact that our group­

averaged RSFC matrix was sensible in other respects (e.g., clustering into known functional 

net-works, having more cross-hemisphere connections in sensory areas, see section 3.5 of 

the Results) suggest that our efforts to extract the functional connectome were reasonably 

successful.

Past psychophysical studies have shown similar illusory and fragmented task performance 

(Keane et al., 2014) but in the present study the fragmented task was about 7 percent 

better. Why? A possible reason is that past studies required a verbal response on each trial 

whereas ours required a button press. The congruence between the left and right rotations 

and left and right button press may have conferred a small but consistent benefit perhaps by 

diminishing the likelihood of misremembering the mapping between keypress and response. 

We do not view this as problematic, since the effects arose when the congruence benefit was 

behaviorally eliminated—both in RT and accuracy. Therefore, while large task accuracy 

differences clearly alter the neural data (as in the easy versus hard contrast), smaller 

differences appear to have little effect.

Limitations are worth noting. Although we used a nominal 2.4 mm voxel size, higher spatial 

resolution methods would likely provide additional insights such as whether particular 

parcels project backwards to specific layers—since superficial V1 and V2 layers exhibit 

more robust firing responses to illusory shape contours than deep layers (Lee and Nguyen, 

2001)—or whether specific parcels are responsible for up- versus down-regulating parts of 

retinotopic cortex (Kok and de Lange, 2014). A larger sample size could have allowed us 

to identify additional regions, connections, and networks of shape completion, or additional 

associations between task activations and behavioral performance. As has already been 

noted, the slow hemodynamic response prevents a full description of the temporal dynamics. 

Additional control conditions (e.g., matching on other features such as the central energy 

point of the pac-men) could further support the conclusions argued above; so too could eye 

movement analyses. While it was not a goal to tease apart the various component processes 
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leading up to shape completion, future investigations will need to identify the specific 

regions, networks, and connections associated with local edge detection, illusory contour 

formation, lightness induced surface spreading, surface scission, and shape perception.

To summarize, the present research identified a restricted set of densely-interconnected 

regions that were responsive to visually completed shapes. The secondary visual network—

especially area PH—played a dominant role in the process, but portions of at least four 

other networks were also involved, suggesting that shape completion is a distributed process. 

The dorsal attention network parcels appeared to coordinate activity in the secondary visual 

network and across cortex during visual shape completion. The frontoparietal network 

also appears to play a globally coordinating role. A logical next step will be to apply 

neurostimulation to probe parcel-wise causal interactions or electrophysiology to assess their 

activity flow dynamics.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Stimuli, trial sequence, and block arrangement for the visual shape completion 
experiment.
(A) Sectored circles (pac-men) were oriented to generate visually completed shapes (illusory 

condition) or fragmented configurations that lacked interpolated boundaries (fragmented 

condition). There were two difficulty conditions corresponding to the amount by which 

the pac-men were individually rotated to create the response alternatives. (B) After briefly 

seeing the target, subjects responded. (C) Each half of a run consisted of a fixation screen, a 

5 second instructional screen, 25 trials of a single task condition (including 5 fixation trials), 

and then another fixation screen.
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Fig. 2. 
FDR-corrected activation difference amplitudes (Z-normalized) for all parcels for the 

illusory – fragmented contrast. ROIs are shown with black outlines. The anterior and 

posterior views are shown laterally; the dorsal and ventral views are shown at the top and 

bottom. Hot colors indicate regions that were more active for the illusory versus fragmented 

task; cool colors indicate the reverse.
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Fig 3. Task activation differences for hard - easy trials (collapsed across illusory/fragmented).
Opposite to the illusory-fragmented contrast, we found that harder trials generally elicited 

less activation throughout the brain relative to easier trials and the location of these 

significant activations overlapped little with the activations shown in Fig. 2. The illusory/

fragmented a priori ROIs (black outlines) are shown for comparison purposes only and did 

not contain significant parcels.
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Fig. 4. 
(A) The Cole-Anticevic Brain Network partition. We considered whether parcel-wise 

activation patterns in the cortical networks could individually classify task betas as deriving 

from the illusory or fragmented condition; these included the primary visual, secondary 

visual, somatomotor, cingulo-opercular, dorsal attention, language, frontoparietal, auditory, 

default, posterior multimodal, ventral multimodal, and orbito-affective networks. Networks 

are color coded to match the parcels in panels B and C. (B) The percentage of significantly 

modulated parcels that belonged to each network for the illusory/fragmented contrast. (C) 

Classification accuracy for the illusory/fragmented comparison. The red dot-ted line shows 

chance performance, the box segments denote median scores, the box hinges correspond to 
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the 25th and 75th percentiles, and the box whiskers extend to the largest or smallest value 

(but no further than 1.5x the interquartile range). Only the secondary visual network could 

significantly predict illusory/fragmented activations (∗∗∗pcorr<.001). (See Supplementary 

materials for the exact parcels incorporated by this network).
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Fig. 5. Resting-state functional connectivity (RSFC) matrices.
(A) Pearson correlation between the resting-state time series of all parcel pairs (360 × 360 

parcels). Parcels are sorted into previously established (color-coded) functional connectivity 

networks (Ji et al., 2019) (see also Fig. 4 A). The block-like structure along the diagonal 

exemplifies the stronger connectivity within relative to between each network. (B) An RSFC 

matrix computed via multiple regression (see Methods). The blue/red colors indicate the 

degree to which a given parcel time series was predicted by all remaining parcels. Note that 

this matrix is much sparser than the correlational matrix since it eliminates many of the 

indirect connections between parcels (Cole et al., 2016). (C) Thresholded (FDR-corrected) 

resting-state connections between significantly modulated task regions (see text), which 

are ordered first by hemisphere and then by network. Compared to the full matrix in 

panel B, this pared down matrix had about 1 percent the number of possible connections 

(matrix elements) and triple the proportion of (FDR-corrected) significant connections. (D) 

Averaging the connection weights across hemisphere increased the proportion even further 

(from 43% to 60%), highlighting the broadly symmetric connectivity patterns. Note that one 

parcel, IFSa, was split between the frontoparietal (left hemisphere) and 10cingulo-opercular 

networks (right), and was assigned to the frontoparietal network in this plot since only the 

frontoparietal parcel was significant in the task activation analysis.
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Fig. 6. Activity flow mapping for visual shape completion.
(A) For each subject, the task activation differences (illusory-fragmented) in a held-out 

parcel (j) is given by the dot product between the activation differences in the remaining 

parcels (regions i) and the resting-state connection strengths (betas) between i and j. (B) 

Unthresholded z-normalized activation differences (illusory – fragmented) as compared to 

those that were predicted via ActFlow using resting state. (C) When a task activation 

analysis was applied to the data predicted from ActFlow, statistical significance (or lack 

thereof) was correctly determined for 82% of the 360 parcels (see also Fig. 2). This 

suggests that the connection weights derived from resting state were reflective of the actual 

connections used during shape completion.
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Fig. 7. Gauging contributions of the dorsal attention network to the secondary visual network 
(Visual2).
(A) For a given subject, task activation differences for each significant Visual2 parcel were 

estimated (dotted circles) using actual task activation differences in the remaining parcels 

(solid circles) and their resting-state connections (red lines). For illustration purposes, 

only one hemisphere is shown. (B) ActFlow accuracy was defined as the correlation 

between actual and estimated task activation differences, across the Visual2 parcels. (C) 

Task activation differences were again estimated via ActFlow, except that, this time, the 

connections and activation differences from the significant dorsal attention regions could 
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also contribute. (D) The difference between the original and re-calculated estimates was 

computed for each subject (after a Fisher Z-transform) and compared to zero across subjects. 

Only the dorsal attention network could significantly improve ActFlow estimates in the 

secondary visual network. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Table 1

Results for parcels that that were either of a priori interest or that were significant on the illusory-fragmented 

task activation analysis (see Fig. 2 ). The rows were sorted in descending order, first, by the percentage of 

subjects showing the effect in the group direction (column 2) and then, by the percentage of subjects showing 

significant effects on the individual subject analysis (column 3). The prefix of each parcel name (“L_“or“R_”) 

indicated its hemisphere. The fourth and fifth columns indicate a parcel’s ROI status (yes/no) and functional 

network. The next three columns indicate whether a parcel was significant after FDR correction, whether it 

remained significant when task conditions were matched on accuracy/RT, and whether it was significant using 

the predicted ActFlow data. In the final column, we show the average task activation difference, with more 

positive values indicating more illusory relative to fragmented activation.

Parcel 
Name

% With 
Difference 
In Group 
Direction

% With Sig. 
Difference ROI? Network

Sig. with 
FDR 
correction?

Sig. with 
accuracy 
matching?

Sig. 
with 
Act-
Flow?

Mean Beta 
Difference [95% 
CI]

R_PH 95 80 0 Visual2 1 1 1 113.8 [77.6,150.1]

L_MIP 95 65 0 Dorsal-attention 1 1 1 82.2 [43.7,120.6]

R_V4 95 55 1 Visual2 1 1 1 46 [21.4, 70.7]

L_IFJp 95 50 0 Frontoparietal 1 1 1 88 [50, 126]

L_PH 90 80 0 Visual2 1 1 1 95.6 [66.1,125.1]

R_6r 90 55 0 Cingulo-
Opercular

1 1 1 56.4 [29.3, 83.4]

R_a24 90 45 0 Default 1 1 1 -47.6 [-69.7,-25.5]

L_V3CD 85 70 1 Visual2 1 1 1 76.2 [45.4, 107]

L_IP1 85 65 0 Frontoparietal 1 1 1 65.7 [23.5,107.9]

R_V3CD 85 65 1 Visual2 1 1 1 64.3 [29.3, 99.3]

R_IP0 85 60 0 Dorsal-attention 1 1 75 [44.4,105.6]

L_PFt 85 55 0 Dorsal-attention 1 1 1 62.2 [28.5, 95.8]

R_PGi 85 55 0 Default 1 1 -43.2 [-69.6,-16.8]

L_LO1 85 45 1 Visual2 1 1 1 64 [34.3, 93.7]

L_a24 85 45 0 Default 1 1 1 −52 [-77.1,-26.9]

L_IP0 85 45 0 Dorsal-attention 1 1 64.2 [26.2,102.3]

R_LO1 85 40 1 Visual2 1 1 1 55.2 [31.1, 79.4]

R_TGd 85 40 0 Default 1 1 1 −37.8 
[-58.4,-17.2]

L_IP2 80 65 0 Frontoparietal 1 1 1 74.2 [30.3,118.2]

L_11l 80 60 0 Frontoparietal 1 1 61.4 [32.2, 90.6]

L_AIP 80 60 0 Dorsal-attention 1 1 1 78.1 [39.4,116.8]

R_MIP 80 60 0 Dorsal-attention 1 1 1 81.1 [38.8,123.5]

L_V3B 80 50 0 Visual2 1 1 54.9 [22.9, 87]

R_LIPd 80 50 0 Dorsal-attention 1 1 1 79.3 [36.7, 122]

L_V4 80 45 1 Visual2 1 1 40.3 [11.3, 69.3]

R_IFJp 80 40 0 Frontoparietal 1 1 1 85.4 [36.5,134.2]

R_d23ab 80 35 0 Default 1 1 −58.3 
[-92.9,-23.6]
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Parcel 
Name

% With 
Difference 
In Group 
Direction

% With Sig. 
Difference ROI? Network

Sig. with 
FDR 
correction?

Sig. with 
accuracy 
matching?

Sig. 
with 
Act-
Flow?

Mean Beta 
Difference [95% 
CI]

R_LO2 75 45 1 Visual2 1 47.6 [6, 89.3]

R_p9–46v 75 45 0 Frontoparietal 1 1 1 62 [29.1, 94.8]

R_AIP 75 45 0 Dorsal-attention 1 1 1 59.4 [23.2, 95.5]

L_IFSa 75 40 0 Frontoparietal 1 1 49.9 [22.3, 77.4]

R_PHT 75 40 0 Dorsal-attention 1 1 1 51.5 [19, 84]

L_FST 75 35 0 Visual2 1 0 1 45.5 [18.7, 72.3]

L_TGd 70 45 0 Default 1 0 1 −32.5 
[-53.3,-11.8]

R_31pv 70 40 0 Default 1 0 1 −58.5 [-95, -22]

L_LO2 70 35 1 Visual2 1 1 1 48.6 [21.5, 75.8]

R_LO3 70 30 1 Visual2 0 0 0 21.9 [-13.2, 56.9]

R_V4t 70 25 1 Visual2 0 0 0 15.4 [-21.5, 52.3]

R_IP1 65 50 Frontoparietal 1 0 0 51.7 [20.5, 83]

L_LO3 65 35 1 Visual2 0 0 1 24.2 [-13.3, 61.7]

L_V2 65 20 1 Visual2 0 0 0 7.4 [-25.8, 40.5]

L_V1 60 30 1 Visual1 0 0 0 9.9 [-22.8, 42.6]

R_V2 60 25 1 Visual2 0 0 0 4.3 [-32.2, 40.7]

R_V1 60 20 1 Visual1 0 0 0 5.5 [-28.9, 39.9]

L_V4t 55 10 1 Visual2 0 0 0 −2.2 [- 34.7, 30.4]
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