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Abstract

Nanopore sequencing device analysis systems simultaneously generate multiple

picoamperage current signals representing the passage of DNA or RNA nucleotides ratch-

eted through a biomolecule nanopore array by motor proteins. Squiggles are a noisy and

time-distorted representation of an underlying nucleotide sequence, “gold standard model”,

due to experimental and algorithmic artefacts. Other research fields use dynamic time

warped-space averaging (DTWA) algorithms to produce a consensus signal from multiple

time-warped sources while preserving key features distorted by standard, linear-averaging

approaches. We compared the ability of DTW Barycentre averaging (DBA), minimize mean

(MM) and stochastic sub-gradient descent (SSG) DTWA algorithms to generate a consen-

sus signal from squiggle-space ensembles of RNA molecules Enolase, Sequin R1-71-1 and

Sequin R2-55-3 without knowledge of their associated gold standard model. We propose

techniques to identify the leader and distorted squiggle features prior to DTWA consensus

generation. New visualization and warping-path metrics are introduced to compare consen-

sus signals and the best estimate of the “true” consensus, the study’s gold standard model.

The DBA consensus was the best match to the gold standard for both Sequin studies but

was outperformed in the Enolase study. Given an underlying common characteristic across

a squiggle ensemble, we objectively evaluate a novel “voting scheme” that improves the

local similarity between the consensus signal and a given fraction of the squiggle ensemble.

While the gold standard is not used during voting, the increase in the match of the final

voted-on consensus to the underlying Enolase and Sequin gold standard sequences pro-

vides an indirect success measure for the proposed voting procedure in two ways: First is

the decreased least squares warped distance between the final consensus and the gold

model, and second, the voting generates a final consensus length closer to the known
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underlying RNA biomolecule length. The results suggest considerable potential in marrying

squiggle analysis and voted-on DTWA consensus signals to provide low-noise, low-distor-

tion signals. This will lead to improved accuracy in detecting nucleotides and their deviation

model due to chemical modifications (a.k.a. epigenetic information). The proposed combina-

tion of ensemble voting and DTWA has application in other research fields involving time-

distorted, high entropy signals.

Author summary

Nanopore sequencing devices, essentially a matrix full of microscopic pores, provide an

interesting new route in identifying changes in DNA/RNA sequences related to diseases.

Biological molecules are sucked down an electrical gradient through the pore while

changes in the molecule’s electrical characteristics are determined to identify its compo-

nents. To avoid the sequence information being read as if attached to a rapidly rewound

magnetic tape, other biomolecules are introduced to cause the sequence to be ratcheted,

rather than free fall, through the pore. However, we are left with an ensemble of pico-

amperage nano-signals full of misreads and other experimental distortions. We have dem-

onstrated that it is possible to move dynamic time warped space averaging (DTWA) tech-

niques into this high information environment. Consensus signals are generated from

multiple noisy signals that are so warped that classical averaging techniques fail. To fur-

ther improve the quality of the consensus signal, we introduced a new idea in allowing the

noisy ensemble of signals as a whole to vote on whether specific DTWA consensus compo-

nents were valid or still a misread. Although areas of further improvement have been

identified, the voted-DTWA approach already provides cleaner consensus estimates from

experimental RNA studies.

This is a PLOS Computational Biology Methods paper.

1—Introduction

Picoamperage signals are sampled at 3000 or 4000 Hz as the nucleotides of a DNA or RNA

molecule are ratcheted by motor proteins through the nanopore biomolecules in a sensor

array [1] on a device such as the Oxford Nanopore MinION sequencer [2,3]. Study of nucleo-

tide modifications is critical to understanding many biological regulatory processes. The state

of the practice is to analyze these raw current signals using techniques such as black box neural

networks [4] e.g., scrappie and bonito (Oxford Nanopore Technologies, Oxford, UK), Hidden

Markov Models [5]. A fundamental limitation of these methods is needing a (laborious to

derive) large training truth set for any chemical modifications, so the network can detect those

nucleotide modifications.

An alternative approach is to process and analyze the streams of stepped current levels (a.k.

a. “squiggles” [6]), Fig 1, generated following algorithmic segmentation of the raw current sig-

nals. There is a high level of information entropy in the resulting squiggle signal (see zoomed

section) because ideally there is a squiggle step-event to base-called ratio of 1:1 between a

picoamperage level and a k-mer grouping of nucleotides passing through the nanopore. Other
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deep learning techniques either start with the squiggle [7] after segmentation by the OEM soft-

ware MinKNOW, or perform the segmentation themselves [8].

In this paper we describe an alternative process which forms a low-noise consensus from a

set of distorted squiggles which can be used stand-alone or as part of a preprocessing step for

the algorithms that process the squiggle as their input. Our own long-term goal is to generate

an improved approach to software that employ statistical white box methods to identify poten-

tial chemical nucleotide modifications in existing datasets by identifying non-gaussian distri-

butions in characteristics of ensembles of experimental squiggles.

We believe that our recent preliminary investigations [9,10,11] were the first to propose

and evaluate dynamic time warping Barycentre averaging (DBA) [12,13] as a potential tool for

generating a consensus squiggle from multiple noisy signals from a squiggle ensemble. DBA is

one of a class of dynamic time warped-space averaging (DTWA) algorithms capable of com-

bining an arbitrary number of datasets from multiple sources. This paper is a major extension

to those studies and involves a comparison of the DBA algorithm with the minimize mean

(MM) and stochastic sub-gradient descent (SSG) algorithms proposed by Schultz and Jain [14]

for their relative effectiveness in this new application area of generating a consensus related to

the known gold standard available for RNA spike-ins Enolase, Sequin R1-71-1 and Sequin R2-
55-3 [15]

We had hypothesized that as we increased the number of squiggles in the ensemble being

averaged, each DTWA algorithm’s ensemble consensus signal would converge along different

paths to produce a similar match to the gold standard squiggle, with consistent differences

indicating the presence of possible chemical nucleotide modifications. However, the mean

lengths of the consensuses generated from all three algorithms remained systematically longer

than the known RNA biomolecular underlying each of the squiggles in the ensemble. A longer

length of the consensus signal is a clear indication that any given DTWA approach still retains

Fig 1. Identified leaders in the Sequin R2-55-3 study are shown in red. There are visually obvious internal

distortions in the mainstream body, black, due to factors such as in-silico chimeric reads and mis-segmented increased

pore dwell times. Identification and removal of very localized errors at the individual k-mer group level is not straight

forward because of the high level of information entropy in the signal, see zoomed black section. Ideally there is a

squiggle step-event to base-called ratio of 1 between a picoamperage level and a k-mer grouping of nucleotides passing

through the nanopore.

https://doi.org/10.1371/journal.pcbi.1009350.g001
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a large number of duplicated points present in squiggle inputs with segmental duplications. In

addition, our simulation studies [10,16] have demonstrated that distorting the gold standard

with a large number of segmental duplications according to the Extreme Value Distribution

produced the best match to the characteristics of the empirical RNA ensembles.

To remove these unwanted segmental duplications, in the absence of a universal ‘perfect’

segmentation algorithm for noisy nanopore signals, we propose combining DTWA algorithms

with an ensemble voting scheme to identify and remove segmental duplicates. This should

improve the local similarity between the consensus signal and the majority of the individual

noisy squiggle sequences.

The paper is organized as follows. The Methods section outlines the procedure for obtain-

ing the experimental data sets and how to model an appropriate gold standard squiggle. Details

are provided of an automated cleaning process to discard damaged and distorted squiggles sig-

nificantly different from the general ensemble. General descriptions of the three DTWA algo-

rithms used to generate an initial consensus and the voting procedure used to remove squiggle

distortions remaining in this consensus are provided. The next section discusses the efficiency

of the ensemble cleaning process. New quantitative and qualitative success metrics are intro-

duced and used to provide an analysis of the effectiveness of the proposed DTWA consensus

generating approaches applied to Enolase mRNA spike-in and RNA Sequin v1 Pool A [15]

squiggle studies. A comparison of the manner in which the different DTWA algorithms con-

verge to a consensus is detailed.

The accuracy and precision of future research using the voted-on DTWA consensus are dis-

cussed in terms of the assumptions used when developing the voting procedure. The Conclu-

sion section summarizes the advantages of the proposed investigation and outlines the

direction of future work needed to resolve the discovered limitations of the combined DTWA
and voting algorithm in consensus generation in this exciting new application field. The appli-

cability of these results to other signals with very high information entropy are discussed.

2—Methods

In this section we first detail the generation of the nanopore sequences which are segmented

into step-level squiggles. These are empirically a noisy, stretched and distorted representation

of the DNA or RNA present in the stream and must be cleaned of gross distortions before

being presented to a DTWA algorithm to be processed into a consensus. After detailing key

characteristics of the DTWA algorithms investigated, we discuss our proposed ensemble vot-

ing approach to generate a refined consensus. Fig 2 provides a schematic of each stage of the

proposed process.

2.1—Data generation and cleaning of multiple noisy squiggle sequences

Four squiggle ensembles were used in this study. A large Enolase ensemble was broken into

groups of 512 squiggles to allow generation of 20 consensus squiggles to explore the extent to

which the consensus changed over an extended acquisition time period. This is in response to

an observation [9,10] that later acquired squiggles in an ensemble became longer in length, an

effect attributed to an increase in reading errors as the nanopore characteristics, and possibly

the sample, degrade. These large ensemble consensus characteristics were compared with

those from two smaller and experimentally noisy studies, Sequin R1-71-1 and Sequin R2-55-3
ensembles and a small control Enolase ensemble, each containing approximately 128

squiggles.

In this paper, the term original equipment manufacturer (OEM) refers to Oxford Nanopore

Technology, Oxford, U.K. Data were generated using the SQK-RNA001 direct RNA
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sequencing kit and protocol v1.08 with the MinION Mk1B [2,3] sequencer running the OEM

MinKNOW device control software (Version 1.11.5). One RNA sample contained only the

OEM-provided yeast Enolase SGD: ENO2 YHR174W mRNA spike-in. Two others, R1-71-1
and R2-55-3, were supplemented with an RNA Sequin v1 Pool A spike-in [15] supplied by Gar-

van Institute for Medical Research, Sydney, Australia. The raw sampled picoamperage current

signals were converted into amperage level squiggles using the open-source current signal to

squiggle convertor in GitHub.com/Nodrogluap/DTWA.

Oxford Nanopore Technology has performed many experiments in order to provide a k-

mer model [17] by 3’ end-aligning the known reference nucleotide sequence to expected

experimental current levels. This information was used to derive an estimate, i.e. model, of the

‘golden’ squiggle underlying our experimental signals.

An enzyme-DNA complex is added to the RNA nucleotide stream to guide the RNA

through the sensor. While this leader, red lines in Fig 1, is physically essential to perform the

experiment, it becomes a variable length artefact that will distort further analysis. Following

initial experimentation, we adopted the following procedure for removing the squiggle leaders

and distortions [10,16].

• Given that DTWA algorithms are designed to match signals with a similar information con-

tent, all squiggles with lengths lower than 20% of an average ensemble squiggle length were

considered significantly degraded and immediately deleted as gross outliers to speed forming

a consensus.

Fig 2. Flow chart representing the process to generate a refined squiggle consensus by applying an ensemble-wide voting scheme to

DBA, SSG and MMDTWA generated consensus signals. Each cleaning stage reduces the number of streams. While the consensus is based

on DTWA processing of cleaned data streams, the voting scheme can be based on the agreement with additional streams not involved in

generating the consensus experimentally available. Gold standard information is used as part of the final comparison analysis and plays no

role in squiggle cleaning, consensus generation or the voting procedure.

https://doi.org/10.1371/journal.pcbi.1009350.g002
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• As can be seen from Fig 1, the characteristics of the leader (red) and the main squiggle

stream(black) are different. The leader of the stream was defined as those initial sections of

the squiggle with mean and standard deviation metrics more than three standard deviations

from the stream’s general mean and standard deviation characteristics generated from its

trailing quarter.

As detailed in the squiggle simulation study performed by Smith et al., [16], experimental

generation of the nucleotide sequences and raw segmentation algorithms produce distortions

from many sources including:

1. The uneven production of current steps per unit time due to the stochastic nature of the

motor protein driving the steps. This leads to a small increase in nucleotide’s dwell time in

the nanopore sensor which can be incorrectly interpreted as multiple copies of a single k-

mer inserted into the data stream, a.k.a. a segmental duplication or insertion, dashed arrows

in Fig 1.

2. Homopolymerism where long chains of multiple identical bases are mistakenly merged by

the segmentation algorithm,

3. In-silico chimeric reads where the break between consecutive molecules passing through

the sensor is not recognized,

4. Experimental sensor errors and noise generated measuring the current by steric configura-

tion of the nucleotides and

5. Other segmentation algorithm artefacts.

We used the following procedure to reduce the number of these more obvious distorted

squiggles prior to consensus generation.

• After removing the leaders, we again deleted squiggles whose length was significantly smaller

than the ensemble squiggles average length.

• We removed squiggles whose characteristics were more than 3 standard deviations from the

global measures of mean intensity, mean standard deviation and mean sequence length of a

given data ensemble. The solid arrows in Fig 1 indicate examples matching this criterium.

This matched our hypothesis that the optimum consensus signal would be obtained when

applying DTWA to noisy sequences which shared the same general characteristics. We chose

the looser limit of 3 standard deviations, rather than 2, to quickly provide an initial pruning

to remove gross outliers while avoiding having to take into account the specific probability

density function of the distortions introduced by the squiggle-generation process [16].

• The previous steps still left squiggles with significant internal distortions. We believe that the

majority of these distortions may be associated with chimeric reads, i.e., where full and par-

tial nucleotide sequences are combined prior to passing through the nanopore. To assist in

identifying and removing such reads, each squiggle was broken into 10 sections and the stan-

dard deviation of squiggle intensity calculated for each section. Squiggles were rejected if the

average of the section standard deviations for a squiggle was an outlier, more than 2 standard

deviations, for the ensemble’s average standard deviation.

2.2—DTWA algorithm characteristics

Three different DTWA algorithms were applied to the noisy data streams with leaders

removed to generate a consensus: the DTW barycentre (DBA) algorithm [12,13] and the
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minimize mean (MM) and stochastic sub-gradient descent (SSG) algorithms DTWA algo-

rithms [14] using MATLAB code provided by their authors.

The following is a summary of [18]; a conference presentation discussing DTWA algo-

rithms applied in the new Squiggle environment. All of these DTWA techniques rely on the

refinement of a consensus using DTW alignment aggregation until convergence, i.e., no

changes from round to round of DTW alignment aggregation. DBA is guaranteed to converge

on the same consensus for a given set of squiggles because the first (time consuming Order
(N2)) step of the DBA is to find the initial “medoid” or “centroid”. This is the squiggle with the

smallest sum of squares DTW distance to all other squiggles. This medoid is the initial estimate

of the consensus and defines the length of final consensus. DBA then updates the centroid in

“batch” mode, meaning that every squiggle is aligned to the centroid using DTW, then the

results of all the alignments are summed to update the centroid. This means that the DBA pro-

cess, while starting with a fixed length initial estimate, is not sensitive to the input order of the

squiggles.

In contrast the MM and SSG algorithms run in “incremental” mode, updating the consen-

sus after each DTW alignment is performed, and therefore may generate a different consensus

depending on the order of the input squiggles. The majorization-minimization (MM) mean

algorithm is described as an incrementally updated consensus equivalent to DBA [14]. The

MM algorithm assumes that the active component being optimized, the DTW distance, is con-

vex and differentiable. To our knowledge, no research has been undertaken to confirm that

this assumption holds for high entropy signals such as nanopore squiggles. The sub-gradient

mean algorithm (SSG), as per its name, assumes that the DTW distance optimization can be

achieved using a sub-gradient descent method, again not proven to be valid for high entropy

signals. As with the MMDTWA approach, the SSG is also incremental. However, the initial

medoid is chosen from a random subsample of all squiggles, implying that solutions will vary

from run to run unless a fixed seed is set for generating the random numbers.

2.3—Proposed voting procedure

Imperfect segmenting of the raw current signals means each individual squiggle has mistakes

introduced by the error mechanisms discussed earlier. The simulation studies [9,16] showed

that the squiggle length could grow via insertions, introduction of false bases, or be reduced by

deletions, skipped true bases. As will be shown in the Result sections, the final length of the ini-

tial DTWA consensus is of the order of the average length of the ensemble squiggle. This

implies that the DTWA algorithm applied to a finite number of squiggles does not recognize

and correct all insertions and deletions, so that the insertion and deletion distortions experi-

mentally introduced into the ensemble are preserved in the consensus average.

We propose to use the following procedure to identify the insertions and deletions remain-

ing in the consensus. Consider a consensus signal derived from a group of N4 noisy squiggles,

Fig 2. The DTW metric provides information on the similarity between the consensus and the

nth squiggle in an ensemble after each signal has been individually stretched to minimize the

total Euclidian distance (L2 norm) between them [19]. Warps must be introduced to realign

sequences whenever data are either missing or repeated in one of the sequences. Applying the

dtw() algorithm [20] will provide both a similiarity measure, DTWDISTANCE-n, and the warping

paths, WPCONSENSUS and WPSQUIGGLE-n, that best match the consensus and nth squiggle from

which it was derived.

Our proposed voting procedure to identify spurious insertions and deletions in the consen-

sus uses the following alternative interpretation of the warping elements provided by the dtw()
algorithm. If a WPSQUIGGLE warped path has multiple entries for a given point in the consensus
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signal, it implies that part of squiggle has been stretched to match the consensus signal. If a

given proportion VDUPLICATED of the available squiggles in an ensemble vote that they have the

same multiple entry, we have assumed that the corresponding consensus location is duplicated

and must be deleted.

Our voting procedure is currently limited to removing additional events incorrectly

inserted into the consensus rather than identifying and inserting events missing from the con-

sensus, a technically more challenging task. We justify this initial approach since the x1.7
increase in the experimental squiggle length over the underlying gold standard indicates that

over-segmentation of the raw 4000 Hz device signal is a common occurrence. Therefore, addi-

tional squiggle events in consensus signals need to be deleted with a far higher probability than

the need to add events absent from the consensus signals.

The problem is not associated with determining the lower number of occasions when the

DTWA fails to give the consensus a base present in the majority, VABSENT, of noisy squiggles.

The location of those insertions can be identified by a duplication in the consensus warp path,

WPCONSENSUS, where the consensus signal has been stretched to match a given squiggle having

this missing feature. The issue of “Why is there a problem of what you insert?” and the validity of

the voted-on consensus after ignoring the issue of insertions is discussed in detail in Section 7.

To provide a comparative study, consensus signals from 20 groups of N4 = 256 squiggles

from the large Enolase squiggle ensemble were calculated using each DWTA approach, Voting

can be based on the agreement between the N data streams used in forming the consensus or,

when sufficient streams are experimentally available, these streams and additional streams not

involved in generating the consensus, a total of 512. The voting level, percent of agreement

between individual ensemble members, was changed between 100%, high agreement, and

10%, minimal agreement. We would consider our approach successful if all 20 groups showed

consistent voting behaviour, i.e., when their final corrected consensus signals showed A) a

minimum DTWDISTANCE error measures for similar voting levels and B) having that minimum

error associated with a voted reduction in the consensus signal length that more closely

matched the underlying RNA molecular length which defines the gold standard length. It is

appropriate to expect a close, rather than exact, match to the gold standard characteristics as

the purpose of generating a consensus from the noisy ensemble is to identify the epigenetic dif-

ference between the ensemble and gold standard.

The two Sequin studies were experimentally noisier than the Enolase study and only pro-

vided a single consensus signal from the original, approximately 110, squiggles after filtering,

see Table 1. To provide an equivalent comparative multi-group study, the voting performance

of these groups was compared to a consensus derived from a similar small group of Enolase
squiggles, and to the consensus results from the Enolase study involving 20 larger groups.

3—Results of leader removal and data cleaning

In other research fields, the DTWA consensus is generated from multiple data streams with a

loose similarity from many sources. Here, we can make use of the fact that the squiggles are

Table 1. Comparison of the length characteristics of the original and cleaned data sets. There is an equivalent x1.7 length distortion level introduced into all data sets.
�To generate a valid cross-comparison, only 130 of the available 7000+ Enolase squiggles were included in this analysis.

Original squiggle (with leader) Cleaned squiggle (without leader) Gold standard model

Sequence # Mean length # Mean length Length Segmentation distortion level
ENOLASE� 130 2950 ± 614 88 2286 ± 248 1329 1.72 ± 0.19

SEQUIN R1-71-1 116 1806 ± 572 66 1294 ± 242 825 1.56 ± 0.29

SEQUIN R2-55-3 122 1665 ± 595 72 1252 ± 194 782 1.60 ± 0.25

https://doi.org/10.1371/journal.pcbi.1009350.t001
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essentially a transformation of known information, a genetic gold standard. This means it

makes experimental sense to recognize and remove grossly distorted streams from the hun-

dreds available before applying the consensus generating algorithms. Fig 1 showed that the

proposed approach shown schematically in Fig 2 correctly identifies the sequence leaders,

shown in red, for representative examples from the Sequin R2-55-3 study containing many dis-

torted squiggles. After leader removal and an initial pruning of the squiggles based on devia-

tions from the ensemble average data length, average data intensity mean and standard

deviation, Fig 3A shows that the Sequin study still contains significant distorted sequences.

Some distortions are long, indicated by the solid arrow near level 2150, and others shorter,

dashed arrow near level 1700. Fig 3B shows that the number of internal defects is significantly

reduced in number by an additional pruning stage requiring similar intensity standard devia-

tions along the squiggle’s length. The visually obvious distortions are few in number, e.g.,

dashed arrow near level 2175. However, the fact that the majority of streams are significantly

longer than the gold standard, green line, indicates the presence of many minor distortions

that may impact the DTWA algorithms in forming their consensus signals.

Table 1 provides a comparison of the length characteristics of the original and cleaned data

sets. Distortions were identified in 34% of the original Enolase squiggles, and 40%+ for the

Sequin squiggles. It was not anticipated that the ratio mean-cleaned-sequence-length / gold-
standard-length would remain essentially constant at 1.7 ± 0.2 for all three squiggle ensembles,

especially as they were produced using different development processes, i.e., natural and syn-

thetic. Considering that these three distinct analyses were performed using the same Oxford

Nanopore Technologies MinION flow-cell, we hypothesize that this length distortion level is a

property of the cell and segmentation processes. However, we will show that prior knowledge

of this ratio plays no role in determining when the DTWA or voting processes are considered

complete. However, as shown in Fig 2, this knowledge forms one part of determining whether

it requires just a particular DTWA process, or a combination of DTWA and voting, to generate

an appropriate final consensus.

A quantitative measure of the level of distortion introduced by both the device sensors and

segmentation process can be expressed in terms of the signal-to-noise ratio of the squiggle

Fig 3. A) An initial pruning based on global length, mean and standard deviations of the squiggle ensemble from the Sequin
study provides a more homogeneous data set than present in Fig 1. There remain obvious long and short insertion distortions

(solid and dashed arrows). B) More intensive pruning based on extreme inconsistencies between the local standard deviation

statistics of the squiggle to the ensemble statistics leaves only a few obvious insertion distortions (dashed arrow). However, the

majority of the streams are significantly longer than the gold standard, indicating the presence of many individual base

insertions (dotted line).

https://doi.org/10.1371/journal.pcbi.1009350.g003
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length as defined in Eq (1)

SNRLENGTH ¼ MEANðSQUIGGLE LENGTHÞ=STD DEVðSQUIGGLE LENGTHÞ ð1Þ

Higher SNRLENGTH ratios indicate more consistent lengths of the members of an ensemble.

From Table 1, the small Enolase ensemble had SNRLENGTH of 4.8 and 9.2 before and after

removing the leaders respectively. This is significantly higher than the SNRLENGTH of the

Sequin ensembles of 3.0 and 5.0 before and after leader removal. Qualitatively these lower

SNRLENGTH values matched the visually obvious increased distortion level of the Sequin squig-

gles compared to the Enolase squiggles.

4—Metrics to evaluate squiggle consensus generation

To our knowledge, this is the first study of a process that applies DTWA algorithms combined

with voting to high entropy signals. The final derived consensus representing a global average

of the distorted squiggle ensemble should not be expected to do more than resemble the gold

standard as there are chemical modifications expected within the experimental squiggle

ensemble. However, the gold standard remains the best first approximation to the ‘correct’

averaging result. In this section we describe a series of qualitative and quantitative tools that

compares the gold standard, consensus and squiggle ensemble and can be used to evaluate the

performance of both stages of our combined process.

4.1—Modified MATLAB dtw() display

We post-processed the display generated after calling the MATLAB dynamic time warp algo-

rithm, dtw(gold, DTWAconsensus), [20]. The upper ‘original signals’ window, Fig 4, compares

the unwarped gold (blue) with the A) DBA (black), B) SSG (green) and C) MM (red) consensus

signals. The comparison of the relative consensus distortions is made easier after vertical dis-

placement, rather than the original dtw() display’s overlap, of the high entropy signals. The

length relationship between the gold and a given consensus is shown in the window title. The

increased length of the consensus over the gold in B) and C) indicates that the DTWA consen-

sus characteristic continues to reflect the larger number of additional bases compared to miss-

ing bases in the squiggle ensemble as a whole [9,10].

Fig 4. A modification of the image from the MATLAB dtw() program [20] is useful when empirically comparing the results from the DTWA algorithms for the Sequin
R2-55-3. Entries in the upper window are scaled so that the narrower white band in A) shows that the DBA DTWA produces a consensus, black, with a length closer to the

gold standard than either the B) SSG, green, or C) MM, red, algorithms. The lower window displays a short, offset version of the aligned signals helping to illustrate the

relative level of distortions between the DTWA consensuses: B) High for SSG DTWA, C) medium for MM with A) only the DBA consensus signal remaining 20% longer

than the gold signal providing an obvious indication of hidden distortions.

https://doi.org/10.1371/journal.pcbi.1009350.g004
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The lower window has been resized to allow the warped versions of the gold and consensus
signals to be offset to allow an easier comparison of the similarities and differences between

the gold and a given consensus vertically and between consensus signals horizontally. A small

portion of the aligned gold and consensus signals are shown, rather than their original full

length, to allow an immediate visualization of significant local differences. Straight portions of

the (blue) gold standard warped path are an indication that the DTWA process appears to

have placed additional bases into the consensus compared to the gold when averaging the

noisy ensemble signals. Conversely, a straight portion in the consensus warp path indicates it

has been stretched to account for the DTWA process apparently leaving bases out when aver-

aging. We interpreted the information in the lower window as providing the following relative

levels of distortions between the DTWA consensuses: B) High for SSG DTWA, C) medium for

MM with A) only the DBA consensus signal remaining 20% longer than the gold signal provid-

ing an obvious indication of significant hidden distortions. As discussed in Section 2.2, the

SSG algorithm will provide different consensus results each time the DTWA process is acti-

vated unless the MATLAB random number generator is seeded, i.e. its initial value is fixed

prior to running the code.

4.2—Modified warped path displays

Activating MATLAB with the extended command

½dtwDistance; goldWarpPath; consensusWarpPath� ¼ dtwðgold; DTWAconsensusÞ ð2Þ

provides additional information that can be used to compare the gold and consensus signals.

A standard approach to explore the relationship between gold and consensus signals is to plot

goldWarpPath against consensusWarpPath, as shown in Fig 5A for the Enolase study. However,

a direct comparison of features in these paths is not straight forward given that the presence of

different length consensus signals leaves these paths vertically offset.

To compensate for the different consensus lengths, we generated a normalized warp length

display by plotting goldWarpPath / length(gold) against consensusWarpPath / length(consen-
sus), Fig 5B. This information is also difficult to interpret as the presence of the gold standard

underlying every ensemble squiggle implies that the consensus will itself be a stretched and

dependent version of the gold signal. This leaves all normalized warped paths similarly close to

the identity line, dotted line.

Fig 5. A) The standard approach of displaying dtw warped plots does not provide a useful route for directly comparing the three DTWA consensus signals with each

other because of the different consensus warped lengths. B) Normalizing the warped path lengths to one illustrates how close the DTWA consensus paths are to the

Identity line for the Enolase study. This closeness emphasizes the fact that the consensus and original squiggles are essentially stretched versions of the underlying gold

standard. C) Plotting the warped path differences from the Identity line shows that all three consensus signals differ in a similar way to the gold signal for the first half of

the warp path, with the DBA (black) and SSG (green) being more similar to each other than with the MM consensus (red) in the last part of the warp path.

https://doi.org/10.1371/journal.pcbi.1009350.g005
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To enhance the interpretation of DTWA consensus differences, we have investigated the use

of a difference from identity (DFI) warp path display, Fig 5C. We interpret straight sections of

the DFI path as indicating regions where the consensus and gold signals are noisily similar to

each other. Any strong discontinuities in this new path display indicates a sudden dissimilarity

between the signals path whose significance should be investigated. All three consensus signals

differ from the gold in similar ways in the first part of the warp path but differ in the latter part.

4.3—A tool combining warped and unwarped characteristics

Fig 6 shows our approach to combine the best components of the display methods shown in

Figs 4 and 5 to assist in the interpretation of results in this new high entropy signal comparison

environment. The picture shows the unwarped gold (blue) and the DBA (black), SSG (green)

and MM (red) consensus signals vertically above each other to better display their local simi-

larities and differences, in particular this approach provides a visual indication of their local

amplitude equivalence, or lack there-of, to each other and the underlying gold standard.

Black dotted lines connect corresponding warp path locations in the unwarped signals. The

warp-line bars connecting the gold and DBA consensus being diagonal, rather than vertical,

indicates the stretching of this signal relative to the gold signal. The more vertical warp-line

bars between the DBA and SSG consensus signals indicate their similarity, while the more

diagonal bars between the SSG and MM signals again indicate the MM consensus signals lower

match to the other two consensuses.

4.4—Quantitative consensus comparison methods

Quantitative measures are needed to compare the relative accuracy of the three DTWA algo-

rithms in producing a consensus, and to determine their respective rate of convergence to an

Fig 6. Displaying the first 400 points of the unwarped gold standard and the three DTWA Enolase consensus

signals provides an alternative metric combining information from Figs 3 and 4. This approach allows a

visualization of the warp-paths and the extent to which the DTWA algorithms retain the high entropy, squiggle

amplitude levels characterizing the k-mer groups described in the original ensemble signals. Relative distortions in the

consensus are revealed by the unevenly placed, non-vertical orientations of the dashed lines which join points in these

un-warped signals identified as having equivalent warped path positions by the dtw() algorithm.

https://doi.org/10.1371/journal.pcbi.1009350.g006
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improved consensus signal as the number of noisy squiggles that are averaged increases. Previ-

ous studies in other research fields comparing the performance of different DTWA algorithms

[14] have used data sets from multiple sources; each with its own experimental time-warped

characteristics. Under this circumstance, an appropriate success metric would be to choose the

DTWA algorithm that minimizes the normalized mean of the Frechet function i.e. producing

the lowest mean, Eq 3, and associated standard deviation, Eq 4. of the dynamic time warped

(DTW) distance, between the consensus signal and the N available data streams [14,21]

DTWdistCONSENSUS!ENSEMBLE ¼
P

nDTWðCONSENSUS; STREAMnÞ=N ð3Þ

stdDTWdistCONSENSUS!ENSEMBLE

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

nðDTW ðCONSENSUS; STREAM nÞ � DTWdistCONSENSUS!ENSEMBLEÞ
2
=ðN � 1Þ

q

ð4Þ

The DTW metric provides information on the similarity between a pair of squiggles after each

signal has been individually stretched to minimize the total Euclidian distance (L2 norm)

between them [19,20]. DTWA studies in other fields involve a comparison of the general simi-

larity between signals obtained from multiple sources. This contrasts with this DTWA study

where it is known that each squiggle is a distortion of a standard squiggle, and a gold-standard

approximation of that underlying squiggle can be derived from the known spike-in nucleo-

tides and the OEM provided nucleotide-to-picoamperage mapping table as discussed earlier.

Consensus signals were generated by applying each of the three DTWA algorithms, DBA,

MM and SSG, to the four ensembles described earlier. To evaluate the difference between a

specific consensus and its associated underlying gold standard for each of these twelve studies,

we extended the quantitative success metrics proposed in [9] for evaluating DBA performance.

The metric DTWdistGOLD!CONSENSUS involves comparing the aggregate DTW distances gener-

ated between individual squiggles in the ensemble with the gold and consensus signals. Com-

paring the metric DTWdistGOLD!ENSEMBLE against DTWdistCONSENSUS!ENSEMBLE identifies

differences in how the gold and consensus signal characterize the noisy data streams. It was

assumed that “smaller is better” for all DTW metrics applied in this study.

We propose new normalized metrics generated by dividing each metric by the underlying

gold-standard squiggle length for a given ensemble, nMetric = Metric/gold_length, to provide a

better tool for comparing several DTWA algorithms across multiple DNA and RNA studies

with different gold standard characteristics. Each normalized metric takes into account that

under equivalent experimental situations, the absolute value of DTW distance between the

gold standard of a particular study, its consensus and the squiggle ensemble will increase pro-

portionally to the ensemble’s gold standard’s length.

5—Enolase results

In this section we qualitatively evaluate the relative performances of the DTWA algorithms,

with and without voting, in generating a consensus from both a small and a large group of

Enolase squiggles. The large group analysis provides an indication of what changes may occur

in the consensus over a long experiment time, from sources such as sample or nanopore

decay. The small group Enolase provides a pathway for identifying the expected consistency

between the consensus generated during the small Sequin study collected over a short time

course compared to the longer time course Enolase study.

5.1—Individual group study

The code runs in four stages, Fig 2.
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1. Select N streams from squiggle ensemble starting at stream NSTART and ending at stream

NSTART + N– 1.

2. Generate and save cleaned streams if not already stored

3. Generate and save the initial DBA, SSG and MMDTWA consensus signals built from the

cleaned streams if not already stored

4. Prepare warping paths between each ensemble member and the consensus. Then determine

the number of ensemble squiggles that agree that this warped path location in the consensus

is false.

5. In a loop, generate final consensus variants derived from the initial consensus with entries

deleted based on agreement voting levels between 100% to 10%. Choose the final consensus

from the variants using a success metric.

Fig 7A shows the run times for this research tool when generating the initial DBA (black),

SSG (green) and MM (red) DTWA consensus signals for ensemble sizes running from 32 to

1024. The code was executed using MATLAB version 2020b on an AMD Ryzen 5 1600 Six-
Core Processor running at 3.2 GHz with 16 GB internal memory. The DBA DTWA Order(N2)
execution time associated with comparing all N cleaned streams with each other when generat-

ing the initial centroid is clearly seen. The other DTWA algorithms run with Order(N) execu-

tion times. This is a tool for research and has not been moved onto the final stage of our

eXtreme Programming Inspired (XPI) approach for software development including refactor-

ing and validation for speed [22]. Planned refactoring will start with parallelization of the

many dtw() comparisons used in generating the consensus, voting and metrics for analysis.

This paper involves forming consensuses from both the small group Sequin studies,

100+ original squiggles, and the large group Enolase study, 7000+ original squiggles. Fig 7B

compares the changes in the key success metrics as the initial DTWA consensus is determined

for ensemble grouping from 32 to 1024. The normalized gold-to-consensus DTWDISTANCE, dot-

ted lines, varies by 10% with the DBA metrics being consistently the largest (smaller-is-better).
The mean normalized gold-to-ensemble DTWDISTANCE metric, dashed blue line, sits between

the mean normalized consensus-to-ensemble DTWDISTANCE metrics, solid lines, for the DBA
(black), SSG (green) and MM (red) DTWA consensus signals, with the DBA again being larg-

est. This is in contrast with the Sequin studies detailed later in Section 6.

Fig 7. A) The DBA DTWA execution time is Order(N2) execution time compared to Order(N) for the SSG and MM algorithms

because the initial estimate is generated by compared each nanopore-stream with every other nanopore-stream in the ensemble.

B) For the Enolase study, the DBA difference metrics are larger, smaller-is-better, than for the SSG and MM. differences. This is in

contrast with the Sequin studies detailed later in Section 6.

https://doi.org/10.1371/journal.pcbi.1009350.g007
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Fig 8A, 8B and 8C respectively compare the consensus signals generated by the DBA, SSG
and MMDTWA algorithms applied to the Enolase study. Unlike the small group Sequin study

DBA result shown in Fig 3, the 549 DTWDISTANCE for the DBA consensus is larger than for the

352 and 320 values for SSG and MM indicating a greater remaining difference from the under-

lying gold standard. Voting agreement levels were empirically determined to cause the gold

length and the DBA (40%), SSG (45%) and MM (43%) consensus lengths to match. Fig 8D, 8E

and 8F compare the final, voted-on consensus signals based on the original DBA, SSG and

MM consensus signals. While all voted-on consensuses are visually very similar with signifi-

cantly reduced DTWDISTANCE measures, the larger DBA DTWDISTANCE values indicates a

higher level of remaining differences from the gold standard.

Fig 9 provides three difference approaches to compare the warp paths of the final voted-on

consensus and gold standard. Fig 9A shows that the different initial warp paths, dashed lines,

become very similar after voting, solid lines. This conclusion is also seen in Fig 9B where the

voted-on consensus warp paths become close to the Identity line. The difference from identity
(DFI) warp paths, Fig 9C, show that all three DTWA consensus signals deviate no more than

1.5% from the identity line. The SSG consensus, green, closely follows the gold standard, +-

0.5% warp path difference, until a sudden deviation is introduced 80% along the warped paths.

While the original SSG and DBA consensus, dashed green and black, are similar along the lat-

ter 40% of the warp path, the DBA consensus becomes more similar to the MM consensus,

solid black and red, after voting. The long linear section of the DBA consensus difference path

from 10% to 99% suggests that the DBA and gold signals have a strong similarity except for the

strong initial and final deviations which will contribute significantly to the large DBA

Fig 8. The A) DBA, B) SSG and C) MM consensus signals from the Enolase study show some similarities and differences before voting. After voting, the D) DBA, E) SSG
and F) MM consensus signals appear more visually similar, with only the DTWDISTANCE metric hinting at remaining differences in their relationship to the gold signal.

https://doi.org/10.1371/journal.pcbi.1009350.g008
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DTWDISTANCE measure seen in Fig 7. Several straight sections in the MM consensus, red, indi-

cate where this signal is most similar to the gold signal

Fig 10A and 10B shows lines joining equivalent warp-path positions in the last 400 points

of the un-warped gold standard and consensus signals before and after voting. The vertical

straightening of these warp path indicators in Fig 10B reflects the improved similarity between

the three consensus signals, DBA (black), SSG (green) and MM (red), after voting. This alter-

nate approach of representing the similarities and differences between consensus signals

clearly shows the reason for the strong distortions near the end of the warp paths in Fig 8C.

The last bases, -50 to 0, form a sequence that is common to all consensus signals but absent

from the gold standard. We suggest that these distortions be interpreted in terms of the antici-

pated unreliability of the last squiggle values relative to the golden reference and be discarded.

Such distortions are associated with the physical chemistry of the motor protein that drives the

RNA through the sensor, and the characteristics of the training set used to derive the OEM
golden reference discussed in Section 2.

Fig 9. Dotted and solid lines respectively indicate warping paths before and after voting. The different DTWA consensus warping paths collapse together in both A)

the standard and B) normalized warp path displays. C) Linear sections in the Differences-from-Identity metric after voting indicate that the SSG consensus green, is similar

to the gold standard between 20% to 80% of the warp path and the DBA consensus, black, is similar between 10% and 99% of the warp path. Several straight sections in the

MM consensus, red, indicate where this signal is most similar to the gold signal.

https://doi.org/10.1371/journal.pcbi.1009350.g009

Fig 10. The dashed and solid lines join points in these un-warped signals with points identified as having equivalent warped

path positions by the DTW algorithm. A) There is much less similarity amongst the Enolase DTWA consensus signals and to the

gold standard before voting than B) after voting. Note that both pictures show the presence of common signals in the last part of all

consensus signals that are absent in the gold standard. This difference is responsible for the strong distortions near the end of the

Difference-from-Identity warped path plot, Fig 8C.

https://doi.org/10.1371/journal.pcbi.1009350.g010
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5.2—Multi group study

We took full advantage of the large Enolase ensemble to generate consensus signals from

groups of 256 squiggles. The results of applying the voting procedure between 10% and 100%

of the noisy squiggles agreeing that there are unwanted features in the consensus signal is

shown in Fig 11. The starting lengths, magenta squares marked 100%, of the initial consensus

from the DBA (black), SSG (green) and MM (red) DTWA algorithms range widely; from x1.4
to x2.1 of the length of the gold standard, dotted green line, known to underlie each squiggle

in the ensemble. However, the changes in all consensus lengths start to follow a similar pattern

by the time 75% of the squiggles, black triangle, are in agreement regarding the level of consen-

sus distortions. All consensus signals show a global normalized DTWDISTANCE minimum

between them and the gold standard when their length is approximately 90% of the gold stan-

dard, Fig 11A. This minimum is consistently lower (smaller is best) for the SSG and MM con-

sensus than for the DBA, echoing the same differences between the voted-on consensus signals

from the smaller Enolase grouping in Fig 7D–7F.

Fig 11B shows a weaker global minimum for the mean normalized DTWDISTANCE between

each consensus and their respective noisy ensembles. This global minimum consistently

appears when 41%, black diamond, of the noisy squiggles agree that the consensus is distorted

at a specific location and when the consensus length approximates the gold standard length

rather than being shorter as occurs in Fig 11A. From this analysis we conclude that the voted-
on DTWA consensus better represents the average characteristics of the ensemble of noisy

squiggles than the characteristics of the gold standard model.

6—Sequin consensus study

In this section we report a comparison of the characteristics of the voted-on consensus signals

generated for the two Sequin studies. Experimental issues meant that only a single group of

less than 120 cleaned squiggle was available from either Sequin ensembles. A small grouping of

the Enolase ensemble was included in the study to provide a link to the results of the multiple

group study in Section 5.2.

Fig 11. A) The change in the normalized DTWDISTANCE between the gold standard and consensus as a function of consensus

length is shown for 20 Enolase groupings of 512 squiggles as voting level changes from 100% to 10% agreement between noisy

squiggles that an insertion occurred. The magenta squares show that initial consensus length, change by 60% during the time

taken to perform the experimental study. The SSG, MM and DBA consensuses, green, red and black lines respectively, show

similar behaviour after 53% voting agreement, green triangle, reaching a common minimum around 30% agreement.

B) In contrast, a 41% voting agreement generates a minimum, normalized, mean DTWDISTANCE between the consensuses and the

original, noisy, ensemble squiggles when the consensus length approaches that of the known gold standard length. This match

occurs without the consensus generation and voting process having any prior knowledge of the gold standard characteristics.

https://doi.org/10.1371/journal.pcbi.1009350.g011
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Fig 12A shows the changes in normalized DTWDISTANCE between the Sequin R1-71-1 (red),

R2-55-3 (blue) and Enolase (black) voted-on consensus signals and their respective gold stan-

dards as the level of agreement required between the noisy squiggles in the full ensemble that a

duplication in the consensus was present changed between 100% agreement down to 10%. The

normalized DTWDISTANCE for the Sequin studies are similar to each other, but higher than that

of the Enolase study. The behaviour for the small group Enolase study, black line, has a global

minimum when the consensus length / gold standard length = 0.9, echoing the results of the

multi-group Enolase study in Fig 11A. In contrast, the Sequin studies show a global normalized

DTWDISTANCE minimum when the ratio of their consensus to gold standard lengths are close

to 0.75. Fig 12B shows that the mean normalized DTWDISTANCE between the consensuses and

their respective ensemble shows a minimum when the consensus length / gold standard length
approximates 1.0. As with the multi-group Enolase study, Fig 11, this is again confirmation

that the consensus represents an average of the experimental ensemble with insertions and dis-

tortions present in individual squiggles and is not intended to be an accurate and direct repre-

sentation of the gold standard model. We currently offer no explanation of what

characteristics of the MMDTWA consensus generated in the Sequin-R2-55-3 study, dotted

blue line, makes it so similar to the other consensus signals when compared to the gold stan-

dard, Fig 12A, yet obviously inconsistent in its normalized, mean DTWDISTANCE minimum

behaviour when compared to the ensemble, Fig 12B. This shows that while the MM, DBA and

SSG DTWA algorithms generally produce similar results, specific characteristics of data and

consensus initialization may result in different results.

Fig 13 compares the three variants of the warp path display for a small control group Eno-
lase study, Column 1, against the equivalently sized Sequin R1-71-1, Column 2, and R2-53-3,

Column 3, study groups. The standard warp-path comparison between the gold and consen-

sus, Row 1, show that all consensuses converge to similar values after voting, becoming close

to the Identity line of the normalized warp-paths, Row 2. The Difference-from-Identity-Line
plots reveal interesting insights into some DWTA behaviour. The random SSG initialization

results in very different initial consensus signals, dashed green lines when applied to a large

Enolase ensemble, Fig 8C, and a small Enolase ensemble, Fig 13G. However, voting makes the

Fig 12. A) A comparison of the DTWDISTANCE between the gold standard and consensus for a single 128 squiggle grouping from the

Enolase (black), Sequin R1-71-1 (red) and Sequin R2-55-3 (green) studies using the DBA, solid line, SSG, dashed line, and MM
DTWA algorithms. All Sequin DTWDISTANCE minima occur in the 23% - 30% voting agreement range, lower than for the control

Enolase study. B) Again, plots of the mean normalized DTWDISTANCE between the voted-on consensus and its ensemble as whole all

show a minimum close to their respective, and different, gold standard length despite using a DTWA consensus generated from

fewer, and for the Sequin studies, noisy squiggles.

https://doi.org/10.1371/journal.pcbi.1009350.g012
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consensus signals more similar to each other. Straight sections of the Enolase warp-path plots.

Fig 13G indicate that the consensus has much similarity with the gold standard over essentially

the total warp path except for the final few per cent. This contrasts with the Sequin R1-71-1
and R2-53-3 studies, Fig 13H and 13I, which consist of two straight difference warped-path

with sudden changes occurring at the 20% and 50% positions along the normalized warp

paths. We consider the full interpretation of the cause of these changes in this new consensus

metric beyond the scope of this paper.

Fig 14A and 14B respectively compare the last base values of the unwarped Sequin R1-71-1
and R2-55-3 DWTA consensus signals with their own unwarped gold standard before voting.

The initial DBA (black) and the SSG (green) consensuses show similarity to each other in the

Sequin R1-71-1 study while both are obvious distorted versions of the gold standard. This con-

trasts with the Sequin R2-55-3 study where the original DBA consensus shows significant

resemblance to the gold standard, presumably as the result of its time-consuming ‘find-the

Fig 13. A comparison is made between various warp-path metrics for the Enolase, column1, Sequin R1-71-1, column 2, and Sequin R2-55-3, column 3, with

normalized warp position calculated from their respective gold lengths. The normal warp path display, Row 1, shows how the DBA, black, SSG, green, and MM, red,

signals all gain more similar lengths upon voting. These changes are reflected in the normalized paths, Row 2, which show a drop in deviation from the Identity path after

voting. The Difference-from-Identity warp paths, Row 3, shows that the three DTWA consensus signals become similar after voting.

https://doi.org/10.1371/journal.pcbi.1009350.g013
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most-consistent squiggle’ initialization applied to this small, noisy, data set. The vertical posi-

tioning of the dotted lines joining identified similar warp path location clearly shows that the

final voted-on consensus are similar to each other, and the gold standard, in both the Sequin
R1-71-1 and R2-55-3 studies, Fig 14C and 14D respectively. We need further study to under-

stand why the last sections of the synthetic Sequin consensus signals are similar to the gold

standard in contrast to the results seen with the end segments of the naturally derived Enolase
studies, Fig 9B.

7—Accuracy and precision of the voted-on DTWA consensus

In this Squiggle context, precision is related to the repeatability of the DTWA and voting pro-

cess. Unless the starting point, initial squiggle, or some other step is chosen randomly, the

DTWA is a mathematical process and that always lead to the same consensus signal for a given

DDBA, SSG or MM application. However, consensus differences are expected for a number of

reasons. Smith et al. [10] showed that forming ensembles from groups of squiggles of similar

length leads to a different consensus. In addition, our multi-group study, Fig 11A, shows that

the initial consensus signal length, magenta square, and hence other characteristics, changes

when comparing squiggle groups of random lengths from the same ensemble.

Fig 14. The original, unwarped SSG, green, MM, red, and DBA, black consensus signals for the A) Sequin R1-71-1 and B) R2-55-3
studies show significantly more distortions, non-vertical dashed lines between equivalent warp points, than were present in the

Enolase study, Fig 9A. After voting, the consensus signals within the C) R1-71-1 and D) R2-55-3 studies become more equivalent to

each other as shown by the more vertical dashed lines connecting equivalent warp positions within the unwarped signals.

https://doi.org/10.1371/journal.pcbi.1009350.g014
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Voting is also a mathematical process. Fig 11A illustrates that voting leads to similar voted-

on consensuses characteristics across different DTWA methods and squiggle groups regardless

of the initial consensus length. It is reasonable to assume that the combined DTWA and voting

processes described in this paper are precise in terms of repeatability.

A decision on accuracy must be inferred, rather than measured, as the ‘correct result’ of

applying DTWA techniques is not to generate an accurate representation of an unknown gold

standard by combining multiple noisy signals. Instead, as Fig 11B shows, the purpose is to gen-

erate a consensus signal for use as a representative of the average ensemble to determine sys-

tematic differences, possible chemical nucleotide modifications, between it and a minority of

individual signals in the ensemble that are different from the majority.

Figs 11 and 12 together provide clear decisions for the existence of global minimum

DTWDISTANCE measures when approximately a 40% - 45% majority of four different ensembles

agree on the presence of distortions in their respective consensus. To proceed with using such

consensus in future studies, we must answer several questions regarding consensus generation

in this new squiggle context–“What are the unsatisfied 55% - 60% voters unhappy about with
the current analysis?” and “Is their unhappiness significantly influencing the final result?”
Finally, “Is it useful to address their concerns in the short term?”

Earlier, we discussed how applying the dtw() algorithm to compare a DTWA consensus sig-

nal estimate and an individual squiggle returned two warped paths. We have developed a vot-

ing method that relied on additional entries in individual squiggle warp paths, WPSQUIGGLE-n,

indicating that bases should be deleted from the consensus. We will now provide an argument

that ignoring the fact that additional entries in the consensus warp path, WPCONSENSUS, indi-

cate missing entries in the consensus does not lead to a first order bias in the deletion-from-
consensus voting process.

Assume that 5 in 100 squiggles indicate a missing consensus base that must be added. Then

to achieve a x1.7 average ensemble length ratio to the gold standard increase requires that at

least 75 in 100 squiggles indicate a deletion should be performed. Only when deletion voting

has caused the consensus to reach approximately the gold standard length will there be roughly

equal numbers of squiggles, 5 in 100, requesting either a deletion or an insertion. We also

argue that even continuing to ignore the requests for insertions will not introduce more than a

second-order delete-from-consensus bias as the need to insert and delete bases will not nor-

mally occur at the same location unless both signals are so grossly distorted that it impacts the

convergence of the dtw().
However, there is an argument that a second order bias will be present since continuing to

ignore minority insertion requests will have some impact on the consensus characteristics and

can be expected to increase the overall DTWDISTANCE metric. Duplication of the basics of our

deletion process would, in principle, allow a determination from the consensus warp path,

WPCONSENSUS, returned by the dtw() algorithm of when an ensemble vote is high enough to

indicate an insertion should occur. However, “what to consider as a valid insert” does not have

an immediately obvious answer.

We initially felt that inserting the average of the value at the ensemble warp path location

would be acceptable given the presence of experimental noise. However, in the presence of

chemical nucleotide modifications, a.k.a. epigenetic changes, we would expect that the distri-

bution amongst ensemble squiggle values would show significant deviations from the normal

distribution. Thus, inserting an average value into the consensus without a more in-depth

analysis of squiggle distributions might impact the evaluation of these changes, i.e., insert a

false negative indicating the absence of a modification. We concluded that adding a valid inser-

tion into the consensus should only occur when we moved onto the next stage of our project,
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using voting information combined with recursive analysis of amplitude variation and differ-

ence distributions to determine the presence of these modifications.

While beyond the immediate scope of this paper, we undertook a preliminary investigation

of a related issue–“Do the results of ensemble DTWA-voting already make it possible to see sig-
nificant differences common across the three different DTWA approaches between a voted-on
consensus from experimental data and the gold signal?” In Fig 15 we have plotted the difference

between the gold signal and the three voted-on consensus signals at each location along their

warp-paths. Making an initial assumption that overall differences would be due to random

experimental noise, we identified a number of common locations, blue lines, where higher

than average differences were seen by each of the DTWA consensus signals and the gold stan-

dard in both A) Sequin R1-71-1 and B) Sequin R2-55-3 studies.

However, closer examination of all 6 signals shows that our initial assumption that the dif-

ferences would be noise-like with a normal distribution around a zero mean is invalid. Future

work is required to understand why these is such a high level of similarity in all the differences

between the gold standard and the three consensus signals generated by independent and sig-

nificantly different DTWA processes in two different Sequin studies each with its own gold

standard.

One consideration is that the similarity may be related to minor, but systematic, deviations

from the existing OEM-provided k-mer current values when we generated the gold standard

model for our particular experiment. This concern would have no impact on the success of

our current combined DTWA and voting process which does not make use of this generated

gold standard during the voting process.

A possible second conjecture is related to the repeated application of multiple dtw() steps

when generating a DTWA consensus. In other research fields, the signals are typically from

such disparate sources that an increased level in the similarity of the signal amplitudes must be

imposed by z-normalizing each signal, i.e., removing the mean and dividing by a signal’s stan-

dard deviation. However, the squiggle signals are inherently from the same source, so in prin-

ciple they should already have similar amplitudes and standard deviations. Thus, any self-

normalization approach, e.g., z-norm or median median-absolute-deviation (med-MAD), will

Fig 15. Comparison of the differences between the amplitudes of the warped gold and DBA (black), SSG (green) and MM (red)

voted-on DTWA consensus signals for Sequin A) R1-71-1 and B) R2-55-3 studies. The short blue spikes indicate where higher than

average differences exist between the study’s gold standard and a consensus signal, many larger differences being common across all

consensuses, blue lines. However, closer examination of all differences show that they cannot be represented as experimental

produced gaussian deviations around a mean, but are equivalent, small systematic differences common across all DTWA
consensuses.

https://doi.org/10.1371/journal.pcbi.1009350.g015
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effectively be applying different scaling factors based on some standard property to each squig-

gle reducing, rather than increasing, their inherent similarity; thus potentially introducing a

systematic error when applying the dtw(). We are currently investigating whether changes in

conditions during an experiment, e.g., sample or nanopore aging, make some form of normali-

zation necessary, and any systematic error introduced into the consensus accepted.

8—Conclusion

The ratcheting of nucleotides of an RNA or DNA molecule through the biomolecule pores of a

nanopore sequencer generates picoamperage current signals. These nanopore signals are seg-

mented into step-current levels, squiggles, related to particular nucleotide groupings. How-

ever, these squiggles are consistently longer than the known source RNA length when using

the OEM segmentation algorithm based on changes in current mean and standard deviation

over a time window. This stretched signal-events-to-base-calls ratio indicates multiple spuri-

ous events within each data stream.

We have investigated the effectiveness of DTW Barycentre Averaging (DBA), the Minimize

Mean algorithm (MM) and Stochastic Sub-Gradient descent algorithm (SSG) dynamic time

warping averaging (DTWA) algorithms in producing a consensus signal from multiple noisy

squiggles. The algorithms showed different properties when applied to three experimental

samples, Enolase mRNA spike-in (natural) and two studies using R1-71-1 and R2-55-3 (syn-

thetic) from the RNA Sequin v1 Pool A. Generated gold standard models were treated as ‘best

first order estimates’ when analyzing the success of the consensus generation

The initial squiggle cleaning process to remove uncharacteristic sequences revealed that the

nanopore sequencer and associated segmentation algorithm consistently introduced distor-

tions causing an ~x1.7 increase in sequence length compared to the underlying gold standard.

The initial SSG and MMDTWA consensuses had the lower, smaller-is-better, DTWDISTANCE

success metrics for the larger Enolase study but were outperformed by the DBA DTWA con-

sensus on both smaller Sequin studies. New visualization and warp-path comparison tech-

niques were proposed in this new environment where one of the signals being compared, the

consensus, is generated from an ensemble whose individual members inherits the majority of

the characteristics of the second signal, the gold-standard model.

The increased length of the initial consensus signals compared to the gold indicated the

DTWA averaging cause a considerable retention of the distortions present in individual squig-

gles. We have proposed a post-processing procedure where a certain majority of the noisy

individual squiggles vote (based on warping path repeats) whether there are false additions

present in the consensus signals. Three experimental studies were investigated: a large Enolase
mRNA spike-in squiggle ensemble and two smaller, noisier, R1-71-1 and R2-55-3 ensembles

supplemented with RNA Sequin v1 Pool A. We demonstrated that upon voting, the length of

the consensus signals was decreased, and the voted-on DTWA consensus became a better

match to the ensemble as a whole than did the gold signal underlying individual members of

the ensemble. The success measures for the voted-on consensus again showed DBA DTWA
better for Sequin studies, SSG and MMDTWA better for the Enolase study,

We believe that there is considerable potential in applying voted-on DTWA algorithms in

this new application area, including the identification of chemical nucleotide modifications

present in the experimental consensus signal and not in the gold standard. Our future work

includes developing new approaches variants that combines the best features of each of the

existing DTWA algorithms, upgrading the voting procedure to identify where features are

missing in the consensus and the more difficult task of proposing a valid correction. The squig-

gles have very high information entropy because of the 1:1 relationship between the amperage
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levels and the underlying DNA/RNA molecule being ratcheted through the sensor. We expect

that the results of combining an ensemble averaging algorithm with a voting procedure could

be applicable in other fields where signals have similar high-entropy characteristics.

Code, data files together with scripts to convert various data file formats into the simple file

format used by this tool can be found at GitHub.com/Nodrogluap/DTWA.
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