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Abstract

HIV molecular epidemiology estimates the transmission patterns from clustering genetically

similar viruses. The process involves connecting genetically similar genotyped viral

sequences in the network implying epidemiological transmissions. This technique relies on

genotype data which is collected only from HIV diagnosed and in-care populations and

leaves many persons with HIV (PWH) who have no access to consistent care out of the

tracking process. We use machine learning algorithms to learn the non-linear correlation

patterns between patient metadata and transmissions between HIV-positive cases. This

enables us to expand the transmission network reconstruction beyond the molecular net-

work. We employed multiple commonly used supervised classification algorithms to analyze

the San Diego Primary Infection Resource Consortium (PIRC) cohort dataset, consisting of

genotypes and nearly 80 additional non-genetic features. First, we trained classification

models to determine genetically unrelated individuals from related ones. Our results show

that random forest and decision tree achieved over 80% in accuracy, precision, recall, and

F1-score by only using a subset of meta-features including age, birth sex, sexual orientation,

race, transmission category, estimated date of infection, and first viral load date besides

genetic data. Additionally, both algorithms achieved approximately 80% sensitivity and

specificity. The Area Under Curve (AUC) is reported 97% and 94% for random forest and

decision tree classifiers respectively. Next, we extended the models to identify clusters of

similar viral sequences. Support vector machine demonstrated one order of magnitude

improvement in accuracy of assigning the sequences to the correct cluster compared to

dummy uniform random classifier. These results confirm that metadata carries important

information about the dynamics of HIV transmission as embedded in transmission clusters.

Hence, novel computational approaches are needed to apply the non-trivial knowledge col-

lected from inter-individual genetic information to metadata from PWH in order to expand

the estimated transmissions. We note that feature extraction alone will not be effective in

identifying patterns of transmission and will result in random clustering of the data, but its uti-

lization in conjunction with genetic data and the right algorithm can contribute to the expan-

sion of the reconstructed network beyond individuals with genetic data.
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1 Author summary

Molecular transmission networks are built by connecting similar HIV-1 drug resistance

viral genomes. Using such methods, approximately half of all sequences stay unlinked,

and the remaining half fall into categories of many small clusters and a few large clusters

showing fragmentary epidemiological relations. However, the unavailability of genetic

data for the entire underlying transmission network and challenges of sampling complete-

ness limits the reliance on creating transmission clusters. Here, we take the known

relationship from genetic data and transform the problem into a hybrid multi-step unsu-

pervised and supervised learning problem in which we use contextual data to create a

model unwrapping the hidden epidemiological relation among positive cases in transmis-

sion networks beyond genetic data. The goal is not to provide a static feature set from

metadata that can be used for all jurisdictions but can offer a dynamic classifier framework

that can reveal the unique dynamics of the spread of HIV in each jurisdiction.

2 Introduction

Observations of closely related viral strains indicate that HIV transmission is occurring rapidly

within a common network. Immediately following transmission of HIV between two people,

the molecular sequence of the HIV strain in the recipient will be nearly identical to strains

found in the transmitting person. As time passes, however, the strains infecting each person

will change independently of one another and will look more different [1]. After a diagnosis of

HIV for an individual, a sample of their viral sequence is collected for drug resistance purposes

and reported to state and local health departments. Health departments together with CDC

utilize these drug resistance genotypes for the detection of molecular clusters of epidemiologi-

cally related infection incidents. They conduct routine analyses to identify molecular clusters

that are concerning for recent and rapid transmission of HIV and probable future growth [2].

The recent CDC guidelines require their funded jurisdictions to run a monthly analysis of the

molecular cluster detection using HIV-TRACE [2, 3].

A sample of such reconstructed molecular network is shown in Fig 1. The entire network is

split among clusters of related viral strains [shown as gray circles with black borderlines], in

which “nodes” represent HIV-1 protease and partial reverse transcriptase genotype sequences

and “edges” demonstrate the genetic distance between viral strains (only among the nodes of

close proximity to HXB2 reference sequence). The edge weights (pairwise genetic distances)

are measured using the TN93 model [4]. After computing all pairwise distances, the method

presented in [3] generates a graph of sequence nodes where an edge between two nodes exists

if their pairwise distance is� α. The α is a distance threshold for genetic similarity defined

experimentally by field experts, typically between 0.5-2% substitution per site [1, 3]. All con-

nected nodes form a cluster implying epidemiological relatedness. Note that the small genetic

distance between two nodes in the graph only indicates that there is an epidemiological con-

nection between two individuals, but cannot provide information regarding the transmission

direction. HIV-TRACE groups� 2 nodes together to form clusters of epidemiologically

related individuals [5]. The resulting network created with the genetic information identifies

genetic links with implied epidemiological links which is a subset of the transmission networks

and is interchangeably referred to as transmission networks in literature.

The dynamics of HIV transmission vary in different jurisdictions and prior studies of the

network connectivity conform to a scale-free distribution [5]. Usage of molecular clusters to

reconstruct molecular transmission networks has revolutionized research on detecting priority
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clusters and enhanced preventive interventions [6–11]. Although it is a renowned approach,

faces limitations that can reduce reliance on genetic sources alone for making inferences about

HIV transmission. A large limiting factor is the unavailability of genotype data for the afore-

mentioned transmission and risk networks. To date, the viral genetic sequences collected

for drug resistance tests are partly available for people who are living with HIV, while contex-

tual metadata is more accessible for everyone in molecular, transmission, and partial risk

networks.

The metadata (epidemiologic, serologic, behavioral, risk partners) of the individuals in the

molecular network have been effectively analyzed to track the origin of foregoing outbreaks

and to evaluate transmission dynamics [12–14] for acute and unreported HIV transmissions

and to design potent prevention intervention strategies [15, 16]. These findings reveal the

importance of information inherent in the metadata associated with the molecular network.

Since the dynamics of transmission in a jurisdiction is consistent in the network (regardless of

the availability of genetic data), we hypothesize that machine learning algorithms are able to

learn these relations from the reconstructed molecular network, built on a strong but limited

data source, and apply the acquired knowledge to the metadata in order to expand the esti-

mated network from “molecular” to “transmission” network (color-coded orange and yellow

in Fig 2). Here we develop a hybrid multi-step unsupervised and supervised learning model in

which a labeled dataset generated from a genetic molecular network trains a classifier to build

a model using their associated metadata. The trained algorithm applies the model to the meta-

data from people without genetic data in the jurisdiction and expands the reconstruction of

the transmission networks beyond the molecular networks. This method has the potentials to

incorporate more relevant data into the estimation of prior transmissions and might reveal the

hidden relationships for the part of singleton nodes that remained unexplored due to the chal-

lenges of sampling incompleteness of genomic data. Also, it enables us to refine the chosen

genetic distance threshold that might unnecessarily sacrifice links representing the early infec-

tions that could be phylogenetically and epidemiologically linked to the outbreak [12, 17].

Fig 1. Sample molecular transmission network. Clusters [shown as gray circles with black borderline such as C1, C2 and C3], and three clusters are

expanded for more clarity, the nodes represent viral sequences and the edges between every pair of nodes show epidemiological relatedness.

https://doi.org/10.1371/journal.pcbi.1009336.g001
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3 Dataset

We analyze the genetic and epidemiological metadata gathered between 1998 and 2019 from

1192 people living with HIV in San Diego Primary Infection Resource Consortium (PIRC).

Individuals are clustered together with the genetic distance of�0.015 substitutions site. 568

individuals resided in 171 (cluster sizes 2-23). Approximately 47% of all individuals in this

study were labeled as clustered and the rest remained as singletons (no evidence of epidemio-

logical relation). PIRC cohort dataset includes nearly 80 demographic, baseline history, labo-

ratory, and screening features. After filtering missing values and performing backward

feature elimination, we extracted a small subset of features with the lowest data missingness

and high predictive values to utilize as the contextual feature space. Hence, the non-genetic

metadata utilized to train the classification algorithms include age, birth sex, sexual orienta-

tion, race, transmission category, estimated date of infection, and first viral load date. The

racial, transmission category and age distribution of the data is shown in Fig 3 and more in

Table 1.

4 Results

In the absence of a gold standard for transmission network, we utilize HIV-TRACE [18] as the

baseline to evaluate the effectiveness of our approach. The dataset explained in Section 3,

includes genetic and contextual metadata for all individuals. To test our hybrid model we

removed the genetic data of the individuals that were used as test data and assumed we only

Fig 2. Relationship of the active elements in progressing HIV transmissions.

https://doi.org/10.1371/journal.pcbi.1009336.g002
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have metadata for those individuals. Then we compared the results of our trained classifiers

against HIV-TRACE generated clustered/singletons on the entire dataset as a baseline.

We explored the effect of consolidating the genetic information with metadata to expand

the reconstructed transmission network. We first trained a binary-class model using k-nearest

neighbor, decision tree, random forest, and support vector machine classifiers trained with

contextual metadata explained in Section 3. As shown in Table 2 among all classifiers decision

tree and random forest trained using labeled data, gained highest performances in differentiat-

ing clustered individuals from singletons using metadata with over 80% in accuracy, precision,

recall, and F1-score.

To assure independence in k-fold cross validation training, we performed the cross-valida-

tion with 50 repetitions, to avoid any possible estimation bias. Consistent with the train-test

model results [in Table 2], cross-validation accuracy reports decision tree and random forest

achieving highest performance in most repetitions [shown in Fig 4A]. We also generated

Receiver Operating Characteristic (ROC) curves for the algorithms and calculated the Area

Under Curve (AUC) shown in Fig 4B is reported 97% and 94% for random forest and decision

tree classifiers respectively. We computed other accuracy measures such as the sensitivity and

specificity of each algorithm. The random forest and decision tree achieved over 90% sensitiv-

ity and 80% specificity [shown in Table 3] which confirms the performance measures achieved

using test-train or cross-validation learning.

Fig 3. People living with HIV, San Diego PIRC. A. Racial distribution, B. Category of transmission risk, and C. Age

distribution.

https://doi.org/10.1371/journal.pcbi.1009336.g003

Table 1. San Diego PIRC (Primary Infection Resource Consortium) data: 1998-2019.

Variables All Seqs Clustered Seqs

Sexual orientation

M 93.53% 97.07%

F 5.54% 2.62%

MF 0.25% 0.31%

FM 0% 0%

Others 0.68% 0%

First viral load date

before 2000 4.7% 6.38%

2000—2005 20.99% 23.43%

2005—2010 12.76% 27.79%

2010—2015 14.17% 28.46%

2015—2019 5.48% 13.94%

Unspecified 41.90% 0%

https://doi.org/10.1371/journal.pcbi.1009336.t001
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The performance results for a binary classification (of clustered vs. singletons) is demon-

strated in Tables 2 and 3, and Fig 4. To test the extended hypothesis from binary classification

differentiating among clusters, we trained models with clusters of size� 5 using 50 repetitions

of 10-Fold cross-validation. Despite choosing a high value for K the evaluations of the support

vector machine in some repetitions raised overfitting concerns [see Fig 5A]. Therefore, to

detect overfitting of the classifier we performed stratified cross-validation in that we rearrange

the data whereby each fold has a good representation of the whole dataset. The accuracy

achieved by SVM outperformed other classifiers [Fig 5B]. Although approximately 0.30%

accuracy seems modest, please note that the accuracy for Dummy Uniform random classifier

in a 30-class classification problem is also demonstrated as the baseline performance. The

results show that the SVM prediction class assignment approach is on average an order of

magnitude better than the random classifier.

Example code providing an implementation of the the method is available at: https://

github.com/smazrouee/MLMetadata. Patient level metadata cannot be shared publicaly due to

risk of violating privacy. HIV-1 sequence data is available at: https://www.ncbi.nlm.nih.gov/

genome/viruses/retroviruses [18, 19].

Table 2. Macro average performance measures of machine learning algorithms on extended feature set trained classifiers using San Diego cohort data (1998-2019).

Algorithm Accuracy Precision Recall F1-Score

Decision Tree 0.91 0.89 0.82 0.84

Random Forest 0.86 0.91 0.87 0.88

k-Nearest Neighbors 0.73 0.36 0.50 0.42

Support Vector Machine 0.75 0.71 0.58 0.61

https://doi.org/10.1371/journal.pcbi.1009336.t002

Fig 4. Accuracy measures of the trained models. A. Cross validation—binary classification, B. ROC and Area Under

Curve.

https://doi.org/10.1371/journal.pcbi.1009336.g004

Table 3. Predictive performance measures.

Algorithm Sensitivity Specificity

Decision Tree 0.94 0.9

Random Forest 0.91 0.82

k-Nearest Neighbor 0.45 0.77

Support Vector Machine 0.47 0.70

https://doi.org/10.1371/journal.pcbi.1009336.t003
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5 Discussion

The development of efficient and scalable algorithms for the reconstruction of transmission

networks remains an open research problem. Quality of viral strains, sequence alignment spec-

ifications, complications in sampling molecular and epidemiological data, and the density and

relevance of the variables to explain transmissions make the problem challenging. Current

methods are built based on viral genetic data not utilizing metadata which carries valuable

information for the reconstruction of transmission networks. We presented a framework to

enhance our ability to incorporate useful information from contextual metadata. Our

approach extracts knowledge from HIV-1 drug resistance genetic data and reflects it on demo-

graphic, transmission risk, laboratory, comorbidity, and social network data in order to pro-

vide a more comprehensive view of transmission dynamics of the disease. We examined if the

machine learning algorithms can identify similar epidemiologically related groups of individu-

als and comparing machine-learning-based prediction results to those of a baseline approach

in HIV-TRACE. The performance results of classification models demonstrate promising

results that a trained classifier is beneficial in recognizing epidemiological relations. Using

such models the estimated networks become closer to the underlying transmission network

with a core based on molecular data and the extension parts of the reconstructed network can

be estimated more accurately with the expansion of the relevant metadata. Therefore, the pre-

vention interventions will be applied to a larger population at risk rather than the core molecu-

lar network. Another recent study also demonstrated the effectiveness of similar machine

learning models in identifying clusters with future transmissions in a statewide investigation

[20]. Evidently, the density and coherency of the collected data for each feature that varies in

different datasets can potentially affect the results of the clustering or classification models.

Hence, neither can be a fixed list of metadata variables across all jurisdictions to distinguish

relatedness nor a static classifier that can be applied to all jurisdictions. Instead a dynamic clas-

sifier should be design that can be trained from local dataset and extract the patterns for proper

predictions. Therefore, studying several jurisdictions in different states or countries will be

beneficial to build a model that can determine a sufficient feature space that would lead to a

reasonable transmission network reconstruction.

Although using a moderate set of extended features resulted in a modest accuracy perfor-

mance, it validates the feasibility of using a classifier trained with genetic data for distinguishing

potential relatedness of a new HIV positive with no genotype which ultimately takes molecular

networks one step closer to the underlying transmission network. Application of such models

Fig 5. Accuracy comparison for node assignments to 29-clusters incorporating metadata. A. Cross validation, B.

Stratified Cross Validation.

https://doi.org/10.1371/journal.pcbi.1009336.g005
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on surveillance data with the larger feature sets and possibly more number of cases could result

in more accurate and generalizable algorithms. In general to choose which machine learning

algorithm can uncover the dynamics of a network, first we need to have a clear picture of the

data, the problem, and the constraints. In the context of the HIV transmission network we

should note that only using feature extractions single-handedly will not be effective in the deter-

mination of the outbreak patterns and will result in random clustering of the jurisdiction data,

but utilization of such data in conjunction with genetic data and the right algorithm.

Overall, our results suggest that metadata contains useful information about transmission

dynamics, and machine learning algorithms can be used to find a mapping between metadata

and transmission clusters. However, studying larger surveillance datasets comprising far greater

feature space not limited to demographic or genetic information can be an extension of this

project in which efficiency of neural networks and deep learning on such higher dimension

datasets would be beneficial. Expansion of these approaches to larger jurisdiction public health

surveillance databases will enhance our ability to predict these incident infections [21, 22].

6 Methods

The goal of this study is to examine the feasibility of analyzing contextual metadata to expand

the reconstruction of HIV transmission beyond the molecular network of people who are liv-

ing with HIV/AIDS. Such molecular data are collected only from HIV diagnosed and in-care

populations, leaving many persons with HIV (PWH) who have no access to consistent care

out of the tracking process. Here, we develop a dynamic framework consisting of a hybrid

multi-step unsupervised and supervised learning algorithm in which we create a labeled data-

set from the viral genetic data and use their contextual metadata (epidemiological, demo-

graphic, etc) to create a dynamic model to unwrap the non-random transmission patterns of

HIV in the jurisdiction. An overview of the processing pipeline is illustrated in Fig 6. It

Fig 6. Hybrid unsupervised/supervised HIV transmission reconstruction model pipeline. Generating a labeled dataset from molecular data (blue

dashed line box), reconstructing transmission network using labeled dataset (red dashed box), classification using augmented genetic and non genetic

data (black dashed box).

https://doi.org/10.1371/journal.pcbi.1009336.g006
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comprises a two-phase hybrid model in which the first phase generates a labeled training data-

set. In the second phase, the labeled dataset will be used by a trained classifier to process the

metadata from people living with HIV whose genetic sequence is not available to determine

whether they are epidemiologically related to the rest of the network by assigning them to the

clustered or the singleton class (or assign them to a unique cluster identifier). We would like to

note here that we do not assume that the nodes labeled as singletons are inherently irrelevant

to the epidemic of the jurisdiction under study. We used the CDC definition for clusters exhib-

iting recent and rapid growth for analysis of the PIRC dataset [23], and believe the disconnec-

tion of a large portion of genotype data in the molecular network (leaving many as singletons)

is related to the data completeness issue presented in a recent study [17]. The higher level of

data completeness will introduce less sparsity and more data resolution which indeed

improves the performance of the models presented in this study.

The sequences with genetic distance� α will be labeled as singletons implying no evidence

in the data for epidemiological relation between the corresponding singleton nodes and the

rest of the transmission network. Note here that the method presented in [24] is a data-driven

heuristic based on the genetic evolution model presented in TN93 which can be impacted by

data missingness for cluster detection as shown in [17]. Therefore, no linkage in the estimated

transmission network, for a singleton node in one time frame does not mean complete igno-

rance of that node. Instead, analysis of longitudinal data might close the gap of the missing

individual’s data in the forthcoming batches of data. Also note that, the majority of singletons

are genetically far from the clustered individuals. Therefore with multiple runs using the same

dataset the results will not change unless the genetic threshold or other network configuration

is modified. This demonstrates robustness of our cluster identification approach. However,

this is a data-dependent problem and the results would be impacted if we had a smaller sample

size. Evidently, having more data results in finding more clusters.

We further investigated whether using trained classifiers could be useful not only in distin-

guishing between clustered nodes vs singletons but also in the possibility of cluster determina-

tion. Therefore we trained models using the same classifiers but this time instead of the binary

class labels (clustered vs. singleton), we used the cluster unique identifiers as class labels for

each clustered sequence [shown in step(5) of Algorithm 1].

6.1 Machine learning algorithm design

We first generate a labeled dataset by using clustered or singleton individuals from genetically

linked viral sequences of surveillance data. Assume that the dataset has a size of m individuals

with viral sequences. If their pairwise genetic distances (generated by TN93 [4]) is smaller than

a predefined threshold (α) the sequences are connected to form a cluster of epidemiologically

related individuals. Let X ¼ fX1;X2; . . . ;Xmg be the metadata of size m containing data of the

m individuals. Each instance Xi in X is a vector of n meta-features. Therefore, each instance

can be written as Xi = [fi1, fi2, . . ., fin] where fij denotes the value of the j-the meta feature for

the i-the individual. Each instance Xi (meta feature vector) in X is assigned a class label of clus-

tered vs singleton for the i-the individual. The addition of these class labels to the metadata

from these individuals results in obtaining a labeled training dataset, which is then fed into a

supervised learning classification algorithm. Here we used decision tree, random forest (120

estimators), k-nearest-neighbors (n: number of clusters), and support vector machine classifi-

ers. The process of training a machine-learning algorithm requires a distance metric for com-

paring different instances in X . We measure the amount of dissimilarity between each pair of

individuals using Euclidean distance (i.e., L1 norm) in the meta feature space. Therefore, the
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distance between two individuals with meta instances Xi and Xj is computed as:

Dij ¼ kXi � Xjk
2

ð1Þ

First, we evaluated the classifiers using train-test sets (70 to 30 ratio). Having in mind, the

size of the dataset under study and the facts shown in Table 1, Fig 3 (that the data is highly

skewed towards specific race, sexual orientation, and transmission category), we decided to

evaluate the performance of all classifiers using a method which is robust against data imbal-

ance known as k-fold cross-validation. Cross-validation is a resampling procedure that

involves randomly dividing the dataset into k groups (or k-fold) of approximately equal size.

We performed a sensitivity analysis for K we chose K = 10 in which our entire dataset is split

into 10. The first fold is treated as a validation set and the method is trained on the remaining

9 folds. In the next fold, another subgroup among 10 split data is held out as the test dataset

and the remaining groups as the training set. In every fold, the model is fit using the training

(over 1,000 nodes) and evaluated on the testing set (about 120 nodes). The procedure repeats

until the last fold among 10-fold. Although 10-fold cross-validation is not susceptible to classi-

fication bias, we decided to conduct other methods to preclude any possibility of bias or over-

fitting. Therefore, we assessed the models again using repetitive and stratified cross-validation.

We performed evaluations on all four models to measure whether the trained classifier can

automatically assign a new positive case to the class labels it belongs to (clustered class label:

potentially related to the molecular network, or singleton class label: no evidence of relatedness

to the molecular network). In the Algorithm 1 we describe the step-by-step method.

Algorithm 1 Hybrid HIV transmission reconstruction model
Require: Pairwise genetic distance of viral strains using TN93
(1) Create graph G = (V,E,WE)
while (not all vertices are processed) do
(2) If WE >α, label the corresponding nodes (V) as singletons
(3) Cluster G into C = [C1..Cn] from all connected components:

where WE � α and label the corresponding nodes (V) as clustered
(4) Report binary labels (clustered vs. singletons) for all nodes
(5) Report cluster ids: C = [C1..Cn] for clustered nodes

end while
for all nodes V do
(6) List each Vi along with the corresponding binary label (clus-

tered vs singleton)
(7) Incorporate the non-genetic features of Vi besides its binary

class label to form metadata feature space
end for
(8) Split data into training and testing sets
(9) Train models using different classifiers to automatically map

each infection event onto the clustered or singleton label from step
(4)
(10) Validate the accuracy of class assignments using the testing

dataset

In addition to binary classification (clustered vs. singletons) which is beneficial in recogniz-

ing related infection incidents, we trained classifiers with the genetic information of infected

populations to identifying clusters. To test the extended hypothesis from binary classification

for cluster identification, we thought clusters size 2 or 3 might not have enough nodes to

exhibit an acceptable level of resolution among these clusters. Therefore, we decided to test it

with larger clusters of size� 5. San Diego cohort dataset clusters of size� 5 comprise 43.8%

of all clustered individuals residing in 29 clusters. We used cross-validation in multiple
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repetitions and also repeated the evaluation of the cluster identification using stratified cross-

validation re-sampling method to avoid bias and overfitting possibilities.
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