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Development of a model-inference system for
estimating epidemiological characteristics of SARS-
CoV-2 variants of concern

Wan Yang® "™ & Jeffrey Shaman@® 2

To support COVID-19 pandemic planning, we develop a model-inference system to estimate
epidemiological properties of new SARS-CoV-2 variants of concern using case and mortality
data while accounting for under-ascertainment, disease seasonality, non-pharmaceutical
interventions, and mass-vaccination. Applying this system to study three variants of concern,
we estimate that B.1.1.7 has a 46.6% (95% CI: 32.3-54.6%) transmissibility increase but
nominal immune escape from protection induced by prior wild-type infection; B.1.351 has a
32.4% (95% Cl: 14.6-48.0%) transmissibility increase and 61.3% (95% Cl: 42.6-85.8%)
immune escape; and P.1 has a 43.3% (95% Cl: 30.3-65.3%) transmissibility increase and
52.5% (95% Cl: 0-75.8%) immune escape. Model simulations indicate that B.1.351 and P.1
could outcompete B.1.1.7 and lead to increased infections. Our findings highlight the impor-
tance of preventing the spread of variants of concern, via continued preventive measures,
prompt mass-vaccination, continued vaccine efficacy monitoring, and possible updating of
vaccine formulations to ensure high efficacy.
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ARTICLE

ultiple SARS-CoV-2 variants have been identified since

summer 2020. Among these, three variants—namely,

B.1.1.7, B.1.351, and P.1—have been classified as var-
iants of concern (VOCs), per evidence indicating these genotypes
are substantially more transmissible, evade prior immunity
(either vaccine-induced or conferred by natural infection with
wild-type virus), increase disease severity, reduce the effectiveness
of treatments or vaccines, or cause diagnostic detection failures!»2.
Multiple lines of evidence indicate the B.1.1.7 variant is roughly
50% more transmissible than wild-type virus but does not pro-
duce antigenic escape3~°. Further, several studies have shown that
both the B.1.351 and P.1 variants are resistant to neutralization by
convalescent plasma from individuals previously infected by wild-
type SARS-CoV-2 viruses and sera from vaccinated
individuals®~%; however, changes to the transmissibility of these
latter two variants are less well resolved. A better understanding
of the transmissibility and immune escape properties of VOCs
such as B.1.351 and P.1 is needed to anticipate future COVID-19
pandemic outcomes and support public health planning.

In this study, we develop a model-inference system to estimate
the relative change in transmissibility and level of immune eva-
sion for different SARS-CoV-2 variants, while accounting for
under-detection of infection, delays of reporting, disease season-
ality, non-pharmaceutical interventions (NPIs), and vaccination.
Testing using model-generated synthetic incidence and mortality
data indicates this inference system is able to accurately identify
shifts in transmissibility and immune evasion. We then apply the
validated inference system in conjunction with incidence and
mortality data from the UK, South Africa, and Brazil—the three
countries where VOCs B.1.1.7, B.1.351, and P.1 were first iden-
tified, respectively—to estimate the change of transmissibility and
immune evasion for the three VOCs, separately. We further use
these inferred findings in a multi-variant, age-structured model to
simulate epidemic outcomes in a municipality like New York City
(NYC) where multiple variants, including B.1.1.7, B.1.351, and
P.1, have been detected.

Results

The model-inference system and validation. We first tested our
model-inference system using 10 model-generated synthetic
datasets, depicting different combinations of population sus-
ceptibility prior to the emergence of a new variant, changes in
transmissibility and immune evasion for the new variant, and
infection-detection rate. As population susceptibility, interven-
tions, and disease seasonality can all affect apparent transmissi-
bility at a given time and in order to focus on variant-specific
properties, here we defined transmissibility as the average number
of secondary infections per primary infection, after removing the
effects of these three factors (see “Methods” section). We then
quantified the change in transmissibility as its relative increase
once the new variant becomes dominant. Similarly, we quantify
the level of immune evasion as the increase in susceptibility after
the new variant becomes dominant, relative to prior population
immunity from wild-type infection.

Figure 1 shows example test results comparing model-inference
system estimates with model-generated “true” values of transmis-
sibility and susceptibility using an infection-detection rate of 20%.
Across a range of epidemic dynamics, the model-inference system
is able to fit both weekly incidence and mortality data (Fig. 1a)
and estimate the transmissibility and susceptibility over time for
both the initial pandemic wave and the subsequent pandemic
wave caused by a new variant (Fig. 1b). In addition, when
aggregated over both pandemic waves, the model-inference
system is able to estimate the relative changes in transmissibility
and immune evasion due to a new variant (Fig. 1c). When the

system is less well constrained (e.g., an infection-detection rate of
10%), model estimates, albeit less accurate, still closely track true
values in most instances (Supplementary Fig. 1).

Reconstructed pandemic dynamics in the three countries.
Following the initial emergence of SARS-CoV-2 in early 2020, the
UK, South Africa, and Brazil experienced very different epidemics
(Fig. 2). The model-inference system is able to recreate the
observed incidence and mortality epidemic curves for all three
countries (Fig. 2a, ¢, e). Further, cross-validation using indepen-
dent data shows that the model estimates closely match measured
SARS-CoV-2 prevalence in the UK1%!1 and serology measures of
cumulative infection rates in South Africal?13 and Brazil'4,
respectively (Fig. 2b, d, f). These results indicate the model-
inference system accurately estimates the underlying transmission
dynamics for all three countries.

In the UK, a prompt lockdown allowed the country to contain
the first pandemic wave (Fig. 3). The real-time effective
reproduction number (R;), which measures the average number
of secondary infections at a given point in time, dropped from 2.2
(95% Crl: 1.0-3.9) during the week of 3/1/2020 to below 1 during
the week of 3/22/2020, the first week of the lockdown (Fig. 3a). By
the week of 6/28/2020 (the week with the lowest incidence
following the first pandemic wave), 6.4% (95% Crl: 3.6-12.3%) of
the UK population are estimated to have been infected. However,
with the relaxation of intervention measures during the summer,
the transmission gradually increased again (as indicated by the
estimated R,>1), leading to a large surge of infections in the
autumn of 2020 (Figs. 2a, b and 3a). A second lockdown
implemented in Nov 2020 reduced transmission transiently (R,
was below 1 during the 4-week lockdown period; Fig. 3a). Shortly
thereafter widespread transmission of the B.1.1.7 variant led to a
further increase of cases before this activity was curtailed by a
third lockdown and mass-vaccination.

In South Africa, the initial transmission was low likely due to a
strong public health response (a lockdown was implemented from
3/26/20 to 4/16/20) and less conducive conditions for transmis-
sion during southern hemisphere summer and autumn (Figs. 2,
3d, and Supplementary Fig. 2b). However, as the country relaxed
intervention measures and entered the winter, transmission
increased substantially from May 2020 onwards, leading to a large
pandemic wave during May-Sep 2020. After accounting for
under-detection of infection (Supplementary Fig. 3c), consistent
with serology data!?13, the model-inference system estimates that
30.0% (95% Crl: 18.0-47.1%) of the population had been infected
by the week of 9/20/2020 (i.e., the week with the lowest incidence
following the first pandemic wave; Fig. 2d). After two months
with relatively low incidence, the emergence of the B.1.351 variant
led to a resurgence of infections in late 2020 and a larger second
pandemic wave (Fig. 3d). By the week of 4/11/21, another 38.6%
(95% Crl: 24.1-61.1%) of the population are estimated to have
been infected, including re-infections.

In Brazil, no national lockdown was implemented during the
pandemic. A large first pandemic wave occurred during Mar-Oct
2020 (Figs. 2e and 3g). By the week of 11/1/2020 (i.e., the week with
the lowest incidence following the first wave), 45.7% (95% Crl:
28.4-69.0%) of the population are estimated to have been infected
(Fig. 2f). This estimate includes all infections and thus is much
higher than the reported number of cases (3.77% of the population;
see estimated infection-detection rates in Supplementary Fig. 3e). In
addition, unlike the UK and South Africa where the pandemic wave
rose and fell quickly, pandemic activity—based on national
incidence and mortality curves—remained at high levels for a much
longer duration (Fig. 2e). This may be due to the larger geographical
area of Brazil, the aggregative nature of country-level incidence and
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Fig. 1 Model-inference system validation using model-generated synthetic data with an infection-detection rate of 20%. For this testing, the true values
of incidence and mortality by week (a), transmissibility by week (b, top panel), population susceptibility by week (b, bottom), and overall changes in

transmissibility and immune escape due to a new variant (¢) were generated by model simulations with prescribed parameters and conditions. Unlike the
real world, in which most epidemiological characteristics are unobserved, here these quantities (i.e., the “Truth”) are prescribed and known and thus can be
compared to estimates made with the model-inference system using the synthetic, model-generated incidence and mortality data (a). a Five sets of

synthetic data (dots) and model-fits to each data set; lines show mean estimates and surrounding areas show 50% (dark) and 95% (light) Crls. b Weekly
model-estimated transmissibility and population susceptibility. The lines show mean estimates and surrounding areas show 50% (dark) and 95% (light)
Crls, compared to the true values (dots). ¢ overall estimates of the change in transmissibility (Trans) and immune escape (Imm esc), compared to the true
values (dots); boxes show model-estimated median (middle bar) and interquartile range (box edges), and whiskers show model-estimated 95% Cls, from

n =100 model-inference simulations.

Table 1 Estimated changes in transmissibility and level of
immune evasion, compared to the wild-type virus.

Location Variant Changes in Immune
transmissibility (%) evasion (%)

United B.1.1.7 46.6 (32.3, 54.6) 3.9 (0, 36.2)

Kingdom

South Africa  B.1.351 32.4 (14.6, 48) 61.3 (42.6, 85.8)

Brazil P 43.3 (30.3, 65.3) 52.5 (0, 75.8)

Numbers show model-estimated mean (95% Cl) from 100 model-inference runs totaling
50,000 model realizations.

mortality data combining multiple outbreak waves from different
sub-regions of the country, and the lack of national restrictions to
curb the pandemic. Despite this large first pandemic wave, the
emergence of the P.1 variant led to a second large pandemic wave
from Dec 2020 onwards. Similar traveling waves through the
country were evident from the incidence curve (Fig. 2e). By the week
of 4/11/21, an additional 60.7% (95% Crl: 40.5-92.0%) of the
population are estimated to have been infected, including re-
infections.

Estimated increased transmissibility and immune evasion.
Accounting for concurrent NPIs, vaccination, and seasonal

transmission trends (Supplementary Fig. 2), the model-inference
system estimates also enable assessment of key properties specific
to the three variants. Estimated transmissibility increased in
conjunction with the widespread presence of the new variant in
each country (Fig. 3b for B.1.1.7, Fig. 3e for B.1.351, and Fig. 3h
for P.1). Overall, estimated viral transmissibility increased by
46.6% (95% CI: 32.3-54.5%) for the B.1.1.7 variant, 32.4% (95%
Cl: 14.6-48.0%) for the B.1.351 variant, and 43.3% (95% CI:
30.3-65.3%) for the P.1 variant, compared to the wild-type virus
(Table 1). In addition, the model-inference system also detects
large increases of population susceptibility for the B.1.351 and P.1
variants, but not the B.1.1.7 variant (Fig. 3f, i vs. ¢; and Table 1).
Specifically, the model estimates immune evasion for the B.1.351
variant among 61.3% (95% CI: 42.6-85.8%) of the population
infected with the wild-type virus during the first wave in South
Africa and for the P.1 variant among 52.5% (95% CI: 0-75.8%) of
the population infected with the wild-type virus during the first
wave in Brazil.

Competition among variants and potential future outcomes.
As many places have detected one or more VOCs locally, it is
important to understand the potential pandemic outcomes given
the characteristics of and competition among variants, interac-
tions with ongoing NPIs, and mass-vaccination. We thus use a
multi-variant, age-structured model to simulate potential
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Fig. 2 Model-inference system fit to data for the three countries and validation using independent datasets. The left column shows the model fit to
reported weekly case and mortality data for the UK (a), South Africa (¢), and Brazil (e). Dots show the weekly number of cases (in blue) and deaths (in
red) per 1 million persons; boxes (middle bar = mean; edges = 50% Crls) and whiskers (95% Crls) show the corresponding model estimates. Gray shaded
boxes indicate the timing of lockdowns or key periods of restricted activity; horizontal arrows indicate the timing of variant identification and vaccination
rollout. The right column compares available, independent measurements to corresponding model estimates. Red dots and error bars show measured

prevalence over 10 periods of time from the REACT-1 study for the UK (b), cumulative infection rates from two serology studies in South Africa (d), and
cumulative infection rates from two nationwide household serosurveys in Brazil (f). Blue lines and surrounding areas show model-estimated mean, 50%
(dark) and 95% (light) Crls. Model estimates (mean, 50% and 95% Crls) are summarized over n =100 model-inference runs (500 model replica each,

totaling 50,000 model realizations).

pandemic outcomes for the period from May 2021 to Aug 2021
under scenarios with different variant prevalence, NPIs, and
vaccine efficacy.

We focus on NYC where detailed data and estimates (e.g., contact
patterns, variant prevalence, and vaccination rates) are available. We
consider three variant prevalence scenarios for P.1 and B.1.351; these
are equal initial seeding of P.1 and B.1.351 (both at 2-5%) and
higher prevalence of either P.1 or B.1.351 (one at 2-5% and the
other at 0.2-0.6%; Supplementary Table 5). For each variant
prevalence scenarios, we further consider 5 NPI scenarios and 4 VE
reduction scenarios (20 combinations in total for each). The NPI
scenarios range from maintaining the NPIs implemented at the start
of a simulation to gradually lifting all NPIs within a 2-month

window. Lastly, because NYC mostly used mRNA vaccines during
the study period, we use mRNA vaccines (here assumed 85%/95%
for the 1st/2nd dose against the wild-type) as a baseline and scale the
VEs to represent potential VE reduction against the new variants,
ranging from no reduction to a large reduction (as low as 42.5%/57%
for the 1st/2nd dose, i.e., a 50%/40% reduction for the 1st/2nd dose).
In addition, because different types of vaccines with different VEs
have been used elsewhere, to represent these diverse vaccines and
VEs, we also simulate VEs ranging from very high (85%/95% for 1st/
2nd dose) to high (60%/70%) and medium (45%/55%; Supplemen-
tary Fig. 5) levels.

Figure 4a and Supplementary Fig. 4 show example projections of
infections and mortality assuming a best-case scenario in which
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mRNA vaccine-induced immunity is as effective against all three
VOCs as for the wild-type virus. At the time of these simulations
(e, end of April 2021), the B.1.1.7 variant was the predominant
VOC in NYC; however, given their estimated propensity for
immune escape, both B.1.351 and P.1 could outcompete B.1.1.7 and
become predominant in the coming months (Fig. 4a, top panel). The
relative prevalence of B.1.351 and P.1 depends largely on their initial
introduction and establishment in the population. These two
variants would arise at similar rates and co-dominate, if they are
introduced and established in the population simultaneously (Fig. 4a,
left panel). However, should either be established in the population
ahead of the other, it would become dominant and suppress but not
preclude the rise of the other variant (Fig. 4a, middle and right
panels). In addition, the B.1.351 variant would be slightly more
competitive if the vaccines are less effective against it than the P.1.
variant (Fig. 4b and Supplementary Table 1), as has been shown in
laboratory studies”?.

Tallies of model-projected infections (Fig. 4b and Supplemen-
tary Fig. 5b) and deaths (Supplementary Fig. 4) reveal four key
determinants of future pandemic outcomes. First, simultaneous
introduction of both the B.1.351 and P.1 variants would lead to
larger increases of infections and mortality than the sole
introduction of either variant (Fig. 4b and Supplementary Fig. 5b,
Supplementary Fig. 4b). This result indicates the importance of
limiting the introduction of multiple VOCs. Second, maintaining

very high vaccine efficacies against all variants is critical for
mitigating the risk of a large resurgence in populations with
relatively high vaccination coverage (e.g., compare the first four
subplots in Fig. 4b). Third, continued non-pharmaceutical
preventive measures will reduce infection resurgence as munici-
palities reopen economies. For instance, even with high vaccine
efficacy, a rapid, full reopening before a very large proportion of
the population is fully vaccinated could lead to approximately
three times as many infections as when reopening occurs more
slowly (Fig. 4a, b, first subplot). Maintaining NPIs is even more
important in places where less efficacious vaccines are adminis-
tered (Supplementary Fig. 5b). Four, reassuringly, while projected
trends for COVID-19-related mortality are in general similar to
those for infection (Supplementary Fig. 4a vs. Fig. 4a), lower
proportions of COVID-19-related deaths would occur due to the
increased transmission of B.1.351 and/or P.1 (Supplementary
Fig. 4b vs. Fig. 4b; note the larger proportion of deaths due to
B.1.1.7 than infections). This is due to the currently higher
vaccination coverage among older adults who have been
prioritized for vaccination in NYC similar to many other
municipalities (see Supplementary Table 4 for vaccination
coverage by age group). This finding emphasizes the importance
of vaccine effectiveness against VOCs and of prioritizing
vulnerable populations for vaccination in order to prevent severe
outcomes of COVID-19.
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a Example projections: Assuming mRNA vaccines used and same VE as for the wildtype virus

Slow full reopen, equal seeding

Slow full reopen, more P.1

Slow full reopen, more B.1.351

I 6000
e} 6000
§
5 4000
3 4000 4000
E
c
S
= 2000 2000 2000
€
5]
g 0 0 0 variant
B 04/25/21 05/23/21 06/20/21 07/18/21 08/15/21 04/25/21 05/23/21 06/20/21 07/18/21 08/15/21 04/25/21 05/23/21 06/20/21 07/18/21 08/15/21 W.|dty§)e
2 B
£ Fast full reopen, equal seeding Fast full reopen, more P.1 Fast full reopen, more B.1.351 = B.1.351
‘5 20000 =P
5
15000
£ 10000 15000
f=
=) 10000
é 10000
S 5000
3 5000 5000
g - T
3 ——l — _——
04/25/21 05/23/21 06/20/21 07/18/21 08/15/21 04/25/21 05/23/21 06/20/21 07/18/21 08/15/21 04/25/21 05/23/21 06/20/21 07/18/21 08/15/21
b Projected cumulative infections: Assuming mRNA vaccines used
S Both Both Both Both More P.1 More P.1 More P.1 More P.1 More B.1.351 More B.1.351 More B.1.351 More B.1.351
% Same VE Minorredn  Medium redn  Large redn Same VE Minor redn  Mediumredn  Large redn Same VE Minorredn  Mediumredn  Large redn
£
< 200000
S
E 150000 variant
= Wildtype
& 100000 BT
n B.1.351
= P
B 50000
e
& 0
Qo > P ° NS > o NS
° §2e‘1@"’%¢} & %Q OK’D %Q "”%(’\0\’3 S Q/%(i‘b 7’6 $ e %chfﬂ "’c} \'b %Q O@ %Q X (”\0\ %Q @"” & %Q "”e c} \'b $Q 2 c’\o@ ‘$\z\<a 0)\0@
o ele o\ 0@‘ 00\00\00 o <\o\°e\o 3 00\00\0 » S \ «\ el \ ™ 00\00\00 o <\o\<><x\o o‘§‘ \ \ » el \ g 00\00\0 . olagloate™
SEOSILR FPEER (HOS, Q*OQ NRR Q\\ Xl SRR 0: m% OQﬁ S CERE (B Q: IR f‘? o ST 0: K “%%Q 0‘2 GPSFS
N M N N M R N
o 2\<\> @\\20 Q\Q\» S ((3\ N N @\\20 Q\Q\» D S oY D

Fig. 4 Model projections of infection, under different scenarios of VOC co-circulation, NPIs, and reduction of vaccine efficacy (VE) against the VOCs.
a Example projected epidemic trajectories for each variant assuming mRNA vaccines are used and the VE is as high as for the wild-type virus. Lines and
surrounding areas show model-projected median and interquartile range, from n =1000 simulations (color-coded for each variant as indicated by the
legend). b Tallies over the entire simulation period (May-Aug 2021) for different scenarios of seeding, change in VE (as indicated in the subtitles, see detail
in Supplementary Table 5), and NPIs (as indicated by the x axis labels, see detail in Supplementary Table 5). All numbers are scaled to per 1 million people.
For the projected percentages for each variant and uncertainty bounds, see Supplementary Table 1.

Discussion

Despite vaccine availability, the future trajectory of the COVID-
19 pandemic remains uncertain due to the potential additional
emergence and continued spread of multiple VOCs. To improve
understanding of future pandemic dynamics, here we have
developed and applied a comprehensive model-inference system
to quantify key viral properties for three VOCs: B.1.1.7, B.1.351,
and P.1. Our estimates for the B.1.1.7 variant are consistent with
detailed epidemiological evidence (32.5-54.6% increase in trans-
missibility and minimal immune evasion estimated here vs.
30-50% increase in secondary attack rate based on contact tracing
data®* and little immune evasion based on laboratory and real-
world vaccination data®>%!%). Our estimates of the level of
immune evasion for the B.1.351 and P.1 variants are also con-
sistent with antibody neutralization data suggesting both variants
can evade prior immunity induced by infection and vaccination,
though to a larger extent for the B.1.351 variant’. Here we
provide joint quantification of immune escape and the change in
transmissibility for both variants. Overall, the model-inference
system estimates and model simulations suggest that both B.1.351
and P.1 are likely more competitive than the B.1.1.7 variant due
to their greater propensity for immune escape. These estimates
are consistent with observations from Qatar!®> and Canadal®
showing that the proportion of infections caused by B.1.351 and/
or P.1 increased despite earlier introduction and dominance of
B.1.1.7 in these populations. Therefore, in spite of the current
widespread prevalence of B.1.1.7 in Europe and North America,

importation of B.1.351 and/or P.1 to these regions could replace
B.1.1.7 dominance and lead to a further increase of infections by
either B.1.351, P.1 or both variants. Mass-vaccination with highly
effective vaccines is thus crucial for mitigating the risk of future
SARS-CoV-2 resurgence, particularly as economies reopen.

Our model-inference system estimates substantial immune
escape for both P.1 and B.1.351. For P.1, the mean estimate is
bounded by a very broad confidence interval; however, for
B.1.351 the uncertainty is more constrained and indicates greater
confidence that a substantial level of immune escape occurs.
These latter findings are supported by vaccine clinical trial and
real-world data. In particular, Shinde et al.!3 found a similar
likelihood of COVID-19, mostly due to B.1.351, among trial
participants who were seropositive at enrollment (i.e., after the
first wave) compared to those seronegative. Although potential
differences in risk of exposure among the two comparison groups
may have somewhat biased this finding, substantial repeat and
breakthrough infection occurred due to B.1.351. Further, recent
data from Qatar!® indicate that individuals receiving the full
dosing regimen of the Pfizer BNT162b2 mRNA vaccine are at
greater risk of breakthrough infection with the B.1.351 variant
than B.1.1.7. Continued monitoring of the severity of both repeat
and breakthrough infections is needed to more fully understand
the ongoing risks of VOCs to both health and the economy. In
addition, the Qatar study!'® highlights the importance of full
vaccination (i.e., administration of both doses for mRNA vac-
cines), as participants gained little protection against severe illness
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after the first vaccine dose (vs. ~50% efficacy for B.1.1.7), even
though full protection against severe illness was retained after two
vaccine doses. It is thus likely critical that best vaccination pro-
tocols are followed in order to confer protection against variants
with immune escape properties and that potential waning of
vaccine-induced immunity over time is monitored.

In light of the spatial expansion of B.1.1.7, B.1.351, and P.1 and
the potential emergence of other new variants, vaccination is
paramount for controlling the COVID-19 pandemic. It is
imperative that vaccine production, distribution, and adminis-
tration proceed expeditiously, particularly in resource-limited
settings. Without effective global control of the pandemic, the
continued transmission of SARS-CoV-2 will give rise to addi-
tional new variants and pose new threats to all. As vaccines are
distributed and administered, a continuation of non-
pharmaceutical preventive measures is needed to minimize
infections among the unvaccinated. As shown in our simulations,
despite the relatively high vaccine coverage obtained to date in a
place like NYC, COVID-19 infections could resurge if such
locations lift preventive measures prematurely.

Due to a lack of sub-regional data, we used aggregated country-
level data to estimate the properties for the three VOCs. Our
model-inference system also did not account for differences in
disease severity and infection-detection rate among age groups,
which may vary substantially!”. This model simplification may
introduce uncertainty and bias to our estimates, particularly for
Brazil where country-level data may mask more intense trans-
mission in subpopulations and may have led to an under-
estimation of the transmissibility of P.1. Nevertheless, validation
using independent data, including for Brazil, indicates that the
model-inference system is able to closely capture pandemic
dynamics and accurately estimate cumulative infection rates
(Fig. 2). Further, because the model-inference system simulta-
neously accounts for population susceptibility, disease seasonality,
NPIs, and vaccination, it is able to specifically estimate changes
related to a given new variant and closely matches available
epidemiological data (e.g., for B.1.1.7). The model simulations
using these estimated characteristics further illustrate the relative
competitiveness of the three VOCs and delineate key determi-
nants of future infection outcomes. Overall, our findings point to
the importance of preventing the spread of B.1.1.7, B.1.351, P.1,
and other emerging VOCs or variants of interest (VOlIs), via
continued NPIs, prompt mass-vaccination of all populations,
continued monitoring of vaccine efficacy, and potentially updat-
ing vaccine formulations to ensure high efficacy.

Methods

Data sources and processing. The model-inference system uses reported
COVID-19 case and mortality data to capture transmission dynamics, weather data
to estimate disease seasonality, mobility data to represent concurrent NPIs, and
vaccination data to account for changes in population susceptibility due to vacci-
nation, for each of the three countries (i.e., the UK, South Africa, and Brazil).
Country-level daily COVID-19 case and mortality data came from COVID-19 Data
Repository of the Center for Systems Science and Engineering (CSSE) at Johns
Hopkins University!$1%; we aggregated the data to weekly intervals until the week
of 4/11/2021 but excluded initial weeks with low case rates (<2 per million
population). Hourly surface station temperature and relative humidity came from
the Integrated Surface Dataset (ISD) maintained by the National Oceanic and
Atmospheric Administration (NOAA) and are accessible using the “stationaRy” R
package (version 0.5.1)20. We computed specific humidity using temperature and
relative humidity per the Clausius-Clapeyron equation?!. We then aggregated
these data for all weather stations in each country with measurements since 2000
and calculated the average for each week of the year during 2000-2020. To com-
pute the seasonal trend, we used a method developed by Yuan et al.22, which
estimates the relative reproduction number based on temperature and specific
humidity (see details in Supplementary Methods). Daily mobility data were derived
from Google Community Mobility Reports23; we aggregated all business-related
categories (i.e., retail and recreational, transit stations, and workplaces) in all
locations in each country to weekly intervals. Daily vaccination data (for 1st and

2nd dose, if applied) for the UK were sourced from Public Health England®4; and
data for South Africa and Brazil were obtained from Our World in Data2>-26,

Model-inference system. Contact tracing data capturing chains of transmission can
be used to compute the secondary attack rate and quantify changes in transmissibility
due to a given new variant. Surveillance data and laboratory viral characterization can
be used to document and quantify levels of immune evasion. Yet such detailed data are
often not available, particularly for resource-limited settings. Given these circumstances,
mathematical modeling that assimilates epidemic surveillance data provides an attrac-
tive alternate means for estimating key epidemiological properties of novel variants,
including the transmission rate. However, joint estimation of the transmission rate and
population susceptibility, which is related to immune evasion, is challenging, as both
quantities can change for a new variant. This problem arises mathematically because the
product of these two quantities, rather than either individually, determines disease
incidence—i.e.,, at any point in time, given the incidence, transmissibility, and sus-
ceptibility are not individually identifiable. Nevertheless, we posit that transmissibility
and susceptibility affect epidemic dynamics differentially over time and, as such, data at
multiple time points can enable joint estimation. Indeed, simulations show that epi-
demic trajectories can diverge over time even when infection rates during the initial
weeks after the introduction of a new variant are similar (see, e.g., Fig. 1a). We thus
design a model-inference system to estimate the most plausible joint changes in these
two quantities using commonly available incidence and mortality time series.

The model-inference system is comprised of an epidemic model for simulating
the transmission dynamics of SARS-CoV-2 and a statistical inference method for
estimating the model state variables and parameters. The epidemic model is a
susceptible-exposed-infectious-recovered-susceptible (SEIRS) construct that
further accounts for two-dose vaccination. In addition, to include the effects of
public health interventions and disease seasonality, it further adjusts the
transmission rate each week using mobility data and the estimated seasonal trend
based on climate conditions (see Supplementary Eq. S3 in the Supplementary
Methods). The system then combines the model-simulated (prior) estimates and
observed case and mortality data to compute posterior estimates using the
ensemble Kalman adjustment filter (EAKF)?7. We also apply a technique termed
space re-probing?® that accommodates possible large changes mid-pandemic to
transmissibility and population susceptibility. Further, due to the challenge of
identifying these two quantities individually, we ran the model-inference system,
repeatedly and in turn, in order to test 14 major combinations of changes in
transmissibility and susceptibility (see details in Supplementary Methods). Briefly,
depending on the hypothesized change, we restricted the EAKF update to a given
related set of parameters or variables. For instance, for the hypothesis that the new
variant changes the transmissibility but does not evade immunity, the system only
allows major adjustment to the transmission rate and the infectious period; for the
hypothesis that the new variant induces both changes, the system allows major
adjustment to the transmission rate, the infectious period, and population
susceptibility. The system then selects the run with the best performance based on
the accuracy of model-fit, one-step-ahead prediction, and magnitude of changes to
key state variables to identify the most plausible combination of changes in
transmissibility and level of immune evasion (see Supplementary Methods and
Supplementary Fig. 6 for model goodness-of-fit measures). To approximate the
distribution of the system (including all model state variables and parameters), we
employed an ensemble of a model replica (1 = 500 here) and updated the ensemble
posterior each week using the EAKF. In addition, to account for model
stochasticity, we repeated each model-inference simulation 100 times for each data
set, each with initial parameters and variables are randomly drawn from prior
distributions (Supplementary Table 2). Consequently, model estimates are
aggregated from 50,000 model runs in total.

Estimation of variant-specific changes in transmissibility and level of immune
evasion. The model decouples the impact of concurrent NPIs and disease sea-
sonality from the transmission rate and infectious period (Supplementary Eq. S3);
as such, estimates for the latter two parameters are variant-specific. We thus
compute transmissibility as the product of the transmission rate and infectious
period. To reduce uncertainty, we average transmissibility estimates over the first
pandemic wave (excluding the first 3 weeks when model estimates are less accu-
rate) for the wild-type SARS-CoV-2 virus; similarly, we average the transmissibility
estimates over the period when the new variant is dominant. We identify this latter
time period based on the transmissibility estimates: (1) For the UK (B.1.1.7) and
South Africa (B.1.351), the estimated transmissibility increased and plateaued
within 10 weeks (Fig. 3); we thus used the period from the week with the maximal
transmissibility during the 10 weeks following its initial increase to the end of our
study period (i.e., the week of 4/11/2021). However, for the UK, we excluded the
3rd lockdown period when estimated transmissibility is lower, potentially due to
better awareness of B.1.1.7 and preventive measures taken at the time not fully
captured by the model. Of note, contact tracing data also indicate a lower increase
of the secondary attack rate around that time: 25-40% during 11/30/20-1/10/21
(among 1,364,301 cases for this expanded analysis)* vs. 30-50% during 11/30-12/
20/20 (among 386,805 cases)>. (2) For Brazil (P.1), the estimated transmissibility
increased more gradually (Fig. 3), we thus instead used either the weeks identified
per 1 or the last 8 weeks of our study period, whichever with a longer time period,
to ensure the robustness of estimation. We then compute the average change in
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transmissibility due to a new variant as the ratio of the two averaged estimates (i.e.,
after: before the rise of the new variant).

To quantify immune evasion, we record all time points inducing major EAKF
adjustments to posterior estimates of susceptibility, compute the change in
immunity as AImm = S;;; - S;+ i, (with S; as the susceptibility at time-t and i, as
the new infections occurring at time-t), and sum over all Almm estimates to
compute the total change in immunity due to the new variant. We then compute
the level of immune evasion as the ratio of the total change in immunity during the
second wave to the model-estimated population immunity at the end of the first
wave. This ratio provides an estimate of the fraction of individuals previously
infected who are susceptible to re-infection with the new variant.

For both quantities, we report the mean and 95% CI based on the mean
estimates from 100 repeated model-inference runs.

Model validation using model-generated synthetic data. To test the accuracy of
the model-inference system, we generated 10 synthetic datasets using a two-variant
SEIRS model (Supplementary Eqn. S4) and different scenarios of changing trans-
missibility and immune evasion (Supplementary Table 3). In each scenario, a new
variant was introduced at week 21 of the simulation. We then combined the
incidence and mortality due to both variants and added noise drawn from a
Poisson distribution to represent the observational error. We then applied the
model-inference system to estimate the model variables and parameters for each
synthetic data set, per the procedure described above for real data. For comparison
with model-inference system estimates, we computed the true values of population
susceptibility and transmissibility over time as the weighted average of the two
variants based on the relative prevalence at each time point (i.e., each week).

Model validation using independent data. To compare model estimates with
independent observations not assimilated into the model-inference system, we
identified four relevant datasets: (1) the REACT-1 study, which measures the
prevalence of SARS-CoV-2 using PCR-testing of volunteers from the general public
living in the UK. At the time of this study, the REACT-1 study has conducted 10
rounds of testing during 5/1/2020-3/30/2021 (n = 1,572,951 tests in total)!®1};
Fig. 2b plots our estimates of the prevalence of SARS-CoV-2 each week, overlaying
all 10 measures from the REACT-1 study for corresponding time periods; (2) a
serosurvey of workers in Cape Town, South Africa, conducted during 8/17-9/4/
2020 (n =405 participants)!%; (3) serology tests among participants enrolled
during 8/17-11/25/2020 in the Novavax NVX-CoV2373 vaccine phase 2a-b trial in
South Africa (n = 1324)!3. Given this long enrollment period, we used the centered
2-week window (9/29-10/13/20) to match with our model estimates. and (4) two
nationwide random household serosurveys conducted in Brazil during 5/14-5/21/
2020 (n = 25,025 participants) and 6/4-6/7/2020 (n = 31,165 participants)!4. To
account for the delay in antibody generation, we shifted the timing of each ser-
osurvey by 14 days when comparing to model-inference system estimates of
cumulative infection rates in Fig. 2d, f.

Model simulations testing the relative competitiveness of VOCs and pro-
jecting future transmission dynamics. Here we modified a multi-variant model
previously developed for influenza virus®® to include age structure and interactions
(Supplementary Eq. S5). The multi-variant model accounts for: (1) competition
between each pair of SARS-CoV-2 variants (e.g., wild-type and B.1.1.7) via cross-
protective immunity; (2) variant-specific transmissibility and population suscept-
ibility, based on estimates derived in this study; (3) variant-specific vaccine efficacy
under different scenarios (Supplementary Table 5); (4) age-specific differences in
vaccination coverage at the start of simulation and vaccination uptake rates for the
simulation period (Supplementary Table 4); (5) seasonality; and (6) changes in NPIs
under different scenarios (Supplementary Table 5). We used data from NYC for
baseline vaccination coverage®” and initial prevalence of different variants’!, as well
as key model estimates (e.g., transmission rates and infection-fatality risk by age
group; see Supplementary Table 5)17-3233, As in the previous work!73233, we
included 8 age groups (i.e., <1, 1-4, 5-14, 15-24, 25-44, 45-64, 65-74, and 75+
year-olds) in the model to account for age-specific differences. To focus on the three
VOCs, we only included the B.1.1.7, B.1.351, and P.1 variants and attributed all
other variants as “wild-type” virus, even though at the start of the simulations, the
B.1.526 variant made up approximately one-third of sequenced infections (N.b., the
B.1.526 variant likely emerged locally in NYC; we estimated a ~20% increase in
transmissibility and nominal immune evasion for this variant3%; based on these
estimates the impact of this variant is expected to be relatively minor). We did not
account for potential differences in infection-fatality risk by variant, as such
information is not available; therefore, the simulated mortality under different
scenarios only reflects the relative infection rate by age group, for which we apply
age-specific infection-fatality risk (Supplementary Table 5). In addition, due to
uncertainty vis-a-vis the severity and infection-fatality risk among breakthrough
infections (i.e., those who have been vaccinated), we only show mortality-related
simulations for the “Same VE” scenario which assumes no reduction in VE.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data used in this study are publicly available as described in the “Data sources and
processing” section. Compiled datasets used in this study are available at https://
github.com/wan-yang/covid_voc_study.
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