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ABSTRACT
The incidence of inflammatory bowel diseases (IBD) 
emerged with Westernisation of dietary habits 
worldwide. Crohn’s disease and ulcerative colitis are 
chronic debilitating conditions that afflict individuals 
with substantial morbidity and challenge healthcare 
systems across the globe. Since identification and 
characterisation of calprotectin (CP) in the 1980s, faecal 
CP emerged as significantly validated, non-invasive 
biomarker that allows evaluation of gut inflammation. 
Faecal CP discriminates between inflammatory and 
non-inflammatory diseases of the gut and portraits 
the disease course of human IBD. Recent studies 
revealed insights into biological functions of the CP 
subunits S100A8 and S100A9 during orchestration of 
an inflammatory response at mucosal surfaces across 
organ systems. In this review, we summarise longitudinal 
evidence for the evolution of CP from biomarker to 
rheostat of mucosal inflammation and suggest an 
algorithm for the interpretation of faecal CP in daily 
clinical practice. We propose that mechanistic insights 
into the biological function of CP in the gut and beyond 
may facilitate interpretation of current assays and 
guide patient-tailored medical therapy in IBD, a concept 
warranting controlled clinical trials.

INTRODUCTION
Inflammation describes an evolutionarily conserved 
process, which is characterised by the activation of 
innate and adaptive immune cells to protect the 
host against a wide range of potential threats. If 
such responses spiral out of control, dysregulated 
chronic inflammation turns into a detrimental 
condition underlying the pathophysiology of many 
human diseases.1 2 Recent advances fostered our 
cellular and molecular understanding of unresolved 
inflammation and consequently, anti-inflammatory 
targeted therapies, for example, for human inflam-
matory diseases of the skin, joints and gut have 
substantially changed clinical practice over the last 
decade. However, many inflammatory diseases are 
still poorly controlled, partly because the under-
lying disease trigger(s) remain enigmatic.

Inflammatory bowel diseases (IBD), including 
Crohn’s disease (CD) and ulcerative colitis (UC), 
are characterised by chronic remittent episodes of 
inflammation in and beyond the GI tract.3 Recent 
insights have revealed the complex nature of IBD 
with a genetic underpinning that cannot explain 
the majority of cases.4 5 In line with this, a rising 
incidence and prevalence worldwide suggests that 
Westernisation of life style (with associated dietary 
and microbial cues) significantly contributes to the 
development and natural history of IBD.6 Specific 
dietary compounds that instigate or impact the 

course of human IBD remain to be determined, 
while experimental studies in mice identified that 
nutritional compounds fuel gut inflammation partly 
by modulation of the intestinal microbiota.7–9

To accurately diagnose IBD, the entire spectrum 
of available tools should be exploited, including 
patient history, non-invasive and invasive imaging 
(endoscopy) and histological interpretation. In 
such a diagnostic algorithm, serum and especially 
faecal biomarkers help to select patients for an 
invasive diagnostic evaluation,10–12 in that a specific 
threshold allows to discriminate between functional 

Summary box

What is already known about this subject?
►► Calprotectin is an established clinical biomarker 
for inflammatory bowel diseases and harbours 
immune-regulatory functions.

What are the new findings?
►► This review article summarises the extensive 
literature about the role of calprotectin in 
health and disease, covering a combination of 
clinical and basic research aspects.

How might it impact on clinical practice in the 
foreseeable future?

►► Understanding the regulation and biological 
function of calprotectin in the gut might lead to 
novel diagnostic and therapeutic strategies in 
inflammatory bowel diseases.

Key messages

►► Calprotectin concentration is an established 
biomarker that allows clinical decision-making 
in patients with suspected or confirmed 
inflammatory bowel disease.

►► Faecal calprotectin levels correlate significantly 
with clinical or endoscopic disease activity in 
inflammatory bowel diseases.

►► In health, calprotectin harbours immune-
regulatory functions that are crucial for immune 
defence such as neutrophil chemotaxis and 
chelation of multiple divalent metal ions.

►► In chronic inflammatory diseases calprotectin 
may fuel disease processes through cytokine 
receptor engagement and generation of 
reactive oxygen species.

►► Better understanding of calprotectin biology 
in the gut may lead to novel diagnostic and 
therapeutic advances in inflammatory bowel 
diseases in future.
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(non-inflammatory) diseases with a similar clinical presenta-
tion and an inherently high prevalence (such as irritable bowel 
syndrome).13–15 In IBD, but also in many other inflammatory 
conditions, clinicians increasingly employ calprotectin (CP) as 
well-studied (systemic and faecal) inflammatory biomarker due 
to its stability, assay reproducibility and low cost to guide diag-
nostic and therapeutic decisions.16 17In contrast, the biological 
functions of CP in health and unresolved inflammation are 
poorly appreciated by most clinicians. In this review, we focus 
on emerging biological functions and clinical applications of 
CP in inflammatory diseases to facilitate interpretation in daily 
practice.

CP IN HEALTH
CP belongs to the family of calcium-binding S100 leucocyte 
proteins (with more than 24 members in vertebrates) that is 
evolutionary conserved and composed of two monomers in 
mammals (e.g. humans and mice): S100A8 and S100A9.18 19

CP was first described in the 1980s and the protein complex 
was discovered independently in different inflammatory condi-
tions, which was resolved in 1988.20 Since then, the complex 
was termed calprotectin, emphasising the characteristic to bind 
Ca2+ and the antimycotic activity against Candida albicans.21

Cell-specificity, transcriptional regulation and assembly
CP is an abundant cytosolic protein complex (comprising 
S100A8 and S100A9) that is constitutively expressed in neutro-
phils, which represents ~45% of total cytosolic protein.22 The 
S100A8 and S100A9 genes are located on chromosome 1 (q21) 
in humans23 and on chromosome 3 in mice.24 CP is also consti-
tutively expressed by monocytes,22 dendritic cells,25 activated 
macrophages,26 oral keratinocytes27 and squamous mucosal 
epithelium.28 Moreover, expression can be induced specifically 
during inflammation.29 30 As such, the expression of CP in health 
is restricted to a very limited amount of specialised cells and may 
be induced during inflammation.31–33

Several cellular pathways and related transcription factors 
have been shown to (positively or negatively) control the expres-
sion of S100A8 and S100A9 in humans and/or mice (SPI/PU.1, 
SATB1, C/EBPα/β, HIF-1, Arnt, GLI1, BRCA1 and AP-1).34 
Conceptually, bacterial antigens and inflammatory mediators 
evoke expression of S100A8 and S100A9 by these transcrip-
tion factors, as exemplified by the induction of CP expression 
with lipopolysaccharides (LPS), tumour necrosis factor-alpha 
(TNF-α) and interleukin 1-beta (IL-1β) in human monocytes.35 
Similarly, inflammation drives CP expression in human keratino-
cytes.36 However, also bona-fide anti-inflammatory mediators, 
such as IL-10 facilitate S100A9 expression in myeloid-derived 
cells.37 Moreover, eosinophils may be a source of CP during gut 
injury and inflammation in mice.38 Notably, also nutritional defi-
ciency and drugs may affect CP concentrations, as lack of zinc 
is described to increase CP levels and glucocorticoids positively 
regulate S100A8 expression.39 40

S100A8 and S100A9 monomers are able to form heterodimers 
and tetramers in a Ca2+-dependent manner.41 In 2007, the crystal 
structure of the Ca2+-bound CP heterotetramer was resolved, 
showing transition metal–binding sites in each heterodimer.42 
These sites allow binding of multiple divalent (first-row) metal 
ions in case of high concentrations (ie, Ca2+, Mn2+, Fe2+, Ni2+ 
and Zn2+).43 In humans, S100A8 is composed of 93 amino acids 
(molecular weight 10.8 kDa), while S100A9 is composed of 113 
amino acids (molecular weight 13.2 kDa).44 S100A8 and S100A9 
consist of two α-helix (‘EF hand helix–loop–helix’) motives 

typically allowing Ca2+-binding and CP complex formation.45 46 
Upon Ca2+ binding, two heterodimers are able to self-associate 
to form a (S100A8/S100A9)2 heterotetramer.41 Ca2+-dependent 
formation of (S100A8/S100A9)2 tetramers is considered to 
be fundamental for intracellular and extracellular biological 
function.45 47 This may be explained by the observation that 
Ca2+ binding and tetramerisation promotes resistance against 
proteases and increases binding affinities.48 49 The mechanism 
underlying the release of CP into the extracellular space may 
not require the classical endoplasmic reticulum-Golgi pathway. 
One study suggested that CP could be released via a novel 
tubulin-dependent mechanism of leucocyte activation, which is 
controlled by protein kinase C.50 Notably, both monomers are 
vulnerable to oxidation on methionine and cysteine residues 
although functional consequences are poorly understood.51

Intracellular biological functions of CP
The S100A8/S100A9 complex controls intracellular pathways 
of innate immune cells and allows orchestration of an inflam-
matory response.18 CP modulates cytoskeletal rearrangements 
to allow leucocyte recruitment,47 and facilitates the transport 
of arachidonic acid to sites of inflammation.52 Further, nuclear 
S100A9/CP modifies transcription as coactivator during inflam-
matory processes and malignant transformations.53–55

Targeted genetic deletion indicated that mouse S100 proteins 
are required for transendothelial migration of phagocytes, likely 
by organisation of cytoskeletal metabolism and rearrangement.47 
For example, microtubule polymerisation and reorganisation 
(which controls leucocyte migration56) requires the formation of 
the S100A8/S100A9 complex,45 which is modulated by mitogen-
activated protein kinase (MAPK)-mediated S100A9 phosphory-
lation47 and depends on Ca2+ concentration.45 57 In line with this, 
S100A9-deficient granulocytes and mice exhibit poor neutrophil 
recruitment during inflammation in wound healing.47 Rapid 
leucocyte recruitment from blood to inflammatory loci relies on 
a cascade of adhesion events that are triggered by selectins and 
β2 integrins (CD11b/CD18).58 59 S100A8 and S100A9 control 
neutrophil adhesion to fibrinogen through the activation of the 
β2 integrin Mac-1 (CD11b/CD18).60 Similarly, S100A8/S100A9 
influences transendothelial migration of monocytes via increased 
CD11b expression.61 These findings indicate that S100A9 is a 
regulatory subunit of the functional S100A8/S100A9 complex, 
which facilitates leucocyte trafficking.47

In 1997, CP was identified as a fatty acid-binding protein.52 
Another study indicated that the S100A8/A9 complex is the 
main arachidonic acid-binding protein in human neutrophils 
which is Ca2+-dependent62 and appears unique to this specific 
S100 protein.63 Arachidonic acid is a potent inflammatory 
lipid mediator as it is essential for the synthesis of leukotriene 
B4 that is described to favour inflammation and tissue damage 
during IBD.64 Generally, polyunsaturated fatty acids modulate 
immune responses in various ways. For example, arachidonic 
acid derivatives fuel an inflammatory metabolite profile of 
innate immune cells and facilitate reactive oxygen species (ROS) 
production of neutrophils and potently induce cell death.65 In 
the context of IBD, arachidonic acid (and polyunsaturated fatty 
acids in general) induced production of chemokines from intes-
tinal epithelial cells and evoked gut inflammation in genetically 
susceptible mice.9

It may be speculated that CP transports polyunsaturated fatty 
acids to inflammatory loci to fuel local immune responses.66

Additionally, nuclear S100A9/CP was reported to have a 
possible transcription coactivator function. During sepsis, 
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S100A9 was described to migrate from the cytosol to the nucleus 
in distinct myeloid-derived suppressor cells to enhance the 
expression of immunosuppressive mediators.53 Nuclear S100A8/
A9 may trigger oncogenic pathways and amplify transformation 
in breast cancer.54 We demonstrated a relationship between the 
S100A8/S100A9 protein complex and complement factor C3 
expression, mediating disease course in a psoriasis mouse model, 
as S100A9 deficiency in mice was associated with weakened 
psoriasis-like disease and decreased amounts of C3. S100A9 was 
detected in the chromatin enriched fraction in keratinocytes, 
modulating C3 transcription most likely through chromatin 
remodelling.55 Whether nuclear CP is important also in the gut 
and beyond remains to be demonstrated.

Extracellular biological functions of CP
The S100A8/S100A9 complex is readily secreted to allow extra-
cellular CP functions mediated by Toll-like receptor 4 (TLR4) 
and receptor for advanced glycation end products (RAGE).67 
However, extracellular CP can form complex protein configura-
tions with distinct biological functions and equivalent receptors, 
which may not be explained by these signalling pathways. For 
example, CP may interact with the cluster of differentiation 36 
(CD36) receptor during formation with polyunsaturated fatty 
acids.68 Likewise, dysregulated primary bone marrow expan-
sion can be mediated by S100A9-induced CD33 signaling,69 
and S100A9 regulates TLR2/3 cascades.70 71 Thus, the S100A8/
A9 complex activates innate immune responses and promotes 
inflammation likely by involvement of several receptors in a cell-
type and tissue specific manner.

For example, CP is described to trigger neutrophil chemotaxis 
and endothelial adhesion. The injection of S100A8, S100A9, or 
S100A8/A9 into a mouse air pouch model caused fast accumu-
lation of neutrophils, indicating that CP promotes neutrophilic 
inflammation.72 Moreover, CP exerts antimicrobial activity 
which has been extensively studied. Extracellular CP complexes 
allow chelation of diverse transition metal ions (see above),43 
which are crucial for invasive and commensal gut bacteria, as they 
allow bacterial enzymatic functions, cellular homeostasis and 
signalling cascades.73 74 Numerous microbes gained the ability to 
overcome and escape CP-induced metal starvation through the 
expression of high-affinity metal transporters or metabolic alter-
ations.75 76 Nevertheless, S100A8/S100A9 deficiency in mice 
alters the intestinal microbiota,77 and mice lacking S100A9 show 
susceptibility to Streptococcus pneumoniae infection.78

CP also promotes the expression of pro-inflammatory and 
anti-inflammatory mediators. Human monocytes stimulated 
with S100A9 secreted IL-1β, IL-6 and TNF-α in association with 
oxidative stress,79 80 which was also observed in gingival fibro-
blasts.81 In human neutrophils, it appears that S100A9 promotes 
cytokine expression.82–84 CP fuels IL-1β secretion induced by 
crystals in gout which is initiated by TLR4 activation85 and 
overexpression of S100A8 and S100A9 in macrophages induced 
expression of anti-inflammatory IL-10.86 In turn, an inhibition 
of pro-inflammatory signalling by myeloid cells is reported after 
S100A9 blocking.83 In mice with acute pancreatitis S100A9 
gene silencing is associated with decreased release of pro-
inflammatory cytokines.84

Besides a role for CP in orchestrating an acute inflamma-
tory milieu, CP also controls cell proliferation, differentiation 
and apoptosis.87–89 Several studies revealed that CP, especially 
S100A9, modulates proliferation of tumour, epithelial and 
smooth muscle cells, while CP concentrations may differ signifi-
cantly.90–93 CP-induced proliferation was shown to be mediated 

via RAGE ligation and NF-кB activation in tumour cells, linking 
inflammation with tumorigenesis.91 S100A9 may also bind to 
TLR4 to promote MAPK signalling and monocytic cell differ-
entiation.89 Additionally, CP plays a role in regulatory T-cell 
(Treg) differentiation94 that exert immunosuppressive effects and 
maintain self-tolerance.95 CP is also described to activate natural 
killer (NK) cells and enhance interferon-gamma (IFN-γ) expres-
sion via RAGE signalling, linking inflammation with NK cell 
responses.96 Distinct S100A8 and S100A9 concentrations were 
reported to inhibit the growth of murine embryonic and human 
dermal fibroblasts97 and induce apoptosis of tumour cells.88 97 In 
human epidermal keratinocytes CP confers a survival signal at 
lower concentrations, while higher (µM) concentrations evoked 
apoptosis.98

Interestingly, a lack of S100A8/A9 in epidermal keratino-
cytes is associated with enhanced susceptibility for papillomas 
and squamous cell carcinomas. In the skin of S100A9-deficient 
mice elevated levels of Ki-67 were detectable during the forma-
tion of papillomas highlighting a potential regulatory function 
of S100A8/A9 during epidermal proliferation.99 An additional 
study revealed that during inflammation and malignant trans-
formation in the skin RAGE expression on immune cells medi-
ates S100/RAGE-driven signalling cascades, while expression on 
keratinocytes or endothelial cells is not required.100 We speculate 
that the function of each CP component depends on the expres-
sion level in specific cell types and tissues.

Collectively, these studies demonstrate that CP may shape the 
cellular and molecular inflammatory niche at a site of inflam-
mation. However, CP has also been reported to maintain a 
chemo-repulsive effect on peripheral leukocytes i.e. movement 
of leukocytes away from CP. This chemorepulsive effect was 
reversed by oxidation of methionine at position 63 and 83 in 
S100A9. It may be speculated that CP function is adjusted during 
oxidative i.e. inflammatory conditions.101

CP IN UNRESOLVED INFLAMMATION AT MUCOSAL 
SURFACES
CP may initially be released by myeloid cells upon danger signal-
ling,29 while tissue inflammation perpetuates the release of 
S100A8 and S100A9 by transcriptional induction in epithelial 
cells.32 33 The initial culprit for an inflammatory response may be 
an infection at the mucosal surface, a trauma or environmental 
stress. During unresolved inflammation, however, CP contrib-
utes to mucosal injury, inflammation and disease, for example in 
the skin, lung and gut.55 100 102–105

In epidermal keratinocytes S100A8 and S100A9 promoted 
chemotaxis and psoriasis in mice.55 106 Similarly, S100A8/A9 
induction during inflammatory skin disease is associated with 
enhanced tissue damage, reduced skin integrity and increased 
pro-inflammatory pathways.104 106 107 Lung injury induced by 
influenza virus infection is partially mediated by S100A9-driven 
lung inflammation.103 Additionally, S100A8/A9 was shown to 
play a major role during tissue damage in tuberculosis.102 Vice 
versa, anti-S100A8 and anti-S100A9 antibodies impair migration 
of phagocytes to alveoli in mice by ~75% in a S. pneumoniae 
model.108 In gout, S100A8 and S100A9 drive neutrophil migra-
tion initiated by monosodium urate crystals and the production 
of IL-1β fuelling joint inflammation.85 109 In gut inflammation, 
the biological function of CP is poorly understood. As inferred 
by experiments with pharmacological inhibition of S100A9 
by antibody treatment, CP appears to drive dextran sodium 
sulfate (DSS)-induced colitis and inflammation-associated gut 
tumorigenesis in mice.105 In conflict with these observations, 
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CP treatment protected against experimental colitis in mice 
induced by DSS.110 Collectively, various studies indicate that 
S100A9 promotes tissue inflammation at mammalian inner and 
outer mucosal surfaces. Recent studies indicate that CP drives 
inflammation beyond mucosal surfaces. For example, S100A8 
and S100A9 modulate the tumour microenvironment of a broad 
spectrum of tumours.111–117 S100A8/A9 triggers tumorigenesis 
by RAGE mediated NF-kB activation at low concentration91 and 
mice that lack S100A9 were protected against gut tumorigenesis 
and inflammation.118

Most reports do not explore functional variability among the 
CP subunits. S100A8 and S100A9 are considered to function 
mainly synergistically. Especially, S100A8 was described to rely 
on S100A9, as in vivo studies implicated that S100A8 is unstable 
without S100A9.119 For a long period, S100A9 knockout mice 
were described to lack S100A8 protein as well. However, consti-
tutively active S100A8 homodimers were reported to be present 
during TNF-α signalling in the absence of S100A9.120 Interest-
ingly, mice lacking S100A9 are viable and healthy,119 121 while the 
disruption of S100A8 in mice is associated with lethality during 
embryo development.122 This outcome revealed a previously 
unknown function of S100A8 in early embryonic preimplanta-
tion phase and S100A8 was shown to be important for placenta 
maturation.123 For more than two decades the disruption of the 
S100A8 gene in mice was reported to be lethal during embryo-
genesis. However, recently Cesaro et al published the first 
viable and fertile S100A8-deficient mice.124 125 Future studies 
with conditional S100A8 alleles will be essential to explain this 
discrepancy. Collectively, the biological function of the S100A8 
subunit may be opposed to that of S100A9 in tissue inflamma-
tion. For example, S100A8 diminished mast cell degranulation, 
the expression of pro-inflammatory mediators and eosinophil 
infiltration during acute asthma in mice.126

Interestingly, distinct CP subunit configurations were shown 
to trigger different cellular pathways especially in the context of 
inflammation and tumorigenesis.120 127 128 S100A8 and S100A9 
usually organise as heterodimeric complexes that form heterote-
tramers in case of calcium availability.41 Recently, homodimeric 
complexes were reported to play a crucial role in various inflam-
matory conditions. Active S100A9 homodimers were found in 
the spleen of mice with present inflammation or after tumour 
inoculation.127 It might be speculated that distinct CP subunit 
configurations may be responsible for the amplification and 
maintenance of inflammatory processes.120 128 Recently, Vogl 
et al revealed that tetramer formation may limit local inflam-
matory properties of both subunits, as S100A8/S100A9 is only 
transiently active in the extracellular environment, since calcium-
dependent tetramerisation of S100A8/S100A9 may lead to an 
autoinhibition of both subunits. In contrast, homodimers were 
shown to constitutively trigger inflammatory pathways through 
TLR4 activation.120 However, the exact molecular functions of 
the individual protein configurations remain unclear.

FAECAL CP IN HEALTH AND DISEASE
Faecal CP concentrations found in healthy individuals somewhat 
range between ~10 and 50 µg/g stool which depends on study 
cohorts and the used assay.129–131

However, various studies proved that faecal CP concentra-
tions are physiologically elevated in infants younger than 4 years 
when compared with adults.132 A recent study reported that 
faecal concentration of S100A8 and S100A9 are physiologically 
higher in healthy term neonates after vaginal delivery compared 
with caesarean section. Labor-associated stress was determined 

as the decisive factor leading to elevated CP concentration after 
secondary caesarean section and vaginal delivery.77 Additionally, 
high levels of S100A8 and S100A9 are contained in breast milk, 
indicating a role for CP in shaping the immune system of new-
borns.133 Indeed, Willers et al demonstrated that S100A8 and 
S100A9 regulate programming of intestinal immunity and high 
faecal CP levels are associated with intestinal colonisation by a 
favourable microbiota in neonates.77 As a result, CP concentra-
tions in paediatric patients should be interpreted with caution.134

Faecal CP as biomarker of inflammatory diseases in the gut
Before the possibility to detect CP in the stool in 1992,135 clini-
cians relied on serological markers to assess the possibility (or 
severity) of gut inflammation. However, erythrocyte sedimen-
tation rate and serum C-reactive protein (CRP) are elevated 
in response to various non-inflammatory processes and poorly 
correlate with patient symptoms and intestinal disease activity.136 
In contrast, faecal CP is able to discriminate between non-
inflammatory and inflammatory disease of the intestine,13 14 can 
be retrieved non-invasively, is inexpensive and remains stable at 
room temperature in stool for at least 3 days (with 30% inad-
equacy after 7 days).137 Notably, studies indicated that faecal 
CP represents a more sensitive marker than CRP in the context 
of IBDs, while it remains unclear if the combination of these 
biomarkers improves diagnostic accuracy.138 139 These features 
make faecal CP an excellent (i.e. sensitive) biomarker to detect 
gut inflammation in IBD—which may be some reasons for its 
worldwide use today. In contrast, specificity of this biomarker is 
relatively low, opening a range of differential diagnoses.

Considering the plethora of biological functions of CP 
in health and disease, high sensitivity but low specificity of 
faecal CP to detect gut inflammation may not be surprising. 
Faecal CP correlates with the number of neutrophils present 
in the intestinal lumen and thus allows to detect an acute 
inflammatory response in the gut,140 141 but faecal CP does 
not allow to discriminate distinct aetiologies. For example, 
human faecal CP concentrations are substantially elevated 
during Salmonella infection (median of 765 µg/g), Campylo-
bacter infection (median of 689 µg/g) or Clostridioides diffi-
cile infection (median of 740 µg/g) and correlate with disease 
severity.142–144 In contrast, viral infections for example, 
rotavirus or norovirus are usually present with lower (but 
elevated) concentrations (~90 µg/g) when compared with 
healthy controls. Notably, most data on faecal CP levels 
during GI infections are based on paediatric patients.142 Like-
wise, elevated faecal CP concentrations were reported for 
HIV infection (regardless of antiretroviral therapy status)145 
and corona virus disease 2019 induced by SARS-CoV2 infec-
tion.146 Further, also intestinal malignancies are associated 
with increased faecal CP concentration as observed for 
example in colorectal cancer, probably because of a local 
inflammatory response.147 Typically, chronic inflamma-
tory diseases of the gut also demonstrate increased faecal 
CP concentrations, partly because neutrophilic inflamma-
tion is an aspect of the disease141 and partly because gut 
inflammation may induce intestinal epithelial CP expression 
(figure 1).32 33 148 Faecal CP is elevated (and correlates with 
disease activity) in IBD,149–153 in necrotising enterocolitis,154 
graft-versus-host disease,155 and drug-induced enteropathy 
(e.g. non-steroidal anti-inflammatory drugs (NSAIDs)).156 
Diagnostic precision to detect gut inflammation in the lower 
GI tract is better when compared with the upper GI tract.157 
A study which included patients with IBD (and patients with 
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GI malignancies) undergoing colonoscopy indicated that 
bowel preparation and upper or lower endoscopy did not 
affect faecal CP concentration after the procedure.158

Collectively, faecal CP can be used to virtually exclude a wide 
range of intestinal diseases characterised by gut inflammation, 
while it does not allow to discriminate potential triggers. As 
such, other causes of elevated faecal CP concentration must be 
ruled out prior to IBD diagnosis. Strongly elevated faecal CP 
concentration is frequently observed during bacterial infections. 
Interpretation of slightly elevated faecal CP concentrations 
should be made with care, as viral infections and drugs (e.g. 
NSAIDs,156 proton pump inhibitors,159 glucocorticoids,40 and 
levodopa160) may induce S100A8 and/or S100A9 expression, 
and GI bleeding is associated with moderately elevated CP levels 
(i.e. 50–200 µg/g).161

Faecal CP discriminates between inflammatory and non-
inflammatory gut disease
Although faecal CP values >600 µg/g are strongly associated 
with IBD (or food-borne infections), no consistent CP cut-off 
is established that would allow to diagnose IBD with high accu-
racy.162 Thus, clinicians rely on probabilities to rule in or to rule 
out IBD (or functional gut diseases) based on faecal CP concen-
tration. The threshold of what is considered an ‘elevated’ faecal 
CP (or vice versa what is considered healthy) is still debated. 
As already mentioned earlier, faecal CP concentrations found 
in healthy individuals mainly range between ~10–50 µg/g stool, 
which depends on study cohorts and the used assay.129–131 A 
meta-analysis including 12 studies (comprising 491 healthy 
controls, 595 patients with IBS and 1059 patients with IBD) 
generally indicated that faecal CP concentrations of ≤40 µg/g 
(using sensitive assays) rule out IBD (i.e. provides ≤1% proba-
bility of having IBD).14 Several studies implicated that faecal CP 
allowed differentiation between non-IBD and IBD at a cut-off 
between 100–200 µg/g.14 149 163 164 However, an exact faecal CP 
cut-off value for the discrimination between IBD and functional 
bowel diseases is not established.11 Clinical decision-making to 
discriminate inflammatory from non-inflammatory disease with 
relative accuracy and the need for endoscopy is indicated in 
figure 2A.

Faecal CP allows evaluation of IBD course
Most clinical studies indicate a strong correlation between 
faecal CP concentration and clinical or endoscopic disease 
activity.150 152 165 166 For example, one study associated faecal 
CP concentrations, i.e. grade 0 (≤16 (10–30) μg/g), grade 1 
(~35 (25–48) μg/g), grade 2 (~102 (44–159 μg/g), grade 3 
(~235 (176–319) μg/g) and grade 4 (~611 (406–868) μg/g), 
with endoscopic UC activity.167 Zollner et al compared clin-
ical and endoscopic activity-related correlations between 
faecal CP and faecal lipocalin-2 in a cohort of 132 patients 
(72 patients with CD, 40 controls) and confirmed the diag-
nostic equivalence of both biomarkers in IBD. Analysis by 
confocal microscopy and immunocytochemistry implicated 
strong expression of CP in granulocytes, macrophages and to 
a lesser extent the intestinal epithelium in patients with IBD 
(see also figure  1).148 Data generally indicate that faecal CP 
is significantly decreased in patients with clinical and endo-
scopic remission and that values of >150 µg/g are mainly 
associated with disease relapse.168–170 However, other studies 
reported higher cut-off values of >200–300 µg/g to implicate 
disease relapse.171–173 Recently published Selecting Thera-
peutic Targets in Inflammatory Bowel Disease (STRIDE-II) 
recommendations by the International Organization for the 
Study of Inflammatory Bowel Diseases (IOIBD) announced 
faecal CP values of <150 µg/g as goal reflecting remission, 
stating that faecal CP values ranging from 150 to 250 µg/g are 
a grey zone.174 In contrast, a patient population from China 
demonstrates a cut-off of 50 µg/g to be suitable for the differ-
entiation between active and inactive UC,153 such that studies 
suggest different cut-off values for active disease which may 
be explained by the definition of remission, assay variability 
and ethnic differences of faecal CP concentration.129–131 Prior 
to clinically based diagnosis of a flare, faecal CP is reported 
to be elevated ~8 weeks in advance. In contrast, patients who 
maintain remission usually present faecal CP concentrations of 
<60 µg/g.175 176 Notably, Theede et al reported that faecal CP 
evaluation is sufficient to determine risk of relapse 6 and 12 
months in advance and to evaluate mucosal healing in UC.177 
Based on a plethora of studies, clinical decision-making in IBD 
is indicated in figure 2B. Faecal CP is also used as biomarker 
to identify postoperative disease recurrence in adult178 and 
paediatric patients with IBD.179 A meta-analysis including nine 
studies indicated that a faecal CP cut-off of >150 µg/g is likely 
to have the best overall accuracy to predict postoperative 
endoscopic recurrence with a sensitivity of ~70%.180 Notably, 
current recommendations suggest endoscopy (rather than sole 
biomarker screening) to detect postoperative disease recur-
rence. Clinical trials are necessary to establish faecal CP (rather 
than endoscopy) to guide therapeutic decisions and to estab-
lish treatment algorithms postoperatively. Only then, clinical 
guidelines may recommend specific faecal CP concentrations 
to indicate disease activity and the requirement for therapeutic 
intervention, which is currently being avoided.181 182

SERUM CP AS BIOMARKER OF INFLAMMATORY DISEASES 
IN AND BEYOND THE GUT
Recently, serum CP has gained attention as a potential biomarker 
for the evaluation of IBD and other inflammatory diseases with 
heterogeneous results. For example, one study comprising 156 
patients (82 IBD and 74 non-IBD) suggested that serum CP may 
represent a promising marker for the assessment of inflamma-
tory status and disease course183 and further studies confirmed 
the observation in adult and paediatric patients with IBD.184 185 

Figure 1  Calprotectin expression in the gut, adapted from 
reference 148. Mucosal calprotectin expression indicated by brown 
immunohistochemical staining is visualised in lamina propria immune 
cells and to a lesser extent the intestinal epithelium in ulcerative colitis 
(UC) and Crohn’s disease (CD), but not healthy controls (Ctrl).



1983Jukic A, et al. Gut 2021;70:1978–1988. doi:10.1136/gutjnl-2021-324855

Recent advances in basic science

Likewise, several inflammatory diseases beyond the gut display 
elevated serum and/or tissue CP concentrations, as observed in 
psoriasis,186 rheumatoid arthritis,187 systemic lupus erythema-
tosus,188 ankylosing spondyloarthritis,189 periodontitis,190 and 
human malignancies (e.g. myelodysplastic syndrome,111 head 
and neck squamous cell carcinoma,191 bladder cancer,112 non‐
small cell lung cancer,113 breast cancer,114 pancreatic cancer,115 
prostate cancer116 and hepatocellular carcinoma117). Interest-
ingly, systemic inflammation is detectable through serum CP in 

the majority of patients with psoriatic disease especially with 
joint manifestation, even in case of low CRP levels, highlighting 
high diagnostic sensitivity of CP.192 However, systemic low grade 
inflammation, as observed in type II diabetes and obesity, is also 
linked with elevated blood CP concentration,193–195 which could 
be a significant confounder in CP studies beyond metabolic 
diseases.

Recently, plasma and serum CP concentrations were impli-
cated as valuable prognostic biomarkers for the assessment 

Figure 2  Proposed algorithm for the interpretation of faecal calprotectin (CP) concentration. No evidence-based algorithm has been established 
by controlled clinical trials. This algorithm is based on literature research and clinical experience. Note that faecal CP concentration reflects only one 
aspect of disease evaluation and should always be interpreted in conjunction with history and clinical and/or endoscopic examination. Panel A: In 
suspected inflammatory bowel diseases (IBD) (e.g. GI symptoms such as diarrhoea, bleeding or abdominal pain >4 weeks), faecal CP and a stool 
(pathogen) culture should be obtained. Repeated elevated faecal CP concentration (>40 µg/g) or persistent symptoms require further investigations. 
Faecal CP is also elevated during gastroenteritis (viral and bacterial), diverticular disease, drug-induced enteropathy and intestinal malignancies. 
IBS may also present with elevated CP but its probability decreases with higher concentrations (>150 µg/g). Panel B: In patients with an established 
diagnosis of IBD, faecal CP supports the diagnosis of active disease or remission. Faecal CP concentration <150 µg/g usually indicates remission 
with high accuracy. Elevated faecal CP concentration (>150 µg/g) raises suspicion for disease activity as elevated CP concentration is associated 
with increased risk of a clinically apparent disease flare in the following months. Based on the recently published Selecting Therapeutic Targets in 
Inflammatory Bowel Disease-II (STRIDE-II) recommendations values of 150–250 µg/g are considered as grey zone.174 In symptomatic patients with 
IBD, other causes for elevated faecal CP should be excluded (such as infection and drug-induced enteropathy) and endoscopy should be performed 
before switching medical therapy. *In immunocompromised patients, serological testing for cytomegalovirus (CMV), HIV and herpes simplex virus 
(HSV) may be obtained and history should exclude drug-induced enteropathy associated with non-steroidal anti-inflammatory drugs, proton-pump 
inhibitors, sartans, levodopa and rarely other drugs. **Alarm symptoms are defined by unintentional weight loss, night sweat, bloody diarrhoea and/
or vomiting indicating upper and/or lower endoscopy.
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of disease course and outcome in hospitalised patients with 
COVID-19, reflecting current and future disease severity.196 In 
Klebsiella pneumoniae sepsis patients displayed increased serum 
CP concentrations which predicted 28-day mortality.197 Collec-
tively, these studies indicate the potential of CP to guide manage-
ment (and potentially therapy) in many clinical scenarios, a 
concept that warrants disease-specific trials.

CONCLUSION
Major advances over the last decade have fostered our under-
standing of the molecular functions of CP in mammals. Trans-
lation of biological insights by mechanistic studies of mucosal 
surfaces in mice to human disease is scarce, but would evolve 
our understanding of CP as inflammatory biomarker. Both 
subunits, S100A8 and S100A9, harbour a broad spectrum of 
intracellular and extracellular immunomodulatory proper-
ties (figure 3).18 47 67 72 However, it is still debated whether the 
biological function of the S100A8 subunit may be opposed to 
that of S100A9 in tissue inflammation and tumorigenesis. Anal-
ysis of tissue-specific knock-out mice of either subunit and/or 
blocking distinct binding sites will help to delineate divergent 
intracellular or extracellular biological functions. Considering 

the transcriptional regulation and biological functions of CP 
during inflammation, clinicians should be aware that other 
conditions, most commonly GI (bacterial or viral) infections, but 
also malignancies, drugs and graft-versus-host disease, are paral-
leled by increased faecal CP concentrations. Faecal CP represents 
an extensively validated biomarker for the diagnosis and longi-
tudinal evaluation of IBD reflecting endoscopic disease activity 
reasonably well. Lack of guidelines and data regarding optimal 
faecal CP cut‐offs renders intermediate faecal CP concentrations 
of 150–250 µg/g (declared as grey zone by STRIDE-II recom-
mendations174) frequently challenging to interpret in IBD, while 
<40 µg/g rules out IBD and >250 µg/g should prompt evalua-
tion for IBD or raise suspicion for an IBD flare (figure 2).14 149 167 
We propose that a better understanding of the biological func-
tions of CP and particularly the S100A8 and S100A9 subunits 
will lead to novel diagnostic and therapeutic advances in humans 
in the future.
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