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SUMMARY

Sleep is intimately linked with the stress response system. While the evidence for this connection 

has been systematically reviewed in the adult literature, to our knowledge no studies have 

examined this relationship in young children. Recent scientific interest in understanding the 

effects of adverse environments in early childhood, including an emphasis on understanding the 

role of sleep, highlights the importance of synthesizing the current evidence on the relationship 

between sleep and the stress response system in early childhood. The aim of this systematic 

review is to examine the relationship between sleep health and biomarkers of physiologic stress 

(neuroendocrine, immune, metabolic, cardiovascular) in healthy children ages 0–12 y. Following 

PRISMA guidelines, we identified 68 empirical articles and critically reviewed and synthesized 

the results across studies. The majority of studies included school-age children and reported 

sleep dimensions of duration or efficiency. Overall, evidence of associations between sleep health 

and stress biomarkers was strongest for neuroendocrine variables, and limited or inconsistent 

for studies of immune, cardiovascular, and metabolic outcomes. Gaps in the literature include 

prospective, longitudinal studies, inclusion of children under the age of 5 y, and studies using 

objective measures of sleep.
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Introduction

Children who experience chronic stress early in life for economic, environmental, 

psychosocial, or other reasons are at increased risk for future disease [1]. This increased risk 

is a result of prolonged activation of primary mediators of the child's stress response system 

(e.g., glucocorticoids, cytokines, catecholamines) that leads to ‘wear and tear’ on the body 

and contributes to poor secondary outcomes, such as impaired cardiometabolic functioning, 

across the lifespan (Fig. 1). Prolonged activation of children's stress response system in 

the absence of sufficient protective factors is termed ‘toxic stress’ [1,2]. As there is strong 

evidence linking sleep with the stress response among adults [3], an improved understanding 

of the relationship between sleep health and physiologic stress in early childhood is needed 

to direct future research and inform approaches to intervention for children experiencing 

chronic stress – especially considering the modifiable nature of sleep.

The stress response involves multiple physiologic systems (Fig. 1), and studies of adults 

and animal models demonstrate the close relationships between these systems and sleep 

health. For example, sleep has a bidirectional relationship with the hypothalamic-pituitary

adrenal (HPA) axis, a key neuroendocrine regulator of the stress response. Over-activation 

of the HPA-axis leads to shortened sleep duration, sleep fragmentation, and decreased 

slow wave sleep, and sleep deficiency exacerbates HPA-axis dysfunction [4]. Cytokines are 

immune modulators of the stress response system, but interleukin-1β (IL-1β) and tumor 

necrosis factor-alpha (TNF-α) have specific effects on sleep-wake behavior, as documented 

in electrophysiological, biochemical, and molecular genetic studies [5]. Interleukin-6 (IL-6) 

modulates sleep-wake behaviors during physiologic disruption, meaning that in the presence 

of certain pathogens, IL-6 affects sleep-wake behavior, but not in healthy conditions [5]. 

Increases in blood pressure, insulin, and glucose are detectable within days of sleep 

deprivation or circadian disruption [3,6], and chronic sleep deficiency alters autonomic 

nervous system function, increases oxidative stress, and accelerates atherosclerosis [7]. 

Reviews by Irwin and Opp [8] and Van Reeth et al. [9] and the references in Fig. 1 provide 

more detail on these relationships from the adult literature.

In 2012, the American Academy of Pediatrics published a seminal report describing an 

urgent need to support three foundations of health (caregiving, environment, and nutrition) 

to protect against toxic stress (i.e., prolonged stress response) in childhood, based on 

scientific evidence that these foundations of health influence lifelong health through 

physiologic adaptations and disruptions [1]. Sleep health [10] was notably missing from 

this report despite strong evidence linking sleep and physiologic adaptations and disruptions 

in the adult literature [11-13]. It was not until 2014 that a definition of ‘sleep health’ 

was published to emphasize the positive role of sleep in overall health among adults 

[10]. Buysse identified five dimensions (SATED: Satisfaction, Alertness, Timing, Efficiency, 
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and Duration) of sleep as important targets for health promotion and prevention activities 

[10] – emphases historically absent in health promotion messages and strategies [14]. 

This conceptualization sparked interest in sleep as a potential modifiable target for health 

promotion and disease prevention. Recently, in 2021, Buysse's definition of sleep health was 

examined and applied to children in a theoretical review [15]. This reconceptualization of 

sleep health for pediatric populations maintained Buysse's five dimensions (SATED) of sleep 

health and added a sixth dimension – behavior (B-SATED) – that includes sleep-related 

behaviors in children that can support or undermine their sleep, such as regularity of bedtime 

routine and bedtimes. To advance this field, it is important to improve understanding of the 

associations between sleep health and physiological changes in early life and factors that 

may contribute to chronic disease. Thus, the purpose of this systematic review is to identify, 

evaluate and synthesize the scientific evidence for the relationships between sleep health and 

physiological biomarkers of the stress response system in early childhood.

Methods

Search strategy

We performed a systematic search of the literature to identify studies that reported 

associations between sleep health dimensions and biomarkers of physiologic stress 

in children. We pre-registered our protocol with PROSPERO (CRD42018089780) and 

conducted the review following PRISMA guidelines [16]. Experienced medical librarians 

(MCF, JB) consulted on the methodology and ran a medical subject heading (MeSH) 

analysis of key articles provided by the research team [mesh.med.yale.edu]. In each database 

we ran scoping searches and used an iterative process to translate and refine the searches 

(see Appendix A). To maximize sensitivity, we used controlled vocabulary terms and 

synonymous free-text words to capture the concepts of “physiological stress”, “sleep” and 

“children”. On January 21, 2018, October 11, 2019, and March 11, 2021, we performed 

a comprehensive search of MEDLINE (Ovid), Embase (Ovid), APA Psycinfo (Ovid), and 

CINAHL Complete (EBSCOhost). Articles were limited to the English language. No date 

limit was applied. All search strategies are provided in Appendix A.

Article selection

We included quantitative, peer-reviewed studies that reported associations between objective 

and subjective measures of at least one of the six dimensions (B-SATED) of sleep 

health and biomarkers of physiologic stress among healthy children. A co-first author 

(MO) is a licensed pediatric nurse practitioner who provides pediatric sleep health 

care in a large university-based pediatric sleep and was responsible for reviewing the 

developmental accuracy of the definitions of sleep health dimensions in each article based 

on clinical guidelines. We defined biomarkers of physiologic stress as primary mediators 

(neuroendocrine, immune) and secondary outcomes (metabolic, cardiovascular) outlined by 

Juster et al. [17] and Condon [18]. We did not include studies that only included measures of 

adiposity (e.g., body mass index) as physiologic stress biomarkers because associations with 

sleep are well documented [19,20].
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We included studies if the mean age of the sample was 12 y or younger, or if results 

were stratified by age to allow examination of findings in our target age range. We 

excluded studies of children with diagnosed sleep disorders (e.g., obstructive sleep apnea), 

developmental or neurological disorders that may influence sleep (e.g., autism, seizure 

disorders), or were prescribed sleep-altering medications.

Using Covidence software [21], each title and abstract were independently screened by 

two reviewers (MO, BBI, or EC), and the third reviewer resolved any discrepancies. Two 

reviewers (MO and EC) independently reviewed the remaining full-text articles for inclusion 

and exclusion criteria, and any discrepancies were discussed until consensus was reached.

Data extraction and quality assessment

Two members of our group (MO, EC, or EA) reviewed each study with a data extraction 

form developed for this review. Extracted information included study objectives, hypotheses, 

design, sample characteristics, sleep and biomarker variables and measures, and study 

findings and implications. A third reviewer (BBI) compared results for accuracy and 

resolved discrepancies by referring to the full text. We organized the findings according 

to the biomarkers within each physiologic system.

We were unable to identify a standard quality checklist adequate for use in this review. 

Therefore, we evaluated study quality using a modified version of the Strengthening 

the Reporting of Observational Studies in Epidemiology (STROBE) checklist [22]. Each 

article was assessed for quality related to the study aims/hypothesis, sample size, sample 

representativeness, sleep and biomarker measures, missing data, and inferences and 

conclusions. The complete checklist is presented in Appendix B. Two reviewers (MO, EC, 

or EA) independently assessed each study for quality and a third reviewer (BBI) resolved 

discrepancies. We did not exclude any articles based on quality.

Results

As detailed in Fig. 2, we identified 65,485 articles for screening, of which 6262 did not meet 

inclusion criteria based on the titles and abstracts. We reviewed full texts of the remaining 

223 articles and excluded an additional 143 articles, most commonly for the wrong patient 

population (e.g., adolescent sample; n = 66) or wrong outcomes (e.g., did not examine sleep 

and biomarker relationship; n = 49). Ultimately, we included 68 studies (Table 1).

The majority of studies were cross-sectional in design (90%). Studies were conducted in 

the United States (n = 33), 12 European countries (n = 24), Canada (n = 5), Brazil (n = 2), 

Kuwait (n = 1), China (n = 1), and Australia (n = 1). Publication years ranged from 1977 

to 2021, with most published since 2010. Inclusion of metabolic and immune biomarkers 

increased over time (Fig. 3A). Forty-three percent of studies included participants from 

multiple racial/ethnic backgrounds, 15% included all non-Hispanic white participants, and 

42% did not report race/ethnicity data. Socioeconomic status data were not reported in 84% 

of studies.
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Most studies were conducted with school-aged children (63%). Studies with younger 

children were fewer and primarily included neuroendocrine measures (Fig. 3B). Sleep 

duration and efficiency were the most widely studied sleep health dimensions (Fig. 3C).

Study quality

Overall, studies included well-validated biomarkers, and the quality of the aims/hypothesis 

and inferences/conclusions was high (Appendices B and C). However, few studies provided 

justifications for the sample size or information on missing data. The quality of sleep 

measures was mixed, with some studies using well-validated objective sleep measures, 

such as actigraphy (43%), electroencephalogram (4%: EEG) and polysomnography (7%: 

PSG), while others relied on non-validated approaches, such as a single parent-report 

question (15%) or sleep questionnaires that lack evidence of validity (10%), rather than 

psychometrically sound questionnaires.

Neuroendocrine biomarkers & Children's sleep health

Cortisol

Diurnal cortisol levels.: The majority of neuroendocrine studies measured diurnal cortisol 

[23-42]—including the cortisol awakening response (CAR), the diurnal slope and total 

levels of cortisol across the day (e.g., morning and evening cortisol). CAR was negatively 

associated with sleep duration in preschoolers [35] and school-aged children [33,43], 

indicating that shorter sleep was associated with a more marked rise in morning cortisol 

secretion in all but one study [24].

Studies assessing sleep duration and the CAR among infants and toddlers were limited 

in number and had inconsistent results. One study revealed that at 12-weeks (but not 

8-weeks), full-term, otherwise healthy infants who had colic and longer sleep duration 

had a significantly higher CAR [23] than infants without colic. This may reflect 

associations between developmentally appropriate sleep patterns in infants (e.g., lack of 

sleep consolidation) that may be worsened by effects of colic on cortisol. Moreover, the 

exact age at which CAR develops during infancy remains unclear [37]. During toddlerhood, 

there are robust nap-dependent differences in the CAR that suggest that sleep timing and 

naps influence a child's diurnal profile [31,40,44]. While the science on naps and cortisol 

response has advanced since first described by Tennes in 1977 [38] and Larson in 1991 

[45], more research is needed to understand the emergence of CAR in infancy and the 

relationships between naps and CAR.

Several studies included assessments of diurnal cortisol slopes or of cortisol samples 

taken systematically across the day. Poor sleep efficiency and duration, including more 

awakenings [30], lower efficiency [36,43], and shorter sleep duration [30,35] was associated 

with a flatter diurnal cortisol slope. In some studies, these associations were nuanced. For 

example, short sleep duration was associated with higher morning and evening cortisol 

levels, but only among children who also experienced insomnia symptoms (e.g., poor sleep 

efficiency) [29]. In a series of studies among children clustered into groups of ‘poor’, 

‘normal’ or ‘good’ sleepers based on multiple objective sleep health dimensions (e.g., 

duration, efficiency), poor sleep health was associated with increased morning cortisol 
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secretion [46-48]. These findings may indicate the importance of considering sleep health 

‘phenotypes’ rather than single sleep dimensions. However, the associations between good 

or poor sleep and cortisol secretion were not statistically significant over time in two of 

the studies [47,48]. More research is needed to determine whether there is a threshold of 

sleep deprivation, a sleep health phenotype, and/or a sensitive developmental period (e.g., 

sensitivity periods in early brain development) associated with higher risk for elevated 

cortisol levels. Evidence for considering these possibilities stems from the lack of significant 

associations between sleep duration and diurnal cortisol found in studies that had limited 

variability in parent-reported sleep duration values between (and within) participants 

[24,27,34]. Specifically, associations may not be robust or detectable in study samples 

where, on average, nearly all children are getting adequate sleep.

Cortisol reactivity.: Associations among sleep health dimensions and cortisol reactivity 

across the first year of life are not fully understood. Infants at age 6 mo who woke more 

at night (parent report) were more susceptible to the effects of acute stressors (e.g., a 

heightened salivary cortisol response following a vaccination) at the time of the vaccine and 

six months later [49,50]. Additional research is needed to fully understand the associations 

between sleep consolidation and stress reactivity in relation to developmental patterns of 

sleep consolidation (note: children commonly consolidate their sleep at night by 12 mo of 

age).

Cortisol responses to stress were lower among school-age children with parent-reported 

sleep problems (e.g., prolonged sleep latency, frequent night waking, irregular sleep habits), 

compared to those who reportedly slept well [51]—though the direction of this effect may 

differ for girls. For example, girls with poor sleep efficiency may have higher rather than 

lower stress reactivity compared to female peers without difficulty initiating or maintaining 

sleep [52].

Findings across studies using objective sleep measurement are inconclusive. Raikkonen and 

colleagues found that children with actigraph-measured sleep efficiency less than 77.5% 

displayed higher cortisol reactivity following an acute laboratory stressor [43]; but these 

findings were not replicated in other studies using actigraphy or polysomnography with 

school-age [24]), kindergarten [46,53], or pre-school age children [47,48].

Cumulative cortisol levels.: Cortisol measured in hair is a novel, longitudinal measure of 

chronic stress [54]. Flom and colleagues reported that shorter sleep duration in 12 month old 

children was associated with higher hair cortisol levels [55]. However, hair cortisol was not 

associated with parent-reported sleep duration [56] or actigraphy [57] in other recent studies 

of young children.

Immune biomarkers and children's sleep health

C-reactive protein (CRP)—Serum CRP was not associated with sleep duration in six out 

of seven studies [58-63]. Large sample sizes suggest that these studies were well powered 

to detect statistically significant effects, but only three used validated sleep measures 

[60,61,64]. In two studies, variability in sleep duration over the course of a week was 

associated with higher CRP levels in boys and girls [64] and among girls only [61]. Thus, 
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consistency of sleep timing may have a more important influence on CRP than sleep 

duration, but replication is needed, especially given the large body of evidence linking sleep 

duration with CRP in adults [65].

Cytokines: IL-6 and TNF-alpha—Few studies examined relationships among sleep 

health and pro-inflammatory cytokines. Similar to studies of adults [66], sleep duration 

was not associated with serum IL-6 [59,61,67] and associations between sleep duration 

and TNF-α are unclear [59,67]. However, Lavoy and colleagues found sleep efficiency 

was associated with morning salivary IL-6 levels [68], and El-Sheikh et al. (2007) found 

associations between multiple dimensions of sleep health (e.g., sleep duration, efficiency, 

nighttime activity) and salivary IL-6 reactivity in response to a laboratory stressor [69]. This 

suggests that sleep may influence inflammatory responses to acute stressors, rather than 

circulating levels during homeostasis, but additional experimental studies are needed.

Metabolic biomarkers and children's sleep health

Insulin and insulin resistance (IR)—In a large cross-sectional study (N = 4525), 

Rudnicka et al. (2017) found that every one hour longer in sleep duration was associated 

with a small reduction in fasting insulin (2.88%) and insulin resistance (2.81%; IR, 

measured by homeostasis model assessment of insulin resistance), including after adjusting 

for child adiposity [70]. However, the absence of associations between sleep duration and 

fasting insulin in five other studies suggest that the effect of sleep duration on fasting insulin, 

if present at all, is very small [58-60,64,71]. Findings from studies of IR suggest that short 

sleep duration is associated with increased IR, but may be driven by the effects of short sleep 

on child adiposity. For example, associations between short sleep duration and increased IR 

were negated after controlling for children's BMI (Cespedes 2014), or present only among 

children with overweight/obesity [72,73] or obesity-risk alleles [74]. Notably, among adults, 

chronic sleep loss is thought to represent a novel risk factor for weight gain and IR that can 

lead to Type 2 diabetes [75].

Glucose—Associations between sleep health dimensions and glucose were examined 

in very few studies. Increased sleep duration was associated with lower fasting glucose 

levels in two studies, but effects were small and the quality of sleep measures was mixed 

[70,76]. In one longitudinal study (N = 6316), self-reported later bedtimes were associated 

with increased fasting salivary glucose, and glucose mediated a relationship between later 

bedtimes and increased waist circumference after two years [77]. This suggests that sleep 

timing may influence glucose levels, and that increased glucose may contribute to the effects 

of sleep on child adiposity, but replication of these findings is needed.

Leptin—Among school-aged children short sleep duration was associated with an increase 

in the hormone leptin in four out of five studies [60,70,76,78,79]. Effects detected were 

generally small, and notably, the direction of this relationship is opposite that found in 

studies of adults, possibly related to a potential confounding effect of caloric intake and 

adiposity in adult studies [79]. Additional studies are needed to confirm the direction of the 

relationship between sleep and leptin, whether and how this relationship changes with age, 

and if it is evident in earlier childhood.
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Alpha-amylase—Associations between sleep health and salivary alpha amylase (sAA), 

an enzyme regulated by the ANS, were examined in three studies. Infants and toddlers 

who demonstrated an sAA awakening response had later wake times, but no differences in 

sleep efficiency, number of awakenings, or total sleep time [25]. Lavoy et al. [68] found 

self-reported sleep disturbance was associated with increased morning sAA among school

aged children. Raikkonen et al. [43] found that compared to children with average-high 

sleep efficiency, children with low sleep efficiency displayed higher peak levels of sAA 

in response to a laboratory stressor [43]. This limited evidence supports the presence of a 

relationship between sleep and sAA in children, but additional studies are needed to better 

understand this relationship.

Lipids—Lipid levels were largely not associated with sleep duration, including among 

studies with large samples sizes and well-validated sleep measures [27,59,60,70,76,80]. 

Berentzen et al. [81] found that short sleep duration was associated with higher total 

cholesterol and high-density lipoproteins only among girls [81]. As females often begin 

puberty before males, and puberty influences lipid levels [82], additional research is needed 

to understand how hormonal changes may influence the relationship between sleep and 

metabolic biomarkers among older children.

Spruyt et al. [64] found that variability in sleep duration on school days was associated 

with higher triglyceride levels among children with obesity (n = 47), but not overweight (n 

= 16) or normal weight (n = 44) children. This evidence further supports the importance 

of variability in sleep duration and the potential influence of child adiposity on metabolic 

outcomes, but again replication is needed.

Cardiovascular biomarkers & children's sleep health

Sympathetic nervous system (SNS) and parasympathetic nervous system 
(PNS) activity—Sympathovagal imbalance (i.e., increased SNS and decreased PNS 

activity) was associated with poorer sleep behaviors (night to night variability), poorer sleep 

efficiency, shorter sleep duration, and later sleep timing [83-85] and mediated a relationship 

between later sleep timing and obesity among school age children [83]. These findings 

suggest that, similar to studies of adults [86], poor sleep is associated with poor autonomic 

function, or an imbalance between SNS and PNS activity. However, associations between 

sleep health and separate aspects of the SNS or PNS remain unclear. For example, shortened 

pre-ejection period reactivity (i.e., higher SNS reactivity) in response to a laboratory stressor 

was associated with poorer sleep efficiency measured by actigraphy [87], but not parent

report [88]. High respiratory sinus arrhythmia, an indicator of PNS activity, was associated 

with lower sleep activity and higher sleep efficiency, but not sleep duration [89]. Additional 

research is needed to determine whether mixed findings were related to use of different sleep 

measures, or if sleep health has a stronger influence on overall autonomic functioning than 

on SNS or PNS activity alone.

Blood pressure—Studies in this review do not support a statistically significant 

relationship between sleep duration and blood pressure among school-age children. In five 

studies with large sample sizes (Ns = 652 to 4525), no associations between blood pressure 
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and sleep duration [59,70,76,81,90] or a cluster profile of sleep health dimensions [91] 

were detected. In three others, associations between short sleep duration and higher blood 

pressure were explained by child adiposity [71,74,92]. This is in contrast to adult literature 

that suggests extreme sleep periods (very short and very long) are associated with higher 

blood pressure [93]. The mechanisms of this relationship are not well understood, but 

activation of the SNS resulting from the sleep deprivation is thought to play a key role in 

adults [93]. It is unclear whether this mechanism plays a role in early childhood.

Discussion

There is emerging evidence that associations between poor sleep and physiologic 

dysfunction and adaptation reported in the adult literature also exist in early childhood. This 

highlights the significance of missed opportunities to include sleep health in general health 

promotion messaging [10] and more specifically in recent efforts to mitigate the effects of 

toxic stress [3,94]. However, the pediatric literature on sleep health and stress physiology 

is still in its infancy, and there are a number of major gaps, including very few studies 

conducted with infants, toddlers, and preschool-age children, and a lack of longitudinal 

studies and clinical trials to test causal pathways.

Overall, the evidence identified in this review was stronger for relationships between sleep 

health and biomarkers that represent primary mediators of the stress response than those 

associated with secondary outcomes of the stress response system. This finding is aligned 

with the process through which toxic stress ‘gets under the skin,’ first through disrupted 

HPA-axis and ANS functioning (i.e., primary mediators), and over time, through ‘wear and 

tear’ on the metabolic and cardiovascular systems (i.e., secondary outcomes). What remains 

unclear is whether these associations have a cumulative or latent effect on health over the 

lifespan. Improved understanding of sensitive developmental periods is also needed, as both 

physiological development of the stress response system and developmental changes in sleep 

over time add complexity to this research. Prospective studies beginning in early childhood 

are needed to help answer questions about the directions of associations between sleep 

health and physiologic stress, especially has these relationships may often be bidirectional.

By examining studies conducted with healthy children, our results were not confounded 

by the disrupted sleep and stress physiology among children with known sleep problems 

(e.g., obstructive sleep apnea), underlying chronic disease, or developmental disorders [95]. 

However, findings in the literature point to an important influence of child adiposity, 

particularly for cardiovascular and metabolic outcomes, but the direction of relationships 

remain unclear. In many studies, child adiposity seemed to mediate a relationship between 

sleep and secondary outcomes [71], while findings of other studies suggest the effects of 

poor sleep on physiological dysfunction may contribute to child adiposity [77]. Improved 

understanding of these complex, bidirectional relationships is necessary to identify targets 

for sleep health interventions, as well as those aimed at preventing childhood obesity. 

Moreover, prospective, longitudinal studies are needed to determine whether there are 

subclinical changes in cardiovascular or metabolic biomarkers that are not detected in early 

childhood yet may have a latent effect on later health outcomes.
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Studies included in this review were generally of high quality (Appendices B and C). 

However, the inclusion of poorly validated sleep measures in 43% of studies limits our 

ability to interpret study findings and suggests a need for future research using validated 

sleep measures. Most studies also examined sleep duration and/or efficiency, while the 

dimensions of sleep behaviors (consistency of bedtime routine and timing), alertness, and 

satisfaction were largely absent among immune, metabolic, and cardiovascular studies. 

Findings from this review also support evidence from the adult literature that suggests sleep 

regularity, rather than sleep duration, may have an important influence on stress physiology 

[13]. Including valid instruments that measure multiple sleep health dimensions in future 

studies is necessary to more fully understand the relationship between all six pediatric sleep 

health dimensions and stress physiology in childhood. Reliance on single parent-report items 

was surprising considering the importance and availability of valid and reliable parent and 

child-report sleep questionnaires to measure the sleep dimensions of alertness/sleepiness and 

satisfaction [96].

Advances in noninvasive methods for measuring physiologic biomarkers, particularly 

advances in salivary bioscience, offer opportunities to further explore many of the 

preliminary relationships among sleep health and physiologic biomarkers detected in this 

review [97]. For example, saliva can be used to measure inflammatory cytokines that have 

been identified to regulate sleep among adults, including TNF-α and IL-1β [5]. While there 

are limitations to using and interpreting salivary biomarkers [97], inclusion of noninvasive 

measures in large, adequately powered studies may help elucidate complex relationships 

between sleep health and physiologic stress.

Results of this review highlight a lack of racial/ethnic and socioeconomic diversity and 

transparency among studies. Almost half of the studies in this review did not publish any 

demographic data on race/ethnicity and very few reported any socioeconomic status data. 

Increasing racial, ethnic, and socioeconomic diversity in future studies is critical, given 

known racial inequities in children's sleep health [98,99], disparities in sleep among families 

living with poverty [100,101], and structural racism as a root cause of toxic stress and health 

inequities [102].

Our broad search strategy allowed for a comprehensive review of the literature, but the 

limited evidence for some immune and metabolic biomarkers and the heterogeneity of 

designs and measures often limited our ability to compare findings across studies. Because 

we used broad stress terms in our search criteria, it is possible that we missed studies 

that examined relevant biomarkers but did not conceptualize them as measures of stress. 

An overall lack of longitudinal studies limited our ability to determine the direction of the 

associations between sleep and physiologic stress biomarkers. In cross-sectional studies, the 

timing of data collection procedures was also often unclear, and thus we were unable to 

compare whether outcomes differed if sleep was measured prior to or following biomarker 

collection.

Ordway et al. Page 10

Sleep Med Rev. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion

Despite substantial evidence in the adult literature, additional research is needed to elucidate 

the relationship between sleep health and physiologic stress in early childhood. Thoughtful 

incorporation of physiologic stress biomarkers as well as objective and subjective sleep 

measures in pediatric sleep research will lead to more comprehensive and nuanced 

understanding of these complex physiological pathways and inform the development of 

sleep health promotion interventions. Moreover, such interventions must be informed by 

evidence derived from health equity research and consider children's sleep in the context of 

their larger socioecological environment [103].
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Practice points

• Promoting sleep health may have physiologic benefits

• Singular focus on sleep duration recommendations may not be adequate in 

health promotion messaging.

• Detection of young children's physiologic stress response in relation to sleep 

is more evident within the HPA-axis, then in secondary outcomes (metabolic, 

cardiovascular).
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Research agenda

• Incorporate multiple sleep health dimensions and sleep assessment measures 

that adequately differentiate between them.

• Increase sample representation in pediatric sleep research (socioeconomic, 

race/ethnicity, age, sex).

• Follow existing robust protocols for biomarker collection.

• Design longitudinal studies beginning in early life to examine sleep health 

and physiologic stress biomarkers during critical developmental periods.
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Fig. 1. 
Overview of stress response system and suggested connection with sleep health based 

on adult studies. In the physiological response to stress, activation of the sympathetic 

nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis leads to release of 

glucocorticoids, catecholamines, and cytokines. These primary mediators act as part of a 

complex, non-linear network in the “fight or flight” response to stress. The parasympathetic 

nervous system (PNS) also plays a regulatory role as part of a negative feedback loop. Over 

time, prolonged release of primary mediators causes wear and tear on physiological systems 

and contributes to secondary outcomes, including but not limited to the examples provided 

(Condon, 2018; Juster et al., 2010). Evidence from adult studies suggests that sleep health 

interacts with multiple components of the stress response system, including a bidirectional 

relationship with the HPA axis and regulation by inflammatory cytokines [5,9,12,86,94,104].
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Fig. 2. 
PRISMA flow diagram.

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS 

Med 6(7): e1000097. doi:10.1371/journal.pmed1000097
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Fig. 3. 
Physiological systems examined A) over time in studies of sleep health in children, B) by 

age group, and C) by sleep characteristic.
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