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Abstract

Tobacco smoking is a well-known risk factor for both fibrogenesis and
fibrotic progression; however, the mechanisms behind these processes
remain enigmatic. RTKs (receptor tyrosine kinases) have recently been
reported to drive profibrotic phenotypes in fibroblasts during
pulmonary fibrosis (PF). Using a phospho-RTK array screen, we
identified the RTK AXL as a top upregulated RTK in response to
smoke. Both expression and signaling activity of AXL were indeed
elevated in lung fibroblasts exposed to tobacco smoke, whereas no
significant change to the levelsof a canonicalAXL ligand,Gas6 (growth
arrest–specific 6), was seen upon smoke treatment. Notably, we found
that smoke-exposed human lung fibroblasts exhibited highly
proliferative and invasive activities and were capable of inducing
fibrotic lung lesions inmice.Conversely, genetic suppressionofAXL in
smoke-exposedfibroblasts cells led to suppressionofAXLdownstream
pathways and aggressive phenotypes. We further demonstrated that
AXL interacted with MARCKS (myristoylated alanine-rich C kinase
substrate) and cooperated with MARCKS in regulating downstream
signaling activity and fibroblast invasiveness. Pharmacological

inhibition ofAXLwithAXL-specific inhibitor R428 showed selectivity
for smoke-exposed fibroblasts. In all, our data suggest that AXL is a
potential marker for smoke-associated PF and that targeting of the
AXL pathway is a potential therapeutic strategy in treating tobacco
smoking–related PF.
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Clinical Relevance

This study is the first to report activation of AXL receptor
tyrosine kinase in response to tobacco smoke exposure,
forming a fibrogenic molecular complex with MARCKS
(myristoylated alanine-rich C kinase substrate) protein to
promote pulmonary fibrosis. These findings provide evidence
of a novel signaling complex as well as provide potential
therapeutic avenues for pulmonary fibrosis.

Pulmonary fibrosis (PF), an interstitial lung
disease (ILD), is marked by progressive
scarring (fibrosis) of the interstitium due to
excessive extracellular matrix (ECM)

deposition and proliferative fibroblasts.
Of the ILDs, idiopathic pulmonary
fibrosis (IPF) is the most common
(1–4). There is a dearth of effective

antifibrotic therapies to stop the progression
of PF, with only two U.S. Food and Drug
Administration–approved therapeutics,
pirfenidone and nintedanib, in clinical use.
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Unfortunately, both drugs are limited in
therapeutic efficacy as they only improve
the lung function in patients, with little
to no effect on overall mortality (1, 2, 5).
The use of steroid drugs has also been
considered for IPF and other ILDs, but
the lack of large randomized controlled
monotherapy trials in addition to the
significant morbidity of long-term usage
have limited the use of steroids in treating
PF (2, 6). These circumstances highlight the
need for improved therapies as well as
suitable biomarkers to guide clinical
treatment of IPF and other ILDs.

The fibroblasts, especially the
myofibroblasts, are the prima facie cell type in
the progression of PF (7–10). Under normal
conditions, fibroblasts display low activity,
with little ECM production and deposition
as well as low proliferation, motility, and
invasiveness. However, fibroblasts are
activated in PF and display upregulated
activities. These proliferative cells form
foci and display enhanced ECM production
and/or deposition, disturbing the alveolar
architecture (2, 11, 12). Additionally, the
migratory and invasive capabilities of
fibroblasts are increased under fibrotic
conditions, enabling these cells to disseminate
throughout the lung and worsen fibrosis.
Although there is phenotypic heterogeneity in
lung fibroblasts, the differential molecular
signaling between PF fibroblasts and normal
fibroblasts remain relatively unknown. One
area of investigation that has gathered interest
in recent years is the role of RTKs (receptor
tyrosine kinases) as a major modulator of
fibroblast activity, differentiation, and disease
progression (13). In particular, AXL, an RTK
in the TAM (Tyro-3, AXL, MerTK) family of
receptors, has been recently implicated in
playing a major role in driving profibrotic
phenotypes in lung fibroblasts and
contributing to fibrotic progression (14, 15),
but how AXL activity is modulated in lung
fibroblasts is yet to be elucidated.

Epidemiological studies have shown
readily that ever-smokers, smokers with any
sort of smoking history, are consistently
overrepresented in PF cases (16–22). Not only
is tobacco smoking a significant risk factor for
PF, tobacco smoking has also been shown
to have a detrimental effect on disease
progression (16, 19, 21). In animal models of
PF, tobacco smoke exposure is shown to
promote a profibrotic milieu in the lung and
potentiate bleomycin-induced lung fibrosis
(23, 24). As compared with unexposed
normal fibroblasts, fibroblasts exposed to

tobacco smoke display behavioral differences
and become more motile as well as having an
increased collagen production capability (25,
26). These active fibroblasts participate in
fibrotic progression through migrating
throughout the lung and depositing ECM,
worsening the fibrotic lesions in the lung.
Despite these findings, the mechanisms of
how tobacco smoke alters lung fibroblasts to a
more profibrotic phenotype are currently not
well understood.

Given the role of AXL and the
prevalence of tobacco smoking in PF, AXL
activity may also be implicated in driving
the profibrotic phenotypes of fibroblasts
exposed to tobacco smoke. In this study,
we elucidated the role of tobacco smoke
in activating AXL signaling, driving
downstream fibroblast activities and fibrotic
progression.

Methods

Reagents and Antibodies
All reagents and antibodies used in this
study are described in the Supplementary
Methods in the data supplement.

Cell Culture and Transfection
Human primary fibroblast cells were obtained
from airway tissues provided from the UC
Davis Medical Hospital with consent. The
protocol for human tissue procurement and
usage were periodically reviewed and
approved by the University Human Subject
Research Review Committee. Detailed
experimental procedures for establishment of
cell culture and siRNA transfections are
described in the Supplementary Methods in
the data supplement.

Exposure of Cultured Cells to
Cigarette Smoke Extract
Cultures of cells were exposed to cigarette
smoke extract (CSE) using a protocol similar
to that previously described (27). Detailed
experimental procedure for generation of
CSE is described in the Supplementary
Methods in the data supplement.

Cell Proliferation, Colony Formation,
and Matrigel Transwell Invasion
Assays
The biofunctional assays were performed as
previously described (28–30) and detailed
experimental procedures are described in
the Supplementary Methods in the data
supplement.

In Vivo Orthotopic Lung
Implementation and Bleomycin-
induced Lung Fibrosis
The lung fibrosis model by adoptive transfer of
human pulmonary fibroblasts to severe
combined immunodeficiency mice was
modified from an establishedmurinemodels of
lung fibrosis and cancer (31–33). For the
bleomycin-induced lung fibrosis model,
C57BL/6J mice received saline or bleomycin
intratracheally as previously described (30).
Detailed experimental procedures are
described in the Supplementary Methods in
the data supplement. The present animal study
has been approved by the Institutional Animal
Care and Use Committees at UC Davis.

Human Phospho-RTK Array
The Human Phospho-RTK Array Kit
(#ARY001B) was purchased from R&D
Systems. We performed array screening
according to the manufacturer’s protocol.
The detailed experimental procedure is
described in the Supplementary Methods in
the data supplement.

Western Blot Analyses, IP, Quantitative
Real-Time PCR, and ELISA
Detailed procedures for Western blots, IP,
qRT-PCR, and ELISA assays are described
in the Supplementary Methods in the data
supplement.

Mouse Model of Cigarette Smoke
Exposure and Immunofluorescent
Staining
The paraffin-embedded specimens of mice
exposed to filtered air (control) and
environmental tobacco smoke were kindly
provided by Dr. Kent E. Pinkerton (Center
for Health and the Environment, UCDavis).
Detailed procedures for the animal model of
smoke exposure are described in the
Supplementary Methods in the data
supplement.

Statistical Analysis
Data analysis procedures are described in
the Supplementary Methods in the data
supplement.

Results

Smoke Exposure Potentiates
Aggressive Phenotypes in Lung
Fibroblasts
Severe lung fibrosis requires activated
fibroblast phenotype characteristics such as
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increased proliferation and invasion (11).
Given the profibrotic roles of tobacco
smoke (23–26), we first characterized the
influence of smoke exposure on the
phenotypes of lung fibroblasts. Three
normal lung fibroblast cell lines (Normal-1,
-2, and -3) derived from nonsmoker
donors, two normal lung fibroblast cell
lines (Smoking Normal-1 and -2) derived
from smokers without PF, and three lung
fibroblasts (PF-1, -2, and -3) isolated from
smokers with PF, as described previously
(30), were subjected to colony formation
and Matrigel transwell invasion assays,
respectively. We observed stronger colony-
forming ability (Figure 1A) and higher
invasiveness (Figure 1B) in the two
smoking normal (Smoking Normal-1 and
-2) as well as further elevated activities in
the three PF fibroblasts (PF-1, -2, and -3) as
compared with normal lung fibroblasts.
Furthermore, the fibroblastic foci lesions
characterized by accumulation of a-smooth
muscle actin (a-SMA)–positive fibroblasts
were apparent in lung tissue from smokers
with PF (Figure E1A in the data
supplement). Patient information with
pathological findings is included in Table
E1. To determine that primary PF lung
fibroblasts exhibit aggressiveness and
unfavorable evolution in lung fibrosis, we
performed a lung fibrosis model by
adoptive transfer of primary human
pulmonary fibroblasts to severe combined
immunodeficiency mice that is modified
from an established murine model of PF
(31). Fibroblast cells were orthotopically
inoculated into the left lobe of mice lung as
we previously reported (28, 29), and we
collected the lungs for histology and
Masson’s trichrome staining 60 days after
inoculation. The lung architecture of mice
inoculated with normal fibroblasts
appeared normal, whereas mice bearing
smoke-exposed PF fibroblasts showed
disrupted architecture and extensive
structural changes in the lungs,
concomitant with fibroblastic lesions and
deposited extracellular matrix (Figure 1C),
implying that smoke-exposed PF fibroblasts
were active in persisting, proliferating, and
continuing collagen production and ECM
deposition compared with normal
fibroblasts.

To elucidate whether PF fibroblasts are
directly activated by smoke exposure, we
selected apoptosis-resistant and proliferative
populations in normal human fibroblasts
receiving long-term CSE exposure;

therefore, several CSE-exposed (or CSE-
resistant) fibroblasts had been generated
after exposure to 20% CSE for 4 weeks. We
observed that the proliferative and invasive
ability of the four CSE-treated fibroblasts is
enhanced as compared with that of their
PBS-treated control counterparts (Figures
1D and 1E). As such, exposure to
compounds in cigarette smoke induced
fibroblast activation and aggressiveness to
promote PF, and the disease process could
be halted if the aggressive nature of PF
fibroblasts can be attenuated.

AXL Signalsomes Are Activated in
Response to Smoke
Recent studies have demonstrated that
RTKs can be major drivers influencing
fibroblast proliferation and myofibroblast
differentiation, contributing to fibrosis
progression (13). To identify druggable
smoke-associated signaling molecules to
reduce fibroblast activation and
differentiation, we therefore performed a
phospho-RTK antibody array screen, which
includes numerous kinases with available
specific inhibitors. After comparing the
array signal intensities between Normal-3
and PF-3 fibroblasts (Figure 2A) or between
PBS-2 and CSE-2 fibroblasts (Figure 2B),
we identified four top-ranked RTKs with
upregulated tyrosine phosphorylation in
response to tobacco smoke (Figure 2C). Of
these RTKs, AXL receptor is the first to
draw our attention given recent reports
showing the importance of AXL activation
in IPF lung fibroblasts (14, 15), and our
observation of its activity being upregulated
in two different conditions of smoke
exposure.

AXL expression and activation was
demonstrated to be elevated in IPF and
drove IPF fibroblast proliferation,
migration, and differentiation (14, 15).
Additionally, downstream pathways of AXL
such as the PI3K/AKT (protein kinase B)
and JAK (Janus kinase)/STAT (signal
transducer and activator of transcription)
pathways have also been shown to be
upregulated in IPF (34, 35). To determine
the significance of AXL in the context of
smoke exposure, we next validated the
results of the RTK array screen. As shown
in Figures 2D and 2E, exposure to cigarette
smoke elevated phospho-AXL levels in all
tested primary PF series of lung fibroblast
cell lines and CSE-exposed lung fibroblasts
compared with those primary normal and
PBS-treated fibroblasts, respectively. This is

accompanied by an increase of AXL-
mediated phosphorylation of STAT3 and
AKT. In addition, through the analysis of
the transcriptome data set GSE3320 (36),
we found that several genes involved in
AXL-mediated PI3K-AKT and JAK–STAT
pathways are upregulated in lung cells from
smokers (Figure 3), suggesting that AXL is
a smoke-responsive molecule and may
drive the aggressive nature of lung
fibroblasts in lung fibrosis.

AXL Sustains Smoke-induced
Signaling and Aggressiveness in
Fibroblasts
The canonical activation pathway of AXL
receptor is through the binding with its
ligand, Gas6 (growth arrest–specific 6) (37).
Thus, we investigated whether a change in
Gas6 expression, the major ligand for AXL
activation, is driving smoke-induced
upregulation of AXL activity. Surprisingly,
data from analysis of the two data sets
(GDS534 and GDS3494) (38, 39) have
shown no significant increase of Gas6 levels
from current and former smokers
compared with never-smokers, with a slight
decrease observed instead (Figure 4A).
Furthermore, our mRNA data from
primary lung fibroblast cells and from cells
treated with CSE also showed similar levels
of Gas6 (Figure 4B). We further evaluated
the secreted protein level of Gas6 and
observed no significant changes between
normal and smoking normal lung fibroblast
cells as well as mostly no remarkable
changes in our control and CSE-treated
cells (Figure 4C). To evaluate the potential
role of soluble AXL (sAXL) in modulating
Gas6 activity, we also assessed the levels of
sAXL in primary lung fibroblasts and in
CSE-treated cells. Data from ELISA assays
confirmed similar levels of sAXL in all
primary normal cells as well as in CSE-
treated cells (Figure 4D). These taken
together suggest that Gas6 may play only a
minor role in smoke-modulated AXL
activation and indicate the possibility of a
ligand (Gas6)-independent event for AXL
activation upon smoke exposure.

To determine if blockade of AXL
activity inhibits smoke-induced signaling
and aggressiveness in fibroblasts, we used an
AXL-specific siRNA (AXL siRNA) to
deplete endogenous AXL. We found that
AXL knockdown suppressed the activities of
several signaling molecules including AKT
andMARCKS (myristoylated alanine-rich C
kinase substrate), and this suppressive effect
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was more evident in the context of smoke
exposure (Figure 4E). To confirm the
contribution of AXL to fibroblast
activation, PBS- and CSE-treated fibroblasts

were transfected with control or AXL
siRNAs and then subjected to in vitro
biofunctional assays. As shown in Figure 4F
(left), the proliferation ability of CSE-

exposed fibroblasts after AXL silencing is
attenuated to a level comparable with that
of PBS-treated fibroblasts. Moreover,
knockdown of AXL also decreased the
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Figure 1. Aggressive nature of smoke-exposed fibroblasts in lung fibrosis. (A) Cells were seeded to grow for 9 days, and cell colonies were counted after
crystal violet staining. Left, representative images of three independent experiments. Right, colony units expressed as means6SD (n=5). *P,0.05 compared
with Normal-1. (B) Comparison of invasion ability between normal, smoking normal, and PF cells as determined by Matrigel transwell invasion assays. Cells
were plated on Transwells for 20 hours, and those that migrated to the lower chamber were fixed, stained, and counted using light microscopy. Data are
expressed as means6SD (n=4). *P,0.05 compared with Normal-1. (C) Representative Masson trichrome–stained sections of mouse lung implanted with
indicated fibroblasts. Bottom, semiquantitative fibrosis scores from Masson trichrome–stained sections of mouse lung. Fibrosis score is expressed as the
percentage of positive staining area per high-powered field. Analysis of 6–12 high-powered fields per lung was performed with ImageJ software. *P,0.05.
Scale bar, 50 mm. (D) Cells were seeded to grow for 72 hours and then subjected to MTS proliferation assays. *P,0.05 compared with PBS-exposed
counterpart. (E) Comparison of invasion capability between PBS- and CSE-exposed cells as determined by Matrigel transwell invasion assays. Data are
expressed as means6SD (n=4). *P,0.05 compared with PBS-exposed counterpart. CSE=cigarette smoke extract; PF=pulmonary fibrosis.
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number of invaded CSE-exposed fibroblasts
(Figure 4F, right) in the transwell invasion
assay. Therefore, a reversal or halt of
fibrotic processes could potentially be
achieved through AXL inhibition.

Smoke Stimulation Drives the
Activation of the AXL–MARCKS
Molecular Complex
The above results demonstrated the
importance of AXL signaling in smoke-
exposed fibroblast cells, so we next
interrogated the molecular mechanism of how

AXL activity is regulated in lung fibroblasts.
We previously identified the signal molecule
MARCKS as a druggable target in PF (30),
and our current work had confirmed a
positive association between phospho-
MARCKS and AXL abundance (Figure 4E).
Based on these observations, we presume
that AXL cooperates with MARCKS to
sustain activated phenotypes of fibroblasts
in response to cigarette smoke. In a fibrosis
mouse model, immunofluorescence data
showed coexpression of AXL and MARCKS
in a-SMA, a myofibroblast marker, positive

cells (Figure 5A). Through analysis of the
levels of phospho-AXL and phospho-
MARCKS in a cigarette smoking mouse
model, we demonstrated elevated expression
of phospho-AXL and phospho-MARCKS
in lung tissues with exposure to side-
stream cigarette smoke (Figure 5B). The
colocalization of phospho-AXL and phospho-
MARCKS upon tobacco smoke exposure is
also corroborated by co-IP analysis in which
an interaction between AXL and phospho-
MARCKS is enhanced in CSE-exposed
fibroblasts (Figure 5C), indicating
AXL–MARCKS as a smoke-specific
molecular complex.

To test whether MARCKS inhibition
can disrupt the AXL–MARCKS complex,
our previously developed cell-permeable
peptide, the MPS peptide, which targeted
the MARCKS phosphorylation site
domain (PSD) and inhibited MARCKS
phosphorylation in cancers (29), and
siRNAs targeting MARCKS were used to
treat cells. Co-IP assays confirmed an
interaction of AXL with MARCKS, and
this interaction is decreased in MARCKS-
knockdown cells (Figure 5D, top) as well
as in MPS-treated cells (Figures 5D, bottom,
and E2A). In addition to the disruption
of complex formation, inhibiting phospho-
MARCKS by treatment with MPS peptide
or MARCKS-specific siRNAs downregulated
AXL activity and its signaling in all tested
primary PF fibroblasts (Figures 5E and E2B).
We also treated human normal fibroblast
cells with nicotine-containing and nicotine-
free vapor extract from electronic cigarettes
(e-cigarettes or E-cig) as shown in Figure 5F.
An upregulation of phospho-AXL and
phospho-MARCKS and a myofibroblast
marker, a-SMA, was observed in the
presence of E-cig vapors, whereas these
molecules were attenuated by treatment
with MPS peptide. Thus, cigarette smoke
stimulates fibroblast activation, contributing
to lung fibrosis progression through
AXL–MARCKS signaling.

Targeting AXL Signaling
Selectively Impairs the Viability of
Smoke-exposed Fibroblasts
Owing to the determinant role of AXL
signaling in the aggressive nature of all
tested primary PF fibroblasts, targeting AXL
activity with the selective inhibitor of AXL
bemcentinib (R428), a small molecule
kinase inhibitor undergoing phase II trials in
treating various tumor types (40), may
retard the fibrosis progression. MTT assays
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Figure 2. AXL and its signaling pathway are activated in smoke-associated lung fibroblasts. (A and B)
Cell lysates from primary lung fibroblasts, Normal-3 and PF-3 cells (A), and selected cell lines, PBS-2
and CSE-2 cells (B), were subjected to human phospho-receptor tyrosine kinase (RTK) arrays. (C)
Top four upregulated phospho-RTKs identified from RTK arrays in A and B. PF: PF-3, N: Normal-3,
C: CSE-2, P: PBS-2. (D) Western blot analysis of phospho-AXL and downstream phospho-STAT3 and
phospho-AKT in primary normal lung fibroblasts (Normal-1, -2, and -3) and primary lung fibroblasts
isolated from smokers with pulmonary fibrosis (PF-1, -2, and -3). (E) Expression of AXL protein and its
phosphorylation in PBS- and CSE-exposed lung fibroblast cells were determined by IB. HGFR=MET
proto-oncogene receptor tyrosine kinase; IGF1R= insulin like growth factor 1 receptor; PDGFR=platelet
derived growth factor receptor; RYK= receptor like tyrosine kinase; STAT=signal transducer and
activator of transcription.
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have confirmed that R428 treatment was
more effective in decreasing cell viability of
CSE-exposed fibroblasts, as compared with
the treatment of PBS-treated fibroblasts
(Figure 6A). Moreover, the half maximal
inhibitory concentration of all tested
smoke-exposed cells (CSE-1 to CSE-4) and
primary PF fibroblasts (PF-1 to PF-3) was
significantly lower than the half maximal
inhibitory concentration of PBS-treated
cells (PBS-1 to PBS-4) and primary normal
fibroblasts (Figures 6B and 6C). Treatment
with R428 for 24 hours also reduced the
activity of AXL-downstream signaling
molecules including AKT, Erk1/2, and
STAT3 as well as the profibrotic marker
a-SMA in smoke-exposed cells (Figure 6D),
supporting the notion that AXL inhibition
impairs the aggressiveness of lung
fibroblasts. In view of an increase in AXL
activity after exposure to smoke, we treated
normal fibroblasts and smoke-exposed
fibroblast cells with R428. Surprisingly,
smoke-exposed cells displayed lower cell
viability upon R428 treatment as compared
with control cells without smoke exposure.
Of note, cells receiving long-term smoke
exposure (21 d) are more sensitive to this

inhibitor (Figure 6E). This finding suggests
that in smoke-exposed cells, there is
selection for an apoptosis-resistant and
more proliferative population, and these
cells become addicted to AXL activity.
Thus, AXL signaling may be a driver
pathway supporting fibroblast cell survival
and proliferation in response to tobacco
smoke.

Pharmacological Targeting of AXL
Signaling Attenuates Experimental
Smoke-related Pulmonary Fibrosis
Given the role of AXL signaling in
promoting profibrotic phenotypes in
response to tobacco smoke, we next
evaluated the efficacy of AXL targeting in an
experimental orthotopic model of PF.
Briefly, immunodeficient mice were
orthotopically injected with lung fibroblasts
cells (PF-1 and -2) into both left and right
lung lobes. After 4 weeks, mice were treated
with either PBS or 10 mg/kg R428 for
an additional 4 weeks. Histologically,
R428-treated mice demonstrated reduced
fibrosis compared with PBS control mice
(Figure 7A). Additionally, we also stained
for human-specific vimentin to evaluate the

survival and dissemination of injected
primary fibroblasts and demonstrated that
R428-treated mice had reduced amounts of
surviving fibroblasts compared with PBS-
treated mice (Figure 7B). Lastly, R428-
treated mice displayed overall decreased
collagen content (Figure 7C) compared
with controls. In summation, these
demonstrate that targeting AXL
activity can attenuate overall fibrosis
in our experimental mouse fibrosis
model.

Discussion

Despite the breadth of work in PF, especially
IPF, in the past few decades, the
mechanisms driving fibrotic progression are
still not completely understood and there is
a lack of effective therapies and biomarkers
for the disease for patients. Smoking has
long been recognized as a significant risk
factor for PF and plays a nontrivial role in
propagating fibrosis, but the mechanisms
have not yet fully explored (16–26, 41–43).
Herein, we had identified a novel fibrogenic
complex, the AXL–MARCKS molecular
complex, where tobacco smoke–activated
AXL promotes PF progression (Figure 7D).
Through our studies, we had identified
AXL as a critical RTK driving fibrotic
activities in response to tobacco smoke
exposure.

The fibroblasts residing in the
histopathologic lesions of PF are
characterized by increased ECM production
and deposition, increased proliferative
ability, and invasive capability (25, 26).
Indeed, compared with fibroblasts isolated
from normal lungs, fibroblast cells isolated
from smoke-associated PF lungs display an
“activated” phenotype as demonstrated by
the increased colony formation and
invasive abilities. Additionally, to
investigate the profibrotic activities of these
cells, we used an adoptive transfer model
wherein we transferred PF and non-PF
fibroblast cells into mouse lungs. PF
fibroblasts displayed a marked capability to
form pathological lesions of active
fibroblasts and ECM deposition, resulting
in altered lung architecture. In mice
injected with non-PF cells, the fibroblasts
did not form fibrotic lesions and little to no
ECM deposition was noted. These in vivo
results are consistent with the above in vitro
findings and support the profibrotic role of
tobacco smoking.
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Tobacco smoke is an amalgamation of
thousands of different compounds, many of
them being toxicants. Studies have long
implicated the adverse effects of tobacco

smoking on the lung, with effects ranging
from repeated alveolar damage to induction
of inflammation as well as promoting
proliferation and activation of lung cells.

Tobacco smoking has been implicated as the
causative factor in multiple ILDs such as
respiratory bronchiolitis ILD, desquamative
interstitial pneumonia, and smoking-related
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interstitial fibrosis (44). Clinical studies
have indicated that smoking is an
independent risk factor for IPF and is
associated with a worse outcome in

patients with IPF (16, 19, 21). Both in vitro
and in vivo reports have also supported
the concept of tobacco smoking in
promoting lung fibrosis (23, 41, 42).

In our study, we determined, for the first
time to the best of our knowledge, the
influence of tobacco smoke on lung
fibroblasts through generation of
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CSE-resistant lung fibroblast cells. We
have found that these cells demonstrate
upregulated cell proliferation, invasion, and
ECM deposition activities. Our findings fall
in line with previous studies and support
the concept that tobacco smoking can

promote fibrosis through modulating
fibroblast activities.

RTKs have been recently demonstrated
to be major driving signaling molecules
influencing fibroblast activities such
as proliferation and differentiation,

contributing to progression of fibrosis (13).
In particular, AXL, a receptor in the TAM
family of receptors, has recently been
demonstrated to play a major role in IPF
lung fibroblasts (14, 15). Although this
contributes greatly to the understanding of
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the mechanisms of how IPF is driven, how
AXL activity is modulated by tobacco
smoking was left unexplored. To address
this, we compared both primary normal

fibroblasts and PF fibroblasts (isolated
from patients with smoking history) as
well as CSE-exposed (or CSE-resistant)
fibroblast cells. By performing molecular

analysis and biofunctional assays, we
identified that both AXL activity and its
signaling pathways are indeed elevated in
response to tobacco smoke, potentially
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driving the profibrotic phenotype in
fibroblast cells in PF.

AXL activation is canonically mediated
by ligand binding and subsequent
dimerization resulting in downstream
phosphorylation and activation (45). The
previous report of AXL’s role in IPF
suggested that the AXL activation was due to
an increase of its ligand Gas6, the prototypic
ligand of AXL receptor (14). We therefore
questioned whether the AXL activity in
response to tobacco smoke was driven by
Gas6. In light of the observations in both
transcriptomic data sets and our CSE-
exposed cells, we reason that this was not the
case as Gas6 transcriptional levels were not
significantly changed in the context of
smoke. At the secreted protein levels,
secreted Gas6 was generally also not
significantly altered in CSE-exposed cells as
well as in primary normal fibroblast cells
isolated from individuals with smoking
history (Figure 4C). Lastly, we also evaluated
the levels of sAXL, a decoy receptor for Gas6
that can sequester Gas6 to prevent binding
to cell surface AXL, to rule out its
contribution in fibroblasts exposed to
tobacco smoke. We found that sAXL levels
were not appreciably altered in primary
normal cells from individuals with smoking
history or in CSE-exposed cells as compared
with respective control cells. These taken
together indicate that an increase of AXL
activity in fibroblasts in response to smoke is
likely not primarily driven by Gas6 and may
instead be mediated through ligand (Gas6)-
independent mechanisms. Several studies
have found that AXL can be activated
through ligand-independent mechanisms.
For example, AXL overexpression can drive
cell aggregation through binding of
homophilic binding domains, leading to
receptor activation. AXL homodimerization
without ligand binding has also been
demonstrated (45). Additionally, AXL has
been shown to heterodimerize with other
TAM and non-TAM receptors (45, 46).
Although many factors have been proposed
to drive ligand-independent activation of
AXL from overexpression of AXL to reactive
oxygen species, Gas6-indpendent activation
of AXL remains very much unexplored.

We further inquired whether other
receptors from the TAM receptor family
were also altered in response to tobacco
smoke, but we did not observe any
appreciable changes in Tyro3 or MerTK
phosphorylation levels in our RTK
screening of our sample set (Figures 2A and

2B). Previous reports have indicated that
Tyro3 is upregulated in IPF (14) and plays a
role in modulating PF. Given that tobacco
smoking is a significant risk factor for IPF
(16–22, 47) and many patients have prior
smoking history, it would not be illogical
for tobacco smoke to influence Tyro3 levels
and/or function. However, we did not
observe changes in Tyro3 in our samples,
perhaps indicating that Tyro3 upregulation
is unique to IPF or that tobacco smoke in
insufficient to drive changes in Tyro3 levels
and activity.

Although we did observe increased
AXL expression in some of the CSE-exposed
cells and primary PF cells, the higher
expression of total AXL compared with
control and normal cells, respectively, was
not consistent throughout and varied by cell
or clone. However, the increase in phospho-
AXL was consistent in both CSE-exposed
cells and PF cells. This suggests that
although cell aggregation or AXL
homodimerization due to an increase of
AXL abundance is a possibility, there are
likely other mechanisms at play. Tobacco
smoke exposure was shown to activate
receptors independent of ligand. This has
been demonstrated in the EGFR (epidermal
growth factor receptor) (48), and a similar
phenomenon may be at play in AXL. The
role of Gas6 also cannot be completely
ruled out as cells still express an
endogenous amount of Gas6 and other cell
types in the lung parenchyma may also be
contributors of Gas6. However, in the
context of smoke-exposed fibroblasts and
PF fibroblasts and in reflection of our
findings, the ligand-independent activation
of AXL by tobacco smoke is a potential
mechanism driving AXL activity.

We had previously demonstrated the
role of MARCKS, a master regulator of the
PI3K/AKT pathway, in modulating
fibroblast activities such as invasiveness in
IPF fibroblasts (30). Because the PI3K/AKT
pathway is the major signaling downstream
to AXL activation, we questioned whether
the signal molecule MARCKS also played a
role in tobacco smoke–mediated fibroblast
invasiveness and AXL signaling. As we
expected, genetic knockdown of AXL
reduced MARCKS signaling (Figure 4E).
We next found coexpression of AXL
and MARCKS in a-SMA–positive
cells in bleomycin-treated mouse lungs
(Figure 5A). Furthermore, we identified
that phospho-AXL and phospho-MARCKS
are coexpressed into smoke-treated mouse

lung (Figure 5B), indicating that there may
be an interaction between the two
molecules. Protein interaction between
AXL and MARCKS was demonstrated
through reciprocal IP (Figure 5C), and
this interaction was disrupted by both
MARCKS or AXL targeting (Figure 5D).
Surprisingly, targeting of MARCKS
activity through a MARCKS inhibitor,
MPS peptide, also decreased AXL
phosphorylation. Targeting of either
MARCKS or AXL demonstrated
downregulation of phosphorylation of
both proteins as well as attenuated
downstream signaling (Figures 4E, 5E,
and 6D). Taken as a whole, this indicates
that MARCKS and AXL form a molecular
complex in response to tobacco smoke
that drives downstream signaling,
ultimately driving a profibrotic phenotype
in smoke-exposed cells. Currently, it is
unclear if there is a distinct hierarchy in the
signaling activities of MARCKS and AXL.
There is a need to identify the exact
interaction sites between MARCKS
and AXL. Because MPS targets the
phosphorylation of MARCKS PSD and was
able to disrupt the interaction between
MARCKS and AXL, it would not be
surprising to identify the AXL interaction
site in the PSD of MARCKS. This is,
however, beyond the scope of this study but
requires further investigation.

In addition to tobacco smoke, AXL
activity was also increased in the presence of
e-cigarette smoke. E-cigarettes operate
through vaporizing a liquid carrier
containing nicotine and other compounds
and have been shown to have some similar
effects as tobacco smoke (49). We observed
an increase in MARCKS and AXL activity
in response to this vapor, suggesting that a
similar mechanism may be at play in
e-cigarette smoke exposure. Given that
tobacco smoke upregulated AXL signaling
to activate fibroblasts, we further explored if
we could target these activated fibroblasts
through the inhibition of AXL activity.
Pharmacological studies show the
selectivity of an AXL-specific inhibitor,
R428 (bemcentinib), in fibroblasts exposed
to tobacco smoke, especially long-term
smoke exposure (21 days or longer),
whereas no significant sensitizing effect was
noted in normal fibroblasts treated with
R428. These findings suggest that there may
be a shift to dependence on the AXL
signaling pathway as exposure to tobacco
smoke continues. Assessment of the efficacy
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of AXL inhibition in attenuating smoke-
related lung fibrosis in mice was also
explored and the results support our notion
that targeting AXL with the inhibitor R428
was effective in reducing overall fibrosis
(Figure 7). In addition, we have found that
the MARCKS–AXL signaling complex is
activated in response to tobacco smoke and
that targeting this pathway is a potential
therapeutic avenue. As we observe that
AXL activity is upregulated in PF
fibroblasts from patients with a smoking
history, both AXL expression and activity
could potentially serve as a biomarker for
smoking-associated PF. This marker could
assist in predicting the fibroblast activity in

patients and may help inform therapeutic
choices.

In summary, we demonstrate that
tobacco smoking is able to modulate
profibrotic phenotypes in fibroblasts and
promote fibrotic progression. Our findings
suggest that AXL cooperatively interacts
with activated MARCKS to form a
fibrogenic molecular complex as a potential
mechanism of this process and that this AXL
activity may be independent of Gas6. Much
is still unknown concerning the mechanism
of AXL activation in fibroblasts in response
to smoke, but our findings offer evidence of
AXL activation as a potential key pathway
linking the fibrotic process with tobacco

smoking. This pathway is of interest in
addressing the challenges of halting PF
progression and presents as a promising
target and potential marker for smoke-
related PF. n
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