Skip to main content
. 2021 Sep 8;11:710909. doi: 10.3389/fonc.2021.710909

Table 3.

Results of multivariable logistic regression analysis in the three models.

Models Included features Odds ratio (95% CI) p value Coefficient Intercept
Model 1 Radiomics signature 1.004
DISCRETIZED_HISTO_ExcessKurtosis 3.160 (1.477–7.228) 0.004 1.151
GLRLM_GLNU 0.180 (0.073–0.395) <0.001 -1.716
GLRLM_RLNU 284.479 (26.676–4552.497) <0.001 5.651
NGLDM_Coarseness 5.813 (2.453–15.202) <0.001 1.760
Model 2 Conventional CT images and clinical data -1.989
Size(mm) 1.333 (1.160–1.533) <0.001 0.288
CTmean 0.969 (0.949–0.990) 0.003 -0.31
Model 3: Model 1 + Model 2 0.6949
PET_Rad_score 3.073 (2.018–4.679) <0.001 1.1227
Size (mm) 1.118 (0.955–1.309) 0.1659 0.1114
CTmean 0.948 (0.926–0.971) <0.001 -0.0531

PET_Rad_score, PET radiomics signature; HISTO, histogram; GLRLM, gray-level run-length matrix; GLNU, gray-level non-uniformity for run; RLNU, run length non-uniformity, NGLDM, neighborhood gray-level different matrix; CI, confidence interval.

The bold values refer to the intercepts for calculation formula.