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Abstract

Multistage sampling of family data is a common design in the field of genetic epidemiology, 

but appropriate methodologies for analyzing data collected under this design are still lacking. We 

propose here a statistical approach based on the composite likelihood framework. The composite 

likelihood is a weighted product of individual likelihoods corresponding to the sampling strata, 

where the weights are the inverse sampling probabilities of the families in each stratum. Our 

approach is developed for time-to-event data and can handle missing genetic covariates by using 

an Expectation-Maximization algorithm. A robust variance estimator is employed to account for 

the dependence of individuals within families. Our simulation studies have demonstrated the good 

properties of our approach in terms of consistency and efficiency of the genetic relative risk 

estimate in the presence of missing genotypes and under different multistage sampling designs. 

Finally, an application to a familial study of early-onset breast cancer shows the interest of our 

approach. While it confirms the important effect of the genes BRCA1 and BRCA2 in these 

families, it also shows that incorrect inference can be made about this effect if the sampling design 

is not properly taken into account.
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1. Introduction

The concept of multistage sampling is not new in epidemiology and genetic epidemiology; 

it has been used for example to investigate the association between a rare disease and 

a rare exposure (White (1982)). In familial genetic studies, multistage sampling permits 

the allocation of resources to families that are the most informative for a given objective 

while allowing population-based inference using a design-corrected estimator (Whittemore 

and Halpern (1997)). Typically, in the first stage, a simple random sample is drawn from 
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the population and then stratified according to some easily measured covariates. In the 

subsequent stages a random subset of previously selected units is sampled for more detailed 

observation, with a unit’s sampling probability determined by its covariates as observed in 

the previous stages. While multistage designs can be quite efficient in certain situations, 

they also raise numerous statistical challenges. A first difficulty with multistage design is the 

estimation of the parameters of interest when the sampling design is not ignorable. A second 

problem, that often occurs when collecting family data, is to deal with missing genetic 

covariates and correlated observations within families (or clusters).

The objective of this paper is to estimate a regression coefficient associated with a known 

gene mutation when the outcome is the time to an event and the sampling design is not 

ignorable. A composite likelihood approach for time-to-event data is proposed to provide 

a design-corrected estimator of the gene mutation effect (Sections 3 and 4). In family 

studies, mutation status is often missing for some of the family members. To infer the 

mutation status in these individuals, we used an Expectation-Maximizaion (EM) algorithm 

where the missing mutation statuses are estimated from their conditional expectation given 

the observed ages of onset (or censored times) and mutation statuses of other family 

members. Moreover, a robust variance estimator is proposed to account for the dependence 

of individuals within families (Section 5). Our simulation study investigates the properties of 

our proposed EM composite likelihood approach in the presence of missing genotype data, 

and under different multistage sampling strategies (Section 6). In Section 7, we illustrate 

our approach through an application to a familial study of early-onset breast cancer. A 

two-stage design was used to sample the families and our goal is to estimate the effect of 

gene mutations in two genes (BRCA1 and BRCA2) on time to breast cancer. Finally, we 

investigate an optimal sampling strategy based on the results obtained from our application 

(Section 8) and conclude with possible extensions of this work.

2. The Multistage Sampling Design

Our goal is to estimate a parameter θ in the probability density function of a random vector 

of observations y. We assume that the sample space of y can be divided into K disjoint 

strata, S1, …, SK, and that the sampling units in each stratum provide different amount of 

information about θ. An efficient design could therefore consist in the two stages:

• Stage 1: draw a random sample y1, …, yN from the population and only observe 

the stratum to which each yi belongs; let the sample be Sk
1, k = 1, …, K.

• Stage 2: for each stratum Sk
1 with sample size Nk, draw a random subsample 

of size nk independently with probability pk = P y ∈ Sk
2 ∣ y ∈ Sk

1 , where pk 

represents the probability that a unit from the stratum k of the first stage 

is selected in the second stage and all units in each stratum are sampled 

with the same sampling probability. Observe the y values of the observations 

sampled in the second stage, and denote the sample from the second stage by 

S2 = ∪k = 1
K Sk

2.
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The two-stage design can be generalized to involve more stages. The first two stages would 

be similar to those of the two-stage design, except that at Stage 2 we do not observe the y 
directly but rather the finer substrata they belong to, and a random sample is drawn from 

these substrata. This process can be repeated several times until the last stage in which the y 
are observed directly. In practice, however, there could be some loss in efficiency in adding 

too many stages and designs with more than three stages are relatively rare, at least in the 

field of genetic epidemiology (Whittemore and Halpern (1997)).

A variant of this two-stage design consists of collecting family data in Stage 2. For example, 

case patients (and sometime population controls) are selected in the first stage and asked 

about the prevalence of a disease outcome in their family and, in the second stage, case 

patients with or without particular characteristics are subsampled with different sampling 

probabilities and are used to obtain extended-family histories. The sampling probability 

assigned to each family could depend on the case patient’s (i.e. the proband’s) genetic risk, 

age, and ethnicity and are computed according to some optimality criteria for a particular 

question of interest (Whittemore and Halpern (1997)).

Considering that our primary sampling units are families with several individuals, we denote 

by nk the number of families sampled in stratum k at Stage 2, Nk the total number of 

families in stratum k, and Skf
2  a family f (f = 1, …, nk) in stratum k sampled from Stage 2. 

Thus the total sample S2 at Stage 2 can be expressed as S2 = ∪k = 1
K Sk

2 = ∪k = 1
K ∪f = 1

nk Skf
2 . 

Assuming that a stratum is identified for all the primary sampling units, the full likelihood 

under a variety of sampling schemes has been shown to be (Lawless, Kalbfleisch, and Wild 

(1999))

LF(y; θ) = ∏
k = 1

K
∏

f = 1

nk
Lkf(y; θ) wk(θ)Nk − nk,

where

Lkf(y; θ) = ∏
i ∈ Skf

2
f yi; θ

is the likelihood of family f in stratum k, i is an individual in this family, and

wk(θ) = ∫Sk
2Lkf(y; θ)dy

is the sampling probability for the families in stratum k.

Several estimation methods have been proposed to estimate the parameter θ without 

having to compute the full likelihood LF, and it has been shown that some gain in 

efficiency can be obtained by including information about the stratum sizes (Lawless, 

Kalbfleisch, and Wild (1999)). However, in certain situations it might be difficult to 
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compute the stratum-specific sampling probabilities wk(θ), and the likelihood method can 

be sensitive to the misspecification of these probabilities. Alternatively, some weighted 

pseudo-likelihood methods have been proposed for problems involving response-selective 

observations (Kalbfleisch and Lawless (1988); Whittemore and Halpern (1997)) and missing 

data (Little and Rubin (1987)). The rationale of the weighted pseudo-likelihood approach 

is to consider only the completely observed units and weight their contribution inversely 

proportional to their probability of selection (Wild (1991); Whittemore and Halpern (1997)) 

to give the following log weighted pseudo-likelihood function

ℓW (y; θ) = ∑
k = 1

K
pk
−1 ∑

f = 1

nk
log Lkf(y; θ) ,

where pk is the estimated sampling probability for family f in stratum k and assumed the 

same for all the families in this stratum. For basic stratified sampling, the use of pk = nk/Nk
provides an unbiased estimation of the parameter θ. For variable probability sampling, the 

use of pk = pk leads to an unbiased estimator, but taking pk = nk/Nk can yield more efficient 

estimates (Lawless, Kalbfleisch, and Wild (1999)).

3. A Composite Likelihood Formulation

The weighted pseudo-likelihood described above can be thought of as a composite 

likelihood based on independent contributions of each family to the likelihood. Composite 

likelihood has been proposed for estimation involving complex likelihood functions and 

is obtained by removing some terms in the complex full likelihood with the objective 

that the removed part is not very informative for estimating the parameter of interest, 

and the resulting loss of efficiency remains acceptable (Lindsay (1988)). If we consider a 

parametric statistical model f(y; θ), y ∈ Y ⊆ ℝn, θ ∈ Θ ⊆ ℝd, and a set of measurable events 

Ak; k = 1, …, K , then a composite likelihood is the weighted product of the likelihoods 

corresponding to each single event. The log composite likelihood has the general form

ℓC (y; θ) = ∑
k = 1

K
wk ℓk (y; θ)

where, in the context of multistage design, the events correspond to the sampling in the 

different strata, ℓk (y; θ) = ∑f = 1
nk ∑i ∈ Skf

2 log f yi; θ , and wk = pk
−1.

This formulation allows one to use the asymptotic theory developed for the maximum 

composite likelihood estimator. In particular, the observations do not need to be 

independent, as originally assumed for weighted pseudo-likelihood (Wild (1991)), and 

when they are correlated (i.e. individuals within a family in our context), a robust variance 

estimator can be used instead of the naive variance estimator. The maximum composite 

likelihood estimator, θ , is obtained by maximizing the log composite likelihood, ℓC (y; θ), or 

by solving the composite score equations U(θ) = 0 with
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U(θ) = ∑
k = 1

K
wkUk(θ) = ∑

k = 1

K
wk

∂ ℓk (y; θ)
∂θ .

3.1. Robust variance estimator

As noted in Lindsay (1988) or Varin (2008), the maximum composite likelihood estimator 

θ  is consistent and asymptotically normally distributed. The limiting normal distribution has 

mean θ and variance matrix

H(θ)−1J(θ)H(θ)−1,

where

H(θ) = E ∂U(θ)
∂θ  and  J(θ) = Var U(θ) . (3.1)

An empirical estimator for H(θ) arises by dropping the expectation and replacing the 

unknown θ with its estimator θ ,

H(θ) = ∑
k = 1

K
wk

∂Uk(θ)
∂θ

θ = θ
,

and, as we have J(θ) = Var{U(θ)} = E[U(θ)U(θ)⊤], an empirical estimator for J(θ) at θ  is 

obtained as

J(θ) = 1
K ∑

k = 1

K
wk

2Uk(θ)Uk(θ)⊤ .

3.2. Correction for ascertainment

In family-based multistage designs, it is often that some strata are not sampled at all, 

such as families of unaffected individuals (e.g. control proband) or families with affected 

individuals (e.g. case proband) above or below a certain age at onset, the proband being 

the individual from whom the family is ascertained. As an example, we consider in our 

application (see Section 7) a study that enrolled only case probands under 40 years old. A 

correction for ascertainment should be applied by computing a conditional likelihood where 

the conditioning corresponds to the event Af that the proband in family f selected in stage 

1 meets certain criteria (Choi, Kopciuk, and Briollais (2008)). We then express Lf(y; θ) as 

the product of conditional probabilities of family members observed for family f given the 

covariates x and the proband having the event Af as

Lf(y; θ) = ∏
i ∈ Skf

2

P yi ∣ xi
P yp ∈ Af ∣ xp

,
(3.2)
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where index p represents the proband. We give more details about the family-specific 

composite likelihood in the next section when the response is the time to an event.

4. Application To Time to Event Data

In the following we are interested in modeling a time-to-event response, for example time to 

cancer, from our two-stage sampling design where we use family data at the second stage. 

In this context, design-based estimators have been proposed for the Cox’s proportional 

hazard (PH) model (Cox (1972)) by Binder (1992) and Lin (2000), and recently extended 

by Boudreau and Lawless (2006) to stratified and clustered survival data. Boudreau and 

Lawless (2006) used a weighted estimating function to obtain a consistent estimator of 

the regression parameters, denoted by β. A partial likelihood approach is used when the 

sampling design is non-ignorable since the standard likelihood function may not yield 

a consistent estimator of β. An additional difficulty in our context is the correction for 

ascertainment described above. Because we need to compute a conditional likelihood to take 

into account the ascertainment of the families, we found that it would be challenging to do 

so in the Cox PH model setting. Instead, we develop a design-based composite likelihood 

estimation using a parametric model for the ages at onset data. We denote by Ti and xi, 

respectively, the time of onset and the vector of covariates for individual i in family f and 

stratum k sampled in Stage 2 of the design i ∈ Skf
2 . We assume that T follows the Weibull 

model that has the survival and hazard functions

S(t ∣ x) = e− λ t − t0
ρex⊤β,

ℎ(t ∣ x) = λρ λ t − t0
ρ − 1ex⊤β,

where t0 is the minimum time (age) at which an event can occur, x is a vector of the 

covariates of interest, β is a corresponding vector of regression parameters, and λ and ρ 
are the scale and shape parameters of the Weibull distribution, respectively. Hereafter x 
represents the gene mutation status (with individuals carrying the mutation coded 1 and 

non-carriers coded 0) with β a corresponding regression parameter.

Consider a response time yi ≥ 0 corresponding to the age at onset ti if individual i is affected, 

or the current age ai otherwise. The likelihood contribution for an individual i in family f and 

stratum k follows from (3.2) with

f yi ∣ xi = ℎ ti ∣ xi
δiS ti ∣ xi

1 − S ti ∣ xi
ℎ ti ∣ xi S ti ∣ xi

νi
, (4.1)

and P(yp ∈ Af|xp) = 1 − S(ap|xp), where δi indicates the affection status, νi = 1 if the 

age of onset is not reported for affected individual i but only his/her current age (age at 

examination) is known, 0 otherwise, and ap and xp denote the age of examination and 

mutation status of the proband, respectively.
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The log composite likelihood for a family f is

ℓf (y; θ) = ∑
i ∈ Skf

2
δi − νi log λρ λ ti − t0 ρ − 1

+ ∑
i ∈ Skf

2
δi − νi xiβ

+ ∑
i ∈ Skf

2
νi − 1 λ ti − t0 ρexiβ

+ ∑
i ∈ Skf

2
νilog 1 − e− λ ti − t0

ρexiβ

−log 1 − e− λ ap − t0
ρexpβ .

(4.2)

Estimating baseline risk parameters (λ, ρ) from mutation carrier families might be 

problematic since noncarrier individuals in these families can exhibit higher risk than in 

the general population (Begg (2002)). To circumvent this problem, we adopted a two-stage 

estimation procedure where the baseline parameters are estimated in a first stage using 

mutation non-carrier families only, and the β parameter is estimated in a second stage using 

both mutation carrier and non-carrier families. Therefore, we considered the parameter β as 

the parameter of interest and the other parameters (λ, ρ) as nuisance parameters. Then, we 

estimate the parameter β using a profile likelihood approach by inserting the estimates of γ 
= (λ, ρ) into the log composite likelihood function in (4.2) as a function of β only.

For fixed γ, we find the maximum composite likelihood estimate of β as β(γ). Then, we 

fix β and estimate γ. By iterating these two steps until convergence, we obtain maximum 

profile likelihood estimates β  and γ . To avoid computational complications, assuming that γ 
is fixed at γ , the maximum composite likelihood estimator β  based on two-stage estimation 

procedure of the profile likelihood has asymptotic properties of normal distribution with 

mean β and variance of a form, H(β)−1J(β)H(β)−1, where H(β) and J(β) are estimated at β
for fixed γ ,

H(β) = ∑
k = 1

K
wk ∑

f = 1

nk ∂Uf β(γ)
∂β β = β

 and J(β) = ∑
k = 1

K
wk

2 ∑
f = 1

nk
Uf β(γ) Uf β(γ) ⊤ .

Here, U{β(γ)} and ∂Uf{β(γ)}/∂β represent the first and second derivatives of the profile 

log-likelihood with respect to β at a fixed value of γ, respectively; detailed expressions 

are presented in Appendix I. The asymptotic normality of the two-stage estimator was also 

shown in the context of correlated survival data in Proposition 3.1 of Andersen (2005). 

As pointed out by an associate editor, this variance estimator might underestimate the 

asymptotic variance; however, our simulation studies showed little difference between this 

estimator and the asymptotic variance estimator.
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5. An EM Algorithm for Missing Genotype Covariates

Family data often include some missing information, in particular, missing genotypes. In 

our simulation study and data application (e.g. see Sections 6 and 7), we consider situations 

where mutation statuses are partially missing in the family. In the presence of missing 

genotype information, we estimate the disease risk associated with a known gene mutation 

in the families. Suppose a vector of genetic covariates gf in family f consist of observed 

genotypes gfo and missing genotypes gfm and a vector of time-of-onset responses yf (also 

called “phenotypes” in genetics) with no missing data. To infer the unobserved genotypes 

in the family, we implement an EM algorithm (Dempster, Laird, and Rubin (1977)) to 

estimate the parameters in our composite likelihood approach. The EM algorithm is an 

iterative procedure that computes the maximum likelihood estimates (MLEs) in the presence 

of missing data. At each iteration, it takes two steps–the expectation and maximization steps. 

In our situation, the expectation of the complete data (yf, gf) is taken with respect to the 

conditional distribution of missing genotypes gfm given observed data (yf, gfo), and current 

estimates of θ and then the parameter estimates are updated by maximizing the likelihood 

function using the estimate of missing data in the expectation step. These steps iterate until 

convergence to obtain the MLEs, since the algorithm is guaranteed to increase the likelihood 

at each iteration. The following details the application of the EM algorithm for our proposed 

composite likelihood approach.

E-step:

Let θ be the vector of unknown parameters and θ(j) denote their values at the end 

of the jth iteration. The Q function is obtained as the conditional expectation of the 

log-likelihood function given the observed information (yf, gfo) at θ(j), f = 1, …, n:

Q θ ∣ θ(j) = ∑
k = 1

K
wk ∑

f = 1

nk
Qf θ ∣ θ(j) ,

Qf θ ∣ θ(j) = Eθ(j) ℓf (θ) ∣ yf, gfo

= ∑
i ∈ Skf

2
δi − νi log λρ λ ti − t0

ρ − 1 + βEθ(j) gim ∣ yf, gfo

+ ∑
i ∈ Skf

2
νi − 1 λ ti − t0

ρEθ(j) exi⊤β ∣ yf, gfo

+ ∑
i ∈ Skf

2
νiEθ(j) log 1 − e− λ ti − t0

ρexiβ ∣ yf, gfo

−log 1 − e− λ ap − t0
ρexpβ

.

Thus, the unobserved genotype gim for individual i in family f comes into the 

complete data log-likelihood using the conditional expectation given its observed 

responses and genotypes in the family, which can be expressed as
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Eθ(j) gim ∣ yf, gfo = Pθ(j) gim = 1 ∣ yf, gfo

=
Pθ(j) yf ∣ gim = 1, gfo P gim = 1 ∣ gfo

Pθ(j) yf ∣ gim = 1 P gim = 1 ∣ gfo + Pθ(j) yf ∣ gim = 0 P gim = 0 ∣ gfo
,

where P(gim|gfo) is the conditional probability of mutation carrier status of i given 

the observed genotypes in family f, and obtained based on Mendelian transmission 

probabilities for individuals with parents in the family or based on the mutation 

frequency in the population for individuals without parents in the family, and 

Pθ(j) yf ∣ gim, gfo  has the form given in (4.1). In addition,

Eθ(j) ℎ gim ∣ yf, gfo = ℎ gim = 1 Pθ(j) gim = 1 ∣ yf, gfo + ℎ gim = 0 Pθ(j) gim = 0 ∣ yf, gfo ,

where h(x) is any function of x.

M-step:

θ(j+1) is found by maximizing Q(θ|θ(j)) with respect to θ.

The maximum composite likelihood estimates are obtained by iterating these two 

steps until convergence to update at each iteration the parameter values that maximize 

the expectation of the complete data log-likelihood.

5.1. Robust variance estimators for the EM algorithm

The variance estimator for composite likelihood should be modified for the facts that 

missing genotypes have been estimated using the EM algorithm. The observed information 

matrix in the EM algorithm was suggested by Louis (1982). Let U(θ) and B(θ) denote the 

score vector and the negative of the associated matrix of second derivatives for the complete 

data, respectively, and U*(θ) and B*(θ) be the same vector and matrix for the incomplete 

data. Then the observed information matrix can be expressed as

Io(θ) = Eθ B(θ) ∣ go, yo − Eθ U(θ)U⊤(θ) ∣ go, yo + U*(θ)U * ⊤ (θ), (5.1)

where go and yo denote the vectors of observed genotypes and responses from data. At 

the maximum composite likelihood estimate of θ, because of the convergence of the EM 

algorithm, U* is zero. Thus the observed information matrix can be obtained as the first 

two terms on the right hand side of (5.1) that arise from the complete data log-likelihood 

analysis. The first term is evaluated as

Eθ B(θ) ∣ go, y0 = Eθ − ∂2 ℓ (θ)
∂θ∂θ⊤ ∣ go, yo .

We used the modified observed information matrix from the EM algorithm to get the 

variance estimator for the composite likelihood,
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Var(θ) = Io(θ)−1J(θ)Io(θ)−1,

where J(θ) is the expected information matrix which can be also written in terms of the 

variance of the score vector for the conditional distribution given observed data as

J(θ) = Var[U(θ)]
= Var E U(θ) ∣ go, yo + E Var U(θ) ∣ g0, yo

= Eθ U(θ)U⊤(θ) ∣ go, yo

= ∑
k = 1

K
wk

2 ∑
f = 1

nk
Eθ Uf(θ)Uf(θ)⊤ ∣ go, yo ,

and Io is the observed information matrix obtained from the EM algorithm, which can be 

expressed as Io(θ) = Eθ[B(θ)|go, yo] − J(θ).

Thus, the robust variance of θ  can be estimated by

Var(θ) = Io(θ)−1J(θ)Io(θ)−1 .

Recall that this robust variance estimator can also account for familial correlation since we 

did not model explicitly the dependency between family members not due to the presence of 

a major gene.

5.2. Statistical properties

It has been recently shown that the EM algorithm for composite likelihood retains the 

important theoretical properties of the classical full likelihood EM algorithm (Gao and 

Song (2009)). These properties are (i) the proposed EM algorithm for composite likelihood 

retains the ascent property (i.e. the log-likelihood of the observed data is non-decreasing 

over the sequence of updated estimates β(r)), (ii) it is a fixed point algorithm converging 

to a stationary point, and (iii) the convergence rate of the new algorithm depends on the 

curvature of the composite likelihood function surface. In addition, we prove in Appendix 

II that the parameter estimator is consistent given our specific ascertainment-corrected 

likelihood function for family data. Note that this consistency is different from algorithmic 

convergence of EM algorithm proved by Gao and Song (2009).

6. Simulation Study

We performed Monte Carlo simulations to investigate the properties of our novel EM 

composite likelihood approach, especially the bias and efficiency in the presence of missing 

genotype information and under different multistage sampling strategies. We considered a 

single stage sampling (no oversampling involved) and two 2-stage sampling designs where 

high-risk (HR) families were oversampled compared to low-risk (LR) families.
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6.1. Family data generation

We generated families with three generations following the principle described in Choi, 

Kopciuk, and Briollais (2008). In brief, family members’ ages at examination were first 

generated using a normal distribution with mean age 65 for the first generation and 45 for 

the second generation, with variance fixed at 2.5 years for both. The third generation had an 

average of 20 years difference with variance 1 year from the second generation. To generate 

the genotypes, the proband’s genotype of a major gene was determined conditional on 

her/his affection status, assuming Hardy-Weinberg equilibrium (HWE) with fixed population 

allele frequencies. The proband was required to be affected by disease before his/her age 

at examination. Given the proband’s genotypes, the genotypes of the other family members 

were then determined using HWE and Mendelian transmission probabilities calculated with 

Bayes’ formula. Once we simulated the age at examination and genotype information for 

all family members, the time-to-onset of individual i was then simulated from the Cox’s PH 

model with Weibull baseline,

ℎ ti ∣ gi = ℎ0 ti exp βxi ,

where xi indicates if the individual i is a carrier of disease mutation gene, and the baseline 

hazard was assumed to follow the Weibull distribution with h0(t) = λρ{λ(t − 20)}ρ−1.

The proband’s age at onset was generated conditioning on the fact that the proband was 

affected before his(her) age at examination, ap. For the rest of family members, their times 

to onset were generated unconditionally. We also assumed the minimum age at onset was 20 

years of age and the maximum age for followup was 90 years of age. Finally, the affection 

status, δi, for individual i was determined by comparing the age at onset, ti, and age at 

examination, ai: δi = 1 if ti < ai, and 0 otherwise.

6.2. Simulation study design

Generating ages of onset data was based on a Weibull distribution with scale (λ) and shape 

(ρ) parameters set at 3.4 and 0.01, which leads to a cumulative risk of 9% in the non-carrier 

group by age 70. These parameters were close to those observed in our data analysis (See 

Section 7 below). The β coefficient for the major gene effect varied between 1 and 3, and the 

missing genotype rates considered were 0%, 10%, 25% and 50%.

Three sampling designs were considered: a single stage design with no over-sampling, 

which corresponds to a proportion of high-risk families of 15% (design 1), and two 2-stage 

sampling designs with oversampling of high-risk families whose proportion was increased 

to 30% (design 2) and 50% (design 3), respectively, where high risk families are defined as 

having two or more affected individuals. For each choice of log genetic relative risk (given 

by β), we fixed the minor allele frequency of the major gene in order to have the same 

proportion of high risk families. The allele frequency was set at 1%, 0.4%, 0.15%, 0.07%, 

and 0.03% for β=1, 1.5, 2, 2.5, and 3, respectively, corresponding to 15% of high risk 

families in the one-stage design. For the sampling design with 30% and 50% of high risk 

families, we sampled all high risk families with probability 1 and the low risk families with 

probability 41% and 18%, respectively. For each parameter combination, we performed runs 
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of 500 simulations, each run including 1,000 families, and obtained the maximum composite 

likelihood estimates based on our proposed EM composite likelihood approach.

6.3. Simulation results

The results of our simulation study are summarized in Table 1 for the single stage sampling 

and in Table 2 for the 2-stage sampling designs, where we present the average bias, the 

robust standard error (SE), and the mean square error (MSE) of the log relative risk (β) 

of the major gene for each simulated scenario. For the 2-stage sampling designs, we also 

compare the design-corrected and uncorrected estimates in terms of bias and precision in 

Table 2.

For the single stage sampling design, displayed in Table 1, the average bias was negligible 

(absolute value less than 0.05) regardless of the gene effect and missing rate considered; 

the magnitude of the bias was always much smaller than the standard error. As we would 

expect, the precision of the parameter β increased (standard error decreased) with the allele 

frequency and inversely with the genetic effect and the proportion of missing data.

For the 2-stage sampling designs, shown in Table 2, our design-corrected estimates 

outperformed the design-uncorrected estimates in accuracy. The magnitudes of the bias 

for the design-corrected estimates were almost negligible while the design-uncorrected 

estimates were subject to a severe bias and appeared to overestimate β in most situations. 

The standard error of the design-corrected estimate increased with the genetic risk effect 

except in a few cases corresponding to a high rate of missing data and large β values. 

We also observed a trend toward larger standard errors with higher proportion of missing 

genotypes in the family, as expected, and this remained true for the various values of β and 

the different sampling designs. This pattern of SEs was also reflected in the MSE values. 

The MSE measures the tradeoff between bias and precision, defined as Var(β) + Bias(β , β)2

where Bias(β , β) = β − β. In most situations, the MSE values increased with the missing rate 

of genotypes and the log genetic risk effect (β). In terms of design efficiency, we noticed that 

both the MSE values and SE estimates were slightly larger in design 3 (50% HR families) 

than in design 2 (30% HR families), especially when the samples involved a large amount of 

missing genotypes.

Based on these results, we further studied the relative performance of our three different 

designs based on their asymptotic relative efficiency (ARE). The ARE of one design A1 to 

another A0 is given by the ratio of the inverse asymptotic variances of the parameter β. Here, 

we evaluated the relative efficiencies of designs 2 and 3 compared to design 1. Our results 

clearly indicated that the ARE depended on the genetic model considered and the proportion 

of missing genotypes (Table 3). More specifically, with no missing genotype data, the two 

2-stage sampling designs provided more efficiency than the single stage design. Compared 

to each other, the relative efficiency of the 2-stage designs varied with the value of β. 

For genetic models with β lower than 2.0, a balanced design with 50% HR and 50% LR 

families was the best strategy; for β higher than 2.0, sampling 30% of HR and 70% of LR 

families improved the accuracy of βˆ. In the presence of missing genotypes, the pattern of 

AREs became more complicated. With 10% and 25% of missing genotype data, design 2 
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was almost always the most efficient; with 50% missing genotype data, the general pattern 

became unclear. This reflects the difficulty in making inference about β in that situation, as 

clearly illustrated by the larger SEs.

7. Application to an Early-Onset Breast Cancer Study

We now show an application of our approach to a family study of early-onset breast 

cancer among BRCA1/2 mutation carriers. The goal is to estimate the genetic relative risk 

(GRR) associated with mutations in the BRCA1 and BRCA2 genes. The family data were 

collected from three population-based breast cancer family registries (Ontario, Northern 

California, and Australia) as a part of the NCI-funded Breast Cancer Family Registries 

(Breast CRF) initiatives (John et al. (2004)). The Ontario and Northern California registries 

used a two-stage sampling design while the Australian registry used a one-stage design. 

In the first stage, affected probands were randomly selected from the cancer registries and 

in the second stage, probands and their relatives were sampled with different sampling 

probabilities depending on their family history, ethnic origin, and age. The sampling criteria 

can be summarized into two categories: high risk and low risk, and only the low risk families 

had sampling probabilities lower than one (John et al. (2004)). In this study we focus only 

on the early breast cancer families whose probands were affected before the age 40.

7.1 The data

A total of 1,505 early breast cancer families was identified by the three registries but only 

974 of them with a known mutation status for either BRCA1 or BRCA2 were used in our 

analyses. For BRCA1 analysis, we used 924 families (including 98 mutation positive and 

826 mutation negative families) after exclusion of the BRCA2 positive families in order 

to remove any possible confounding in the baseline risk estimation. This number breaks 

down into 334, 248, and 342 families from Australia, Ontario, and Northern California, 

respectively. Similarly, 876 families were used for BRCA2 analysis (including 50 mutation 

positive and 826 mutation negative families). This number breaks down into 321, 225, and 

330 families from Australia, Ontario, and Northern California, respectively, after exclusion 

of the BRCA1 positive families. The estimation of the baseline survivor function was based 

on the 826 BRCA1 and BRCA2 negative families.

We recall that for basic stratified sampling or variable probability sampling, the use of 

pk = nk/Nk provides an efficient estimation of the parameter of interest θ. However, because 

we did not have a good estimate of Nk we used pk = pk, where the pk were known and 

fixed by design. The Ontario and Northern California registries under-sampled the low-risk 

families, less informative in the study of the segregation of BRCA1/2 mutations, and those 

families were assigned a sampling probability lower than 1. All the high-risk families in 

these two registries had sampling probabilities of 1, as did all families in the Australian 

registry. The low-risk families consisted of 13 out of 248 families in the Ontario registry 

with inclusion probability of 0.25, and 56 out of 342 families in the Northern California 

registry, with sampling probabilities between 0.046 and 0.416. These sampling probabilities 

were meant to achieve some optimality criteria regarding the estimation of the genetic 

effect of interest (Siegmund, Whittemore, and Thomas (1999); John et al. (2004)). The 
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inverse sampling probabilities were used as weights in the composite likelihood expression 

to compute a design-corrected GRR.

7.2. The Statistical analyses

We compared the design-corrected and uncorrected estimates of the log GRR associated 

with BRCA1 or BRCA2 mutations in the presence of missing genotypes. For the design-

corrected GRR estimates, the robust variance accounts for the design effect and the use of 

family data. For the design-uncorrected GRR, variance estimates were calculated based on 

both the naive variance estimator assuming independent observations and the robust variance 

estimator. The results are summarized in Table 4.

The log GRRs of BRCA1 gene mutation associated with early onset breast cancer 

were estimated at 1.92 and 1.76 with and without design correction, respectively. The 

corresponding standard error estimates were 0.45 (robust SE) with design correction and 

1.14 (robust SE) and 0.23 (naive SE, based on the second derivative of the pseudo 

loglikelihood) when no design correction was applied. The estimates of the log GRRs 

associated with BRCA2 were 1.90 and 1.77 with and without design correction and the 

corresponding robust standard errors were 0.62 and 2.13, respectively, while the naive 

estimator was 0.24.

These results confirmed the important role of the genes BRCA1 and BRCA2 in early-onset 

breast cancer and gave an estimate of their effect size in a large sample of families. From a 

methodological point of view, they also showed that assuming an ignorable sampling design 

can lead to both biased estimates and underestimation of the standard errors, as also shown 

in our simulations, and therefore wrong hypothesis testing results. The naive SE estimator 

of the design-uncorrected analysis in Table 4 clearly underestimated the robust SE of the 

design-corrected analysis. Overall, we found that BRCA1 mutation appeared to have slightly 

higher relative risk than BRCA2 for early-onset breast cancer (β = 1.92 for BRCA1, 1.90 for 

BRCA2). The robust variance estimates played two important roles in our data analysis, first 

taking into account the sampling design and second, the residual familial correlation not due 

to BRCA1/2 gene mutations.

8. Design Optimality

To construct an optimal design we first determine some optimal weights for each stratum 

and then decide the optimal sample sizes accordingly. The optimal weighting problem was 

discussed by Lindsay (1988) who obtained optimal weights in a way that maximizes the 

information over a class of estimating functions. Let w be the vector of weights, S the vector 

of component scores, and U be the score function based on the full likelihood. Then, the 

optimal weights satisfy

minwEβ U − w⊤S 2,

and are given by
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wopt = [Var(S)]−1E(US),

with E(US) = E(S2), where S2 denotes the vector whose elements are the squared elements 

of S, and Var(S) is a block matrix where the size of each block depends on the size of the 

stratum.

Consider the problem of determining the optimal weights for estimating the GRR associated 

with BRCA1 mutations. As in our data setting, the optimal weights were determined 

separately for the Ontario and Northern California registries, assuming that each registry 

used only two sampling strata (high-risk and low-risk families) with high-risk families 

sampled with probability 1. The Australian registry, which used only a one-stage design, 

was not considered for this problem. The optimal sampling weights for the strata in each 

registry are proportional to the variance of the GRR estimate in each stratum (see the 

definition of wopt above). The robust variances for the GRR estimates in high-risk and 

low-risk families were 4.04 and 1.12, respectively, in the Ontario registry and 0.38 and 0.28 

in the Northern California registry. As the sampling probabilities are inversely proportional 

to these variances, the sampling probability of one for the high-risk families leads to a 

sampling probability of the low-risk families of 0.28 in the Ontario registry and 0.72 in 

Northern California. For Ontario, this was very close to the actual sampling probability but, 

for the Northern California registry, sampling more low-risk families could have increased 

the efficiency of the BRCA1 GRR estimate. The reason could be that low-risk families 

contribute to the estimation of the baseline survival function and, because it is correlated 

with the GRR, they also contribute to the GRR efficiency (Choi, Kopciuk, and Briollais 

(2008)).

9. Concluding Remarks

Our work shows the interest of the composite likelihood framework for analyzing 

data collected under a multistage sampling design. This is to our knowledge the first 

such application. Using an appropriate weighting of individual composite likelihoods 

corresponding to the different sampling strata allows one to obtain consistent parameter 

estimates while the use of a robust variance estimator provides an advantageous way of 

accounting for the use of family data and sampling design. To model time to onset data, we 

used a parametric model which offers some flexibility in correcting for the ascertainment 

bias of the families, a well-known problem in genetic epidemiological studies (Choi, 

Kopciuk, and Briollais (2008)). A discussion about optimal weights is also provided. Finally, 

the composite likelihood framework is extended through the use of an EM algorithm to 

account for missing genetic covariates. The composite likelihood methodology has also been 

used in family studies where the family likelihood is decomposed into a product over pairs 

of relatives where each pair has a weight that depends only on the family size (Andersen 

(2004)). The likelihood has the form
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ℓC (y; θ) = ∑
j = 1

n
wj ∑

(i, ℎ) ∈ Gj
ℓiℎ (y; θ),

where Gj represents the set of possible pairs for family j, ℓih(y; θ) is the loglikelihood for a 

pair (i, h) in family j, and wj is a weight that depends on the family size. The log-likelihood 

for a pair of relatives can be specified with a copula function for paired survival data 

(Andersen (2004); Choi and Matthews (2005)). This approach could lead to more efficient 

estimation than our method because it models directly the association between family 

members. In our case, we do not explicitly model association within families but used a 

robust variance estimator instead. Our method can be extended to include the estimation of 

some additional residual familial correlations besides the effects of BRCA1 and BRCA2. 

We have recently proposed various likelihood formulations using gamma frailty models in 

the context of familial studies that could account for familial residual correlations (Choi and 

Briollais (2010)). In particular, a pairwise likelihood formulation that we proposed could 

be combined with Andersen’s pairwise composite likelihood and lead to a more general 

framework to analyze family data under a multistage design. We are also planning to expand 

our work to estimate the baseline hazard function parameters jointly with the genetic relative 

risk parameters, so that cumulative risks associated with specific gene mutations could be 

estimated under our approach.

Finally, our results confirm the important role of the genes BRCA1 and BRCA2 in early-

onset breast cancer families. Some additional results also showed evidence for a possible 

additional major gene besides BRCA1 and BRCA2 in these families, but these results need 

some further confirmation. Also we cannot exclude that the cumulative risks associated 

with BRCA1 and BRCA2 modified by other genetic or non-genetic risk factors, however 

these risk factors are still not very well known (Antoniou and Chevenix-Trench (2010)). 

The emergence of genome-wide association studies raises some hope that common genetic 

variants could be identified as modifiers of BRCA1 and BRCA2 (Antoniou and Chevenix-

Trench (2010)) and statistical approaches such as the one proposed here could help in this 

investigation when data are collected under a multistage design.
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Appendix I

The first and second derivatives of the profile log-likelihood, based on (4.2), with respect to 

β at a fixed value of γ are respectively,

U β(γ) = ∑
k = 1

K
wk ∑

f = 1

nk
Uf β(γ) = ∑

k = 1

K
wk ∑

f = 1

nk ∂ℓf(y; θ)
∂β ,

where

Uf β(γ) = ∑
i ∈ Skf

2
δi − νi xi

+ ∑
i ∈ Skf

2
νi − 1 λ ti − t0

ρexi⊤βxi

+ ∑
i ∈ Skf

2

νi λ ti − t0
ρexi⊤βxie− λ ti − t0

ρexi⊤β

1 − e− λ ti − t0
ρexi⊤β

−
λ ap − t0

ρexp⊤βxpe− λ ap − t0
ρexp⊤β

1 − e− λ ap − t0
ρexp⊤β

,

∂2 ℓ (β(γ))
∂β ∂β⊤ = ∑

k = 1

K
wk ∑

f = 1

nk ∂Uf β(γ)
∂β ,

∂Uf β(γ)
∂β = ∑

i ∈ Skf
2

νi − 1 λ ti − t0
ρexi⊤βxixi⊤

+ ∑
i ∈ Skf

2

νiA

1 − e− λ ti − t0
ρexi⊤β 2 − B

1 − e− λ ap − t0
ρexp⊤β 2,

A = λ ti − t0
ρ0xixi⊤exi⊤βe− λ ti − t0

ρexi⊤β × 1 − λ ti − t0
ρexi⊤β − e− λ ti − t0

ρexi⊤β ,

B = λ ap − t0
ρxpxp⊤exp⊤βe− λ ap − t0

ρexp⊤β × 1 − λ ap − t0
ρexp⊤β − e− λ ap − t0

ρexp⊤β .
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Appendix II

We show that the score function of our proposed composite likelihood is unbiased under the 

usual regularity conditions. Therefore, the maximum composite likelihood estimator is still 

consistent for the true parameter.

We rewrite our log ascertainment-corrected likelihood function derived from (3.2) into 

two parts for non-probands and probands. Let i index the non-probands and p index the 

probands. Then the log composite likelihood function for the observed data y can be written, 

assuming y’s are independent given genotypes G, as

ℓ (θ; y) = ∑
i

wi δilogf yi ∣ Gi + 1 − δi logS yi ∣ Gi + ∑
p

wplog
f ap ∣ Gp
F ap ∣ Gp

,

where f(y|G), F(y|G), and S(y|G) are the density, cumulative density, and survivor functions 

of response time y given genotype G, respectively, w represents the weight and ap 

represents the age at examination for proband as probands were affected before their ages at 

examination.

We let U(θ; y) = ∂ℓ(θ; y)/∂θ be the score statistic based on the observed data y. In the 

presence of missing genotypes, the conditional expectation of the score statistic is obtained 

given the observed data y, as

Eθ[U(θ; y)] = Eθ
∂

∂θ ℓ (θ; y)

= ∑
i

wiδiEθ
∂

∂θ logf yi ∣ Gi + wi 1 − δi Eθ
∂

∂θ logS yi ∣ Gi

+∑
p

wp Eθ
∂

∂θ logf ap ∣ Gp − Eθ
∂

∂θ logF ap ∣ Gp .

We show that Eθ[U(θ; y)] = 0 at the composite MLE using the facts that

Eθ
∂

∂θ logf yi ∣ Gi = 0,

Eθ
∂

∂θ logf Yi ∣ Gi ∣ Y i > zi = ∫zi
∞

∂
∂θ f yi ∣ G

f yi ∣ G
f yi ∣ Gi
S zi ∣ Gi

dyi =
∂

∂θ S zi ∣ Gi
S zi ∣ Gi

= ∂
∂θ logS zi ∣ Gi ,

Eθ
∂

∂θ logS zi ∣ Gi = 0,
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Eθ
∂

∂θ logf yp ∣ Gp ∣ Y p < ap = ∫∞

ap
∂

∂θ f yp ∣ Gp
f yp ∣ Gp

f yp ∣ Gp
F ap ∣ Gp

dyp =
∂

∂θ F ap ∣ Gp
F ap ∣ Gp

= ∂
∂θ logF ap ∣ Gp ,

Eθ Eθ
∂

∂θ logf yp ∣ Gp ∣ Y p < ap = Eθ
∂

∂θ logF ap ∣ Gp ,

Eθ
∂

∂θ logf yp ∣ Gp = Eθ
∂

∂θ logF ap ∣ Gp .

The results follow on interchanging the operations of expectation and differentiation. It is 

assumed in the above that regularity conditions hold for this interchange.
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Table 1.

Accuracy and precision of the EM composite likelihood estimation of log relative risk (β) of the major gene 

effect subject to various missing genotype rates in the a single stage design (no oversampling).

Allele Freq.
True 0% Missing 10% Missing 25% Missing 50% Missing

β Bias SE
1

MSE
2 Bias SE MSE Bias SE MSE Bias SE MSE

1% 1.00 0.01 0.30 0.09 0.01 0.33 0.11 0.01 0.42 0.17 0.00 0.64 0.41

0.4% 1.50 0.01 0.31 0.10 0.00 0.34 0.12 −0.01 0.43 0.18 0.01 0.67 0.45

0.15% 2.00 0.02 0.34 0.11 0.01 0.37 0.14 0.02 0.46 0.21 0.03 0.68 0.46

0.07% 2.50 0.03 0.33 0.11 0.03 0.36 0.13 0.03 0.46 0.22 0.04 0.69 0.47

0.03% 3.00 0.03 0.34 0.12 0.03 0.38 0.14 0.04 0.47 0.23 0.05 0.87 0.75

1
robust standard error

2
mean square error
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Table 2.

Comparison of the design-corrected and uncorrected estimates of log relative risk (β) of the major gene effect 

subject to various missing genotype rates in the multistage sampling designs.

HR families
True 0% Missing 10% Missing 25% Missing 50% Missing

β Design Bias SE
1

MSE
2 Bias SE MSE Bias SE MSE Bias SE MSE

30% 1.00 Corr 0.01 0.23 0.05 0.02 0.26 0.07 0.02 0.34 0.11 0.03 0.57 0.33

1.00 Uncorr 0.69 0.21 0.73 0.23 0.81 0.28 0.92 0.40

1.50 Corr 0.02 0.25 0.06 0.02 0.28 0.08 0.01 0.37 0.14 0.02 0.65 0.43

1.50 Uncorr 0.63 0.21 0.64 0.23 0.68 0.28 0.76 0.39

2.00 Corr 0.04 0.28 0.08 0.04 0.32 0.10 0.03 0.42 0.18 0.04 0.80 0.65

2.00 Uncorr 0.55 0.22 0.56 0.24 0.58 0.29 0.61 0.40

2.50 Corr 0.02 0.29 0.08 0.03 0.32 0.10 0.04 0.42 0.18 0.04 0.81 0.66

2.50 Uncorr 0.41 0.21 0.41 0.23 0.42 0.27 0.44 0.38

3.00 Corr 0.07 0.30 0.09 0.05 0.33 0.11 0.08 0.41 0.17 0.04 0.66 0.44

3.00 Uncorr 0.31 0.22 0.30 0.23 0.30 0.28 0.29 0.38

50% 1.00 Corr 0.04 0.21 0.05 0.03 0.25 0.06 0.05 0.38 0.15 0.05 1.33 1.78

1.00 Uncorr 1.18 0.16 1.24 0.17 1.36 0.20 1.54 0.26

1.50 Corr 0.04 0.24 0.06 0.04 0.29 0.09 0.03 0.49 0.24 0.04 1.91 3.65

1.50 Uncorr 1.05 0.16 1.07 0.17 1.13 0.20 1.22 0.26

2.00 Corr 0.05 0.28 0.08 0.06 0.34 0.12 0.05 0.62 0.39 0.06 1.72 2.95

2.00 Uncorr 0.87 0.16 0.88 0.17 0.90 0.20 0.93 0.27

2.50 Corr 0.04 0.30 0.09 0.04 0.36 0.13 0.06 0.66 0.44 0.06 1.12 1.26

2.50 Uncorr 0.64 0.16 0.64 0.17 0.64 0.20 0.65 0.26

3.00 Corr 0.06 0.31 0.10 0.06 0.35 0.12 0.07 0.49 0.24 0.10 0.68 0.47

3.00 Uncorr 0.42 0.16 0.42 0.17 0.41 0.20 0.39 0.28

1
robust standard error

2
mean square error
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Table 3.

The asymptotic relative efficiency of the two multistage designs compared to the single stage design for 

estimating log relative risk β

30% HR families 50% HR families

β 1 1.5 2 2.5 3 1 1.5 2 2.5 3

0% missing 1.75 1.59 1.46 1.31 1.32 2.09 1.72 1.44 1.21 1.19

10% missing 1.69 1.52 1.35 1.27 1.32 1.82 1.41 1.21 1.03 1.20

25% missing 1.52 1.32 1.20 1.22 1.35 1.21 0.76 0.55 0.50 0.93

50% missing 1.25 1.05 0.72 0.72 1.73 0.23 0.12 0.16 0.37 1.62
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Table 4.

Estimates of the log genetic relative risk (GRR) and corresponding standard error (SE) for BRCA1 and 

BRCA2 gene mutations associated with early-onset breast cancer.

Sampling Design BRCA1 BRCA2

No Design Correction 1.76 1.77

Robust SE (1.14) (2.13)

Naive SE (0.23) (0.24)

Design Corrected 1.92 1.90

Robust SE (0.45) (0.62)
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