Skip to main content
. 2021 Sep 23;71:103182. doi: 10.1016/j.bspc.2021.103182

Table 8.

Experimental results obtained with deep and BRISK based handcrafted features and different ML methods.

Model & Feature extraction Final layer Avg Acc (%) Avg Sens (%) Avg Spec (%) Avg Prec (%) Avg F1-score (%)
BRISK VGG-16 Softmax 95.9 93.9 96.9 93.9 93.9
SVM 95.9 93.9 96.9 93.9 93.9
RF 95.9 93.8 96.9 93.9 93.9
XG-Boost 95.6 93.6 96.8 93.7 93.5
BRISK VGG-19 Softmax 96.5 94.6 97.2 94.6 94.6
SVM 96.4 94.6 97.2 94.6 94.6
RF 96.6 95.0 97.4 95.0 95.0
XG-Boost 96.1 94.4 97.1 94.2 94.3
BRISK sCNN Softmax 94.7 92.3 96.0 92.1 92.1
SVM 95.2 93.0 96.4 92.8 92.8
RF 95.4 93.3 96.5 93.1 93.2
XG-Boost 95.4 93.3 96.5 93.1 93.2
BRISK DenseNet 169 Softmax 95.2 92.9 96.5 93.0 92.7
SVM 94.9 92.5 96.2 92.5 92.5
RF 95.2 92.8 96.4 93.0 92.8
XG-Boost 95.2 92.9 96.5 93.0 92.7
BRISK DenseNet 201 Softmax 94.9 92.4 96.2 92.5 92.4
SVM 94.7 92.2 96.0 92.1 92.1
RF 94.5 91.8 95.8 91.8 91.8
XG-Boost 94.5 91.8 95.8 91.8 91.8