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Effect of fermentation time 
on the content of bioactive 
compounds with cosmetic 
and dermatological properties 
in Kombucha Yerba Mate extracts
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Kombucha is a beverage made by fermenting sugared tea using a symbiotic culture of bacteria 
belonging to the genus Acetobacter, Gluconobacter, and the yeasts of the genus Saccharomyces along 
with glucuronic acid, which has health-promoting properties. The paper presents the evaluation of 
ferments as a potential cosmetic raw material obtained from Yerba Mate after different fermentation 
times with the addition of Kombucha. Fermented and unfermented extracts were compared in terms 
of chemical composition and biological activity. The antioxidant potential of obtained ferments was 
analyzed by evaluating the scavenging of external and intracellular free radicals. Cytotoxicity was 
determined on keratinocyte and fibroblast cell lines, resulting in significant increase in cell viability for 
the ferments. The ferments, especially after 14 and 21 days of fermentation showed strong ability to 
inhibit (about 40% for F21) the activity of lipoxygenase, collagenase and elastase enzymes and long‐
lasting hydration after their application on the skin. Moreover, active chemical compounds, including 
phenolic acids, xanthines and flavonoids were identified by HPLC/ESI–MS. The results showed that 
both the analyzed Yerba Mate extract and the ferments obtained with Kombucha may be valuable 
ingredients in cosmetic products.

The proper functioning of the skin, the largest human organ largely responsible for homeostasis, is not an easy 
task. The skin is a physicochemical barrier that prevents microorganisms from the external environment from 
penetrating into deeper tissues. On the other hand, it is inhabited by microorganisms constituting its natural 
microflora. Like other microbiomes in the human body that are constantly inhabited by various microorganisms, 
the skin must show a certain level of tolerance to selected antigenic epitopes of microorganisms. The balance, 
characteristic of healthy skin, between immune tolerance and readiness for inflammation is established during 
the development of the skin microbiome and depends both on the state of the body’s immune system and on 
the qualitative and quantitative composition of the microbiome1. Therefore new solutions are sought to support 
the natural microbiome inhabiting the human skin. Natural cosmetic raw materials, including plant extracts 
present in cosmetic products, are known for their antioxidant, anti-aging, anti-inflammatory and whitening 
properties. In order to support the beneficial microorganisms inhabiting the human skin, it is worth thinking 
about products that, after applying to the skin, could also exhibit properties identical to plant extracts, so readily 
used in cosmetic products.

One of the methods used for the production of biologically active compounds, primarily in the food industry, 
but recently more and more frequently used in cosmetics, is fermentation, which may improve the quality of 
product and facilitate the absorption of active substances by the human body2. Due to its probiotic properties, 
scientists are increasingly paying attention to Kombucha, which is a popular drink among traditional fermented 
foods. Kombucha commonly known as a SCOBY is usually prepared by aerobic and static fermentation of a 
sucrose-sweetened medium, usually black tea with a symbiotic culture of acetic acid bacteria (AAB), lactic acid 
bacteria (LAB) and yeast3–6. Its fermentation process also leads to the formation of a floating biofilm on the 
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surface of the growth medium due to the activity of certain strains of AAB7. Chemical analyses of Kombucha 
have shown the presence of various organic acids, such as acetic, gluconic, glucuronic, malic, L-lactic, malonic, 
oxalic and tartaric that are responsible for sour taste8; the vitamins: B1, B2, B6, B12, C9,10; minerals: Cu, Fe, Mn, Ni, 
Zn9; anions: F−, Cl−, Br−, I−, NO3

−, HPO4
−, SO4

−11 and polyphenolic compounds12. That is why Kombucha, thanks 
to its rich content of active substances and probiotic properties, has a beneficial effect on health. Nonhuman 
research has demonstrated the antibacterial, antioxidant, hepatoprotective, antidiabetic, anti-inflammatory and 
anticancer properties of Kombucha tea13. Traditional substrate for the SCOBY fermentation is black or green tea, 
but scientific research have shown alternative substrates such as: Jerusalem artichoke extract, milk, fresh sweet 
whey, Coca-Cola, red and white wine, Echinacea, Mentha, cherry and grape juice, and more13. What is more, 
studies have shown that the composition and metabolite concentration depends on the inoculum source, the 
sugar and tea concentration, the fermentation time and the temperature used14.

Taking into consideration the opportunity of using substrates for fermentation other than tea, the possibility 
of using Yerba Mate as a fermentation medium was determined. Yerba Mate is a popular tea beverage produced 
and consumed in South American countries and is processed from leaves and stems of Ilex paraguariensis. 
Numerous active phytochemicals have been identified in Mate tea that may be responsible for its health benefits. 
Among them, there are polyphenolic acids such as chlorogenic acid, caffeic acid, 3, 4-dicaffeoylquinic acid, 3, 
5-dicaffeoylquinic acid, as well as xanthines (caffeine and theobromine), flavonoids (quercetin, kaempferol, 
and rutin), amino acids, minerals (P, Fe, and Ca), and vitamins (C, B1, and B2)15,16. Due to the presence of these 
compounds, Mate tea shows antioxidant, antimicrobial, anticancer, antidiabetic properties17–19. Moreover, the 
presence of saponins, which in addition to being responsible for the expressive, bitter taste of Mate tea, also have 
anti-inflammatory properties20. Due to the high content of biologically active compounds, this infusion is often 
compared to those of black or green tea, therefore it seems to be a favorable medium for Kombucha fermentation.

The aim of the study was to evaluate the properties of ferments obtained from Yerba Mate extract after fer-
mentation using cooperation in complex multi-species systems and investigate the impact of fermentation time 
on the biological activity of the obtained products. For this purpose, the content of various biologically active 
compounds of prepared ferments was evaluated using a high performance liquid chromatography. Cytotoxicity 
assessments were carried out on keratinocytes, and fibroblasts, using Alamar Blue and Neutral Red. The anti-
oxidant potential of obtained ferments was analyzed by evaluating the scavenging of external (DPPH and ABTS 
method) and intracellular free radicals. The possibility of inhibiting the activity of the collagenase and elastase, 
which play an important role in the skin aging process through the degradation of collagen and elastin fibers 
were measured. In order to assess the anti-inflammatory properties of the studied ferments, the possibility of 
inhibiting lipoxygenase activity and the effect on protein denaturation were determined. In the final stage, the 
influence of the obtained ferments on skin moisture and transepidermal water loss was also evaluated.

Results and discussion
Determination of bioactive compounds.  Plants have been used as a source of bioactive components 
for thousands of years. However, the need for more natural ingredients has increased over the past decade. Poly-
phenolic compounds derived from plant sources are widely found in cosmetic and pharmaceutical products and 
have been shown to have significant antioxidant effects21.

The composition of fermented and unfermented yerba extracts were analyzed using HPLC/ESI–MS. Bioac-
tive compounds including phenolic acids, xanthines and flavonoids were identified. The detailed mass data are 
summarized in Table 1. The obtained profile was similar to those reported in literature15,22,23 and predominant 
components were isomers of caffeoylquinic acid (CQA) and dicaffeoylquinic acid (diCQA). The tested samples 
also contained a fair amount of flavonoid—rutin and caffeine belonging to a class of purine alkaloids—xanthines. 
The example of chromatogram Yerba Mate extract is presented in Fig. 1. Among identified compounds 10 were 
quantitatively analysed; caffeoyl-glucoside, 3- and 5-feruloylquinic acid were not quantified because their con-
centrations were very low. The obtained results expressed in mg/g of extract dry weight are presented in Table 2.

Table 1.   Bioactive compounds detected using HPLC/ESI–MS.

Peak no Ionisation Theoretical ion mass Observed ion mass (m/z) Compound

1 Pos. 181.0720 181.0718 Theobromine

2 Neg. 353.0878 353.0887 3-Caffeoylquinic acid

3 Neg. 341.0878 341.0887 Caffeoyl-glucoside

4 Pos. 195.0877 195.0871 Caffeine

5 Neg. 353.0878 353.0876 5-Caffeoylquinic acid

6 Neg. 367.1035 367.1038 3-Feruloylquinic acid

7 Neg. 353.0878 353.0872 4-Caffeoylquinic acid

8 Neg. 179.0349 179.0350 Caffeic acid

9 Neg. 367.1035 367.1034 5-Feruloylquinic acid

10 Neg. 609.1461 609.1465 Rutin

11 Neg. 515.1195 515.1179 3,4-Dicaffeoylquinic acid

12 Neg. 515.1195 515.1185 3,5-Dicaffeoylquinic acid

13 Neg. 515.1195 515.1190 4,5-Dicaffeoylquinic acid
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As can be seen, the content of determined compounds varied among the analyzed extracts. The total content 
of phenolic compounds in the tested samples was the highest for the ferment after 21 days of fermentation (F21) 
compared to the Yerba Mate extract. F14 sample was also rich in the tested phenolic compounds. Moreover, 
extending the fermentation time to 35 days, a significant decrease in the content of polyphenols was visible. 
It was found that the 3-CQA was the most abundant component (even 15.54 ± 0.97 mg/g for F21 sample and 
6,97 ± 0.24 mg/g for YM extract). The concentration of caffeic acid was the lowest in all the samples analyzed. 
Regarding the analysis of methylxanthines, among the plant samples examined, the highest caffeine and theo-
bromine contents were also found for F21 extract (0.43 ± 0.01 mg/g theobromine and 3.83 ± 0.04 mg/g caffeine) 
compared to other extracts (the lowest content of alkaloids for the F35 sample). The low content of theobromine 
compared to caffeine may be due to caffeine being synthesized from the xanthosine, via 7-methylxanthosine, 
7-methylxanthine and theobromine. Theobromine is methylated to caffeine which would be the final metabolite24. 
In addition, the flavonoid was analyzed. The results showed the highest rutin content for the F21 sample and the 
lowest for F35. These results correspond to the total content of bioactive compounds.

In summary, the ferments obtained from the Yerba Mate extract and Kombucha showed a high content of 
active compounds compared to the Mate extract. Note that many authors have shown that YM extract represents 
an important source of polyphenols, alkaloids and flavonoids with a high antioxidative capacity17,25. The antioxi-
dant activity of Kombucha is due to its presence, among others, of polyphenols. Kombucha ferments had higher 
antioxidant activity than Yerba Mate extract, and this may be due to the production of low-molecular-weight 
ingredients and structural modifications of tea polyphenols by enzymes produced by bacteria and yeast during 
fermentation26. Moreover, Chakravorty et al. evaluated the polyphenol content and the antioxidant activity of 

Figure 1.   Example extracted ion chromatograms (XIC) obtained for Yerba Mate extract. Names of compounds 
indicated by numbers (1–13) explained in Table 1.

Table 2.   Quantification results obtained for Yerba Mate extract end Kombucha ferments. Values are 
means ± standard deviation (SD) of triplicate.

Compound

Content (mg/g of dry weight)

YM F7 F14 F21 F35

Caffeic acid 0.81 ± 0.03 0.07 ± 0.01 0.09 ± 0.01 0.01 ± 0.01 0.06 ± 0.01

3-Caffeoylquinic acid 6.97 ± 0.24 8.45 ± 0.31 9.60 ± 0.42 15.54 ± 0.97 5.45 ± 0.32

4-Caffeoylquinic acid 3.85 ± 0.10 2.50 ± 0.08 4.82 ± 0.03 5.17 ± 0.11 2.54 ± 0.12

5-Caffeoylquinic acid 3.55 ± 0.11 4.06 ± 0.13 6.06 ± 0.12 7.79 ± 0.37 3.00 ± 0.14

3,4-Dicaffeoylquinic acid 1.14 ± 0.06 0.86 ± 0.02 1.54 ± 0.09 1.41 ± 0.02 0.79 ± 0.02

3,5-Dicaffeoylquinic acid 1.91 ± 0.04 3.38 ± 0.04 3.06 ± 0.15 4.89 ± 0.02 1.54 ± 0.06

4,5-Dicaffeoylquinic acid 1.36 ± 0.07 1.42 ± 0.02 2.08 ± 0.07 2.16 ± 0.09 1.03 ± 0.06

Sum of quantified phenolic acids 19.59 20.74 27.25 36.97 14.41

Theobromine 0.26 ± 0.02 0.24 ± 0.01 0.31 ± 0.01 0.43 ± 0.01 0.17 ± 0.01

Caffeine 2.84 ± 0.11 2.28 ± 0.05 2.47 ± 0.08 3.83 ± 0.04 1.66 ± 0.01

Rutin 1.14 ± 0.06 1.34 ± 0.09 1.71 ± 0.07 2.47 ± 0.03 1.03 ± 0.06

Sum of quantified compounds 23.83 24.60 31.74 43.70 17.27
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Kombucha tea during the course of its fermentation (0, 7, 14, and 21 days) and observed a high tendency to 
increase especially after the 7th days, which may be due to the higher microbial diversity achieved by that time27.

Assessment of antioxidant activity.  Plant raw materials with strong antioxidant properties, thanks to 
which they play a key role to our body. Their action is mainly based on the elimination of reactive oxygen and 
nitrogen species, neutralization of free radicals, chelation of iron and copper ions of metals and inhibition of 
enzymes from the group of oxidases14,28–30. A valuable source of secondary metabolites are both extracts and 
ferments obtained from the Yerba Mate. As a result, seven measurement points were realized for each concentra-
tion (10 µg/mL, 100 µg/mL, 250 µg/mL, 500 µg/mL, 1000 µg/mL) of the tested extract. From these values, the 
IC50 point was determined for the data obtained after 30 min (Table 3). It was shown that the lowest values of 
175.93 ± 0.19 µg/mL were shown by the ferment obtained after 21 days of fermentation of Mate tea with Kom-
bucha. Compared to YM extract (IC50 = 263.37 ± 0.17 µg/mL). This value was 33% lower than the value obtained 
for the Mate extract without the fermentation process. F21 showed a higher antioxidant capacity. Similar con-
clusions regarding time of fermentation were reached by Floegel et al., because by extending the fermentation 
time, the antioxidant potential of the raw material was also increasing along with the longer fermentation time 
of tea31,32.

The diagram presented in Fig. 2 referring to the DPPH radical scavenging capacity for the extract and Yerba 
Mate ferment shows the data for the concentration of 250 µg/mL. The obtained data showed that the analyzed 
extracts show a variety of antioxidant properties. For the discussed concentration, for all the time-being of the 
experiment the lowest values were observed in the case of F35 extract and the highest antioxidant properties 
were exhibited by F21 extract, while values for the rest of extracts were noted between values of those. At the 
end of the experiment, meaning after 30 min, scavenging capacity of F35 was 44.8% and 61.7% for the F21. An 
interesting behavior was observed for the pure YM extract, where after the time of 10 min scavenging capacity 
growth has slowed down compared to the rest of analysed extracts.

The ABTS radical neutralization analysis was also performed for the concentrations of 10 µg/mL, 100 µg/mL, 
250 µg/mL and 1000 µg/mL. Based on the obtained values, the IC50 point was determined (Table 3). Analogously 
to the previously discussed DPPH radical, the most favourable values were observed for the ferments obtained 
after 21 days. Value of 158.85 µg/mL obtained in this case was lowest by around 2% compared to the Yerba Mate 
extract not subjected to the fermentation process, where IC50 was 160.85 µg/mL. Lower values of IC50 for 
extracts subjected to the fermentation process with Kombucha may be caused by bacteria and yeast released in 
the fermentation process, which may result in better efficiency on nitrogen and superoxide radicals, and poor 
scavenging performance on hydroxyl radicals12.

Table 3.   Values of IC50 of DPPH and ABTS for Yerba Mate extract and ferments after 30 min of exposure (for 
DPPH method). Values are means ± standard deviation (SD) of triplicate.

Sample YM F7 F14 F21 F35

DPPH radical scavenging assay

IC50 (µg/mL) 263.37 ± 0.17 219.04 ± 0.11 221.84 ± 0.20 175.93 ± 0.19 292.85 ± 0.23

ABTS + scavenging assay

IC50 (µg/mL) 160.85 ± 0.07 172.58 ± 0.02 174.02 ± 0.14 158.85 ± 0.08 182.68 ± 0.12

Figure 2.   The changes DPPH radical scavenging capacity over time for 250 μg/mL of Yerba Mate extract and 
Kombucha ferments. Values are mean of three replicate determinations (n = 3).
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The diagram presented in Fig. 3 referring to the ABTS radical scavenging capacity for the extract and Yerba 
Mate ferment shows the data for the concentration of 100, 250 and 1000 µg/mL. A conclusion can be drawn that 
the higher concentration of the extract the higher free radical scavenging ability, in each discussed case. Despite 
the significant reduction of free radicals for all the samples tested (about 90% at 1000 µg/mL), the highest capacity 
of the extract and ferments is observed for YM and F21 (above 90% ABTS + radical scavenging).

In the next stage of the research, the ability of the YM extract and the obtained ferments to reduce intracel-
lular production of reactive oxygen species in two skin cell lines—fibroblasts (BJ) and keratinocytes (HaCaT) 
was assessed. Reactive oxygen species (ROS) produced internally and extracellularly play a key role in cellular 
physiopathology33. They influence, inter alia, cell proliferation and a number of different signaling pathways34. 
The excess of free radicals in cells can damage proteins, lipids and DNA, therefore it is extremely important to 
maintain redox homeostasis, which is closely related to the ratio of the amount of oxidants and antioxidants. 
This study was performed using fluorogenic H2DCFDA dye. After passive diffusion of H2DCFDA into HaCaT 
and BJ cells, it is deacetylated by intracellular esterases to a non‐fluorescent compound. In the presence of ROS, 
it is oxidized into highly fluorescent 2′,7′‐dichlorofluorescein (DCF). H2DCFDA probe was used to detect redox 
imbalance after exposure of the test cells to YM extract and ferments, as it can react with several ROS, including 
hydroxyl radicals, hydrogen peroxide and peroxynitrite35.

The analysis carried out as part of this study demonstrated that both the YM extract and the obtained fer-
ments can reduce the intracellular level of free radicals in both fibroblasts and keratinocytes (HaCaT), because 
the values of normalized fluorescence were lower than in control cells (cells grown in the medium without 
addition extract or ferments) (Figs. 4, 5). As part of the research, the effect of the extract and ferments in the 
range of 10–1000 µg/mL was examined, while the figures show the results for the concentration of 250 µm/mL. 
Th significantly reduce the level of free radicals for fibroblasts and keratinocytes have showed for ferments after 
14 and 21 days of fermentation with Kombucha, but all tested samples are capable of reducing this level. Similar 
results were obtained for the remaining tested concentrations of the extract and ferments (data not shown). The 
least favorable results were obtained for the ferments after 35 days, which may indicate that too long fermenta-
tion time may contribute to the accumulation of harmful fermentation products that may affect formation of 
free radicals inside cells12,36.

Cytotoxicity assessment.  In order to assess the potential cytotoxicity of the tested extract and the fer-
ments, the Alamar Blue and Neutral Red tests were used. The performance of these tests allowed the assessment 
of the influence of the tested samples on the metabolic activity and proliferation of fibroblasts and keratinocytes. 
The first of the tests used is based on the application of non-fluorescent resazurin, which can be reduced to 
fluorescent resorufin. This test allows the assessment of cell viability, their proliferation and the determination of 
mitochondrial respiratory activity37. In contrast, the neutral reduptake test relies on the ability of living cells to 
incorporate and bind the neutral red dye in lysosomes. This uptake is strictly dependent on the ability of cells to 
maintain pH gradients, which is closely related to the production of adenosine triphosphate (ATP)38.

The cytotoxicity analysis carried out as part of this study showed that the effect of the studied extract and 
Kombucha ferments on the viability of skin cells in vitro is dependent both on the dose used and the fermentation 
time of Yerba Mate. The results of the Neutral Red test indicated that the obtained ferments may have a positive 
effect on the viability of both fibroblasts and keratinocytes (Fig. 6). The significantly highest cell viability of BJ 
(almost 130%) have shown when treated with 500 µg/mL of F21. Similas results have determined for HaCaT—
almost 120% cell of viability after treated with 500 µg/mL of F14 and F21. Additionally, the analyzes carried 

Figure 3.   ABTS + radical scavenging by various concentrations of Yerba Mate extracts and Kombucha ferments. 
Values are means of three replicate determinations (n = 3). Different letters on the charts indicate significant 
differences between groups (p < 0.05).
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out showed that the YM extract at the highest concentration used (1000 µg/mL) caused a cytotoxic effect on 
fibroblasts. In the case of HaCaT cells, this effect was observed for the two highest tested concentrations (500 
and 1000 µg/mL), which indicates that the obtained ferments have a more beneficial effect on skin cells than 
the extract. Similar results were obtained using the test with resazurin, which also indicated the possibility of 
cytoprotective effect of the obtained ferments on the viability of the examined cells. For fibloblasts—almost 120% 
cell of viability after treated with 250 µg/mL of F14 and F21 (Fig. 7). This test showed that the tested ferments are 

Figure 4.   Effect of Yerba Mate and Kombucha ferments (at a concentration of 250 µg/mL) on the DCF 
fluorescence in fibroblasts. Data are expressed as the mean of 3 independent experiments each consisting of 
three replicates per treatment group.

Figure 5.   Effect of Yerba Mate and Kombucha ferments (at a concentration of 250 µg/mL) on the DCF 
fluorescence in HaCaT cells. Data are expressed as the mean of 3 independent experiments each consisting of 
three replicates per treatment group.
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able to increase the viability of fibroblasts to a greater extent than keratinocytes. As in the previous test, the most 
noticeable increase in the metabolic activity of fibroblasts was observed in the F14 and F21 ferment, while the 
F35 ferment showed no positive effect on the viability of these cells. In the case of HaCaT cells, a much smaller 
increase in viability and a cytotoxic effect were observed in the case of higher concentrations of F35 ferment 
and YM extract. The obtained results indicate that the compounds formed during the fermentation of Mate tea 
with Kombucha may positively affect the viability of skin cells, which indicates their potential use in various 
preparations used for skin care. There are also recent scientific reports on the properties of Yerba Mate ferments 
obtained with Kombucha, but their influence on the viability of skin cells has not been described so far. The 
cytoprotective effect of the analyzed ferments on skin cells shown in this work is undoubtedly associated with 
a wide range of biologically active compounds, the presence of which has been confirmed in chromatographic 
analysis. These compounds can protect cells by reducing oxidative stress, increase metabolic activity of cells and 
counteract adverse changes in cell structure39–43.

Assessment of matrix metallopeptidades inhibition.  Skin aging is a biological phenomenon that is 
influenced by many internal and external factors. Due to the fact that the skin is an organ directly exposed to the 
environment, it has to cope with unfavorable UV radiation, which generates an increase in reactive oxygen spe-
cies. ROS are able to initiate complex molecular pathways, including activation of enzymes that degrade extracel-
lular matrix proteins (ECM) in the dermis, such as collagen and elastin. Activation of the protease results in the 
breakdown, fragmentation and disorganization of ECM proteins, visibly manifested by typical UV-induced skin 
changes, such as deep wrinkles, loss of color and elasticity of the skin44–46. Matrix metalloproteinases (MMPs), a 
family of zinc-containing multidomain endopeptidases with a broad range of substrate specificity, are the major 
group of proteolytic enzymes involved in the degradation of skin connective tissue components47. Inhibition of 
the activity of ECM-degrading proteins, such as collagenase and elastase, may be a useful approach to prevent 
UV-induced skin lesions and premature skin aging48. Therefore, in order to assess the potential use of the studied 

Figure 6.   Effect of the increase in the concentration of extract and ferments (10–1000 μg/mL) on cell viability 
(Neutral Red assay) by cultured fibroblasts (A) and keratinocytes (B) after 24 h exposure. Data are the 
mean ± SD of three independent experiments each consisting of three replicates per test group. Different letters 
on the charts indicate significant differences between groups (p < 0.05).

Figure 7.   Effect of the increase in the concentration of extract and ferments (10–1000 μg/mL) on cell viability 
(Alamar Blue assay) by cultured fibroblasts (A) and keratinocytes (B). Data are the mean ± SD of three 
independent experiments each consisting of three replicates of each test concentration. Different letters on the 
charts indicate significant differences between groups (p < 0.05).
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extracts in the fight against skin aging, the possibility of Yerba Mate extract and Kombucha ferments obtained 
from YM extract for inhibiting the activity of the collagenase and elastase enzymes were investigated.

The conducted analysis showed that the tested samples differ in their ability to inhibit collagenase and elastase 
depending on the fermentation time of Kombucha, which results in the inhibition of substrate hydrolysis. The 
analyzes of the extract and ferments were carried out for the concentration of 500 µg/mL. It was observed that 
the significantly highest (approximately 65%, p < 0.05) anti-collagenase activity had Yerba Mate extract (Fig. 8). 
Regarding Kombucha ferments, lower anti-collagenase activity was observed compared to Mate tea extract. 
However, by extending the fermentation time to 21 days, an increase in the ability to inhibit collagenase activity 
was visible (almost 40% for F21 sample). After this time, this activity decreased (for F35 sample only 5% enzyme 
inhibition capacity). Similar results have been observed for the anti-elastase activity presented also in Fig. 8. 
The YM extract had the significantly highest ability to inhibit elastase at a level above 40%, while the ferment 
after 21 days of fermentation also showed significantly second-highest anti-elastase activity at the level of 32%.

Phenolic extracts are found to inhibit the activity of proteinases, which catalyze the degradation of skin 
proteins, such as collagen and elastin. Collagen in the dermis is responsible for the firmness, elastin fibers lend 
the elasticity48,49. Thring et al. determined anti-collagenase, anti-elastase and antioxidant activities of 21 plant 
extracts and correlated them with the total phenolic content. The white tea extract showed the highest inhibi-
tory activity against both enzymes as well as the highest antioxidant activity and phenolic content50. The pres-
ence of active ingredients such as phenolic compounds, methylxanthines and flavonoids in Yerba Mate extract 
may help to inhibit the activity of enzymes responsible for skin aging17. In addition, more and more research 
concerns fermented plant extracts, which are a rich source of antioxidants, vitamins, minerals, polyphenols as 
well as probiotics51. Kim et al. have shown that aqueous extract of Fructus arctii (FFAE) fermented with Grifola 
frondosa HB0071 exhibited 5-lipoxygenase inhibitory and antioxidant activities. FFAE inhibits the expression of 
matrix metalloproteinase (MMP-1) in UV-A treated human fibroblasts in a dose-dependent manner52. Moreo-
ver, Saccharomyces cerevisiae mediated fermented black ginseng (FBG) has been reported for the anti-wrinkle 
activity in cultured human fibroblasts HS68 and proved that FBG was noncytotoxic. FBG treatment increased 
the expression of type I procollagen and tissue inhibitor of metalloproteinase-2 and reduced the expression of 
MMP-1, MMP-2, and MMP-9 in fibroblasts cells53.

Assessment of anti‑inflammatory potential.  The active substances contained in some plant extracts 
may also have anti-inflammatory effects. As shown Oguntibeju54, the anti-inflammatory properties of plant 
extracts can be based on various mechanisms of action, which depend on the type of active compounds. As 
the most important mechanisms are proposed inhibition of 15-lipoxygenase (LOX), the key enzyme in the syn-
thesis of pro-inflammatory reactions mediators—leukotrienes, inhibition of prostaglandins synthesis (COX), 
inhibition of cytokines with pro-inflammatory effects, and inhibition of phospholipase A2, what contributes to 
limiting of LOX and COX activity and plays the major role in the inflammation treatment54–58. In this research, 
the anti-inflammatory properties of the Yerba ferments and extract were performed. Determination of the LOX 
inhibition was used. The results are presented in Fig. 9.

Based on the obtained results, it was observed that both the Yerba ferments and the extract showed the mod-
erate ability to LOX inhibition. The anti-inflammatory properties of the analyzed samples depended on their 
concentration and the time of the fermentation process. In the range of analyzed concentrations, the strongest 
ability to inhibit LOX activity was observed for the F14 and F21 and the extract samples. At the concentration 
of 100 µg/mL, the differences were not statistically significant and the analyzed parameter was about 20%. With 
the increased concentration of the F14 and F21 ferments and the extract, it was noted a two-time increase in 
the anti-inflammatory properties, and the value of analyzed parameter was about 30–35% at the concentration 
of 250 µg/mL and 35–40% at the concentration of 500 µg/mL (significantly higher values were observed for the 
YM extract). The F7 and F35 samples were characterized by lower anti-inflammatory effects. For the F7 and the 
F35 ferments, respectively, about 60% and about 45% lower LOX inhibition was shown in relation to the F14 
and F21 samples.

Figure 8.   Influence of Yerba Mate extract and Kombucha ferments on collagenase (A) and elastase (B) 
inhibition. Data are the mean ± SD of three independent experiments, each of which consists of three replicates 
per treatment group. Different letters on the charts indicate significant differences between groups (p < 0.05).
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Previous studies indicated that active compounds contained in Yerba Mate extracts have a strong ability to 
inhibit pro-inflammatory factors. In vitro studies of Puangpraphant et al.58 have shown that quercetin and sapo-
nins derived from the aqueous YM extract are the main ingredients responsible for its anti-inflammatory effect 
and these substances are capable of decreasing the production of interleukin-6 (IL-6), cyclooxygenases (COX-2) 
and nitric oxide (NO), the main mediators of the inflammatory process. Heck et al.59 have also shown that tannins 
contained in Mate tea extracts contribute to a decrease in LOX activity. Anti-inflammatory properties of YM, 
through reduction of COX-2 and nitric oxide synthase, were indicated by Guollermo et al.60 in the in vivo models.

Transepidermal water loss (TEWL) and skin hydratation measurements.  As a rich source of vari-
ous active substances, plant extracts may have beneficial effects not only as a result of internal administration 
but also when they are applied to the skin surface. This property of plant extracts is used in the cosmetic and 
pharmaceutical industry, where plant extracts are often used as active ingredients of the products like creams, 
balms and ointment. Applied to the skin, plant extracts may contribute to an increase in skin moisture and 
prevent excessive loss of water from the epidermis. Proper skin hydration plays an important role in many pro-
cesses, which most expected are acceleration of wound healing and skin regeneration and delaying skin aging 
processes. The regeneration of dry and deprived of adequate moisture level skin is more difficult. Lack of suitable 
moisture in the skin may also significantly inhibit the healing of wounds and cause its bad condition. Because 
of that, the impact of the analyzed ferments and the extract on the skin moisture and transepidermal water loss 
(TEWL) was carried out. The study was conducted with samples in a concentration of 100 µg/mL. The results 
are presented in Fig. 10.

It was observed that the application of the Yerba ferments and extract to the skin improves the hydration level. 
An increase in hydration depended on the fermentation time of the extracts. Relative to the control field, where 
no sample was applied, the strongest ability to improve the skin hydration was noted for F14 and F21 ferments. 

Figure 9.   Anti-inflammatory effect of Yerba Mate extract and ferments. Data are the mean ± SD of three 
independent experiments, each of which consists of three replicates per treatment group. Different letters on the 
charts indicate significant differences between groups (p < 0.05). QUE quercetin.

Figure 10.   Influence of Yerba Mate extract and ferments (100 µg/mL) on transepidermal water loss (TEWL) 
(A) and skin hydration (B). The determinations were made in five replicates. Different letters on the charts 
indicate significant differences between groups (p < 0.05).
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In relation to the control field, an increase of about 20% and 30% was obtained after 60 and 240 min, respec-
tively. The analyzed parameter was not significantly different for these samples. Lower values of skin hydration, 
about 5% higher than for the control and not significantly different from Yerba extract, were observed for the 
F7 ferment. The weakest skin moisturizing properties were noted for the ferment after 35 days of fermentation. 
The obtained results were about 30 and 31.5 skin moisture units (60 and 240 min respectively) and achieved a 
level not significantly different than for the control field. It was also observed that the ferments are characterized 
by long-lasting moisturizing properties. In contrast to the Yerba extract, for the analyzed ferments, there was 
observed an increase of the skin moisture level 240 min after their application to the skin. After the same time, 
for the extract, the skin moisture level decreased and returned to the physiological state.

The influence of the analyzed samples on a TEWL level was also carried out. The obtained results were analo-
gous to the notes in the skin moisture assay. The most preferable TEWL lowering properties were observed for 
the F14 and F21 ferment samples and the Yerba extract. Relative to the control field, applying these samples to 
the skin surface reduced the TEWL value of about 15% and 10% after 60 and 240 min, respectively. The results 
obtained for the F7 and F35 ferments were about 5–7% lower than those for the control.

The cosmetic properties of plant extracts related to their influence on the skin condition, including a mois-
turizing ability, are because extracts contain a wide range of natural substances able to bind and retain water 
in the upper layers of the epidermis. Antioxidants (polyphenols, flavonoids), proteins and amino acids, and 
carbohydrates are indicated as the main compounds of plant extracts with moisturizing properties. These kinds 
of substances contain hydroxyl groups in their molecules that may bind water molecules by forming hydrogen 
bonds. Low molecular weight compounds included in plant extracts can penetrate deeper skin layers and are 
responsible for moisturizing the skin by keeping water in the skin, while the substances with a higher molecular 
weight and poorer skin penetration ability (e.g. carbohydrates and proteins) can act by occlusion on the skin 
surface limiting water evaporation from the epidermis. The reason for differences in the obtained results is 
probably a different composition of the analyzed samples, which depends on the fermentation time. Chu and 
Chen12 showed that changes in the concentration of bioactive substances in the fermentation process may be a 
result of the polymerization of simple compounds into the higher molecular weight compounds that occur in 
the first days of the fermentation process. In the next stage of fermentation, compounds may be depolymerized 
into simple substances, and in the final stage may be degraded. In the 14. and 21. days of the Yerba fermentation, 
the concentration of active ingredients is the highest, and due to that, moisturizing and the TEWL lowering 
properties are the most preferable for these ferments.

Materials and methods
Plant material and fermentation procedure.  The analyses were conducted using natural processed 
leaves of Yerba Mate (Ilex paraguaiensis St. Hil.), obtained from a local and ecological factory (Alto Parana, 
Paraguay). The collection and storage of the material were carried out under strictly controlled conditions. Kom-
bucha starter cultures were purchased from a commercial source from Poland. Before starting the fermentation 
process, Kombucha starter culture was stored under aseptic conditions in a refrigerator (4 °C) and consisted of 
acid broth and cellulose layer. Initially, an infusion of Mate tea was prepared in a sterile beaker by mixing 15 g of 
Yerba Mate with humidity of 8% (3% w/w), 50 g of sucrose (final concentration 10.0% m/v) and 500 mL of hot 
distilled water (95 °C). The mixture prepared in this way was stirred every few minutes with a glass rod until the 
solution cooled down (about 25 °C, cooling bath, cooling time 30–40 min). The resulting YM infusion was then 
filtered twice through membrane filters into sterile glass beakers (1000 mL, 18 cm height and 8 cm diameter). 
Then, tea fungus (3 g) and Kombucha (50 mL) were added to the filtrate and fermentation was carried out for 
7, 14, 21 and 35 days (in separate beakers) at room temperature (about 25 °C). After fermentation, the obtained 
Kombucha was filtered and evaporated under reduced pressure at 40 °C. Ferments obtained after 7 days were 
signed as F7, after 14 days as F14, after 21 days as F21 and after 35 days as F35. Mate infusion without Kombucha 
was marked as YM.

Determination of biologically active compounds.  Main metabolites (chlorogenic acid, caffeic acid, 3, 
4-dicaffeoylquinic acid, 3, 5-dicaffeoylquinic acid, caffeine, theobromine and rutin) were analysed according to 
the procedure described previously by Klejdus et al. and Oszmianski et al.61,62 using an ultra high performance 
liquid chromatography (UHPLC) Infinity Series II with DAD detector and Agilent 6224 ESI/TOF mass detec-
tor (Agilent Technologies, Santa Clara, CA). HPLC conditions were as follows: an RP18 reversed-phase column 
Titan (Supelco, Sigma-Aldrich) (10 cm × 2.1 mm i.d., 1.9 μm particle size), a thermostat temperature of 20 °C, 
and a flow rate of 0.2 mL/min. A mixture of acetonitrile with 0.05% of formic acid (solvent A) and water with 
0.05% of formic acid (solvent B) were used as a mobile phase. The compounds were separated using gradient 
elution according to the program: 0–32 min from 10% A to 20% A, (from 90% B to 80% B), and 32–60 min from 
20% A to 40% A (from 80% B to 60% B). Chromatograms were recorded from 200 to 400 nm. LC–MS analysis: 
the ion source operating parameters were as follow: drying gas temperature 325 °C, drying gas flow 5 l min−1, 
nebulizer pressure 30 psi, capillary voltage 3500 V, fragmentator 170 V, and skimmer 65 V. Ions were acquired 
in the range of 100 to 1050 m/z. MS identification was performed based on literature data and NIST database. 
Quantification was based on calibration curves obtained using methanol standard solutions of identified com-
pounds. The content of the tested compounds is given in mg/g on a dry weight basis. All standards were from 
Sigma-Aldrich (St. Louis, MO, USA).

Assessment of antioxidant activity.  DPPH radical scavenging assay.  The 1,1-diphenyl-2-picrylhydra-
zyl radical (DPPH) was used for determination of free radical-scavenging activity of the analyzed samples. This 
method was described by Brand-Williams et al.63. Initially, 33 µL of aqueous solutions of F7, F14, F21 and F35 
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ferments and YM extract at concentrations of 10 µg/mL to 1000 µg/mL were added to 167 µL methanol solu-
tion of DPPH (4 mM) in a 96-well plate. The mixture was shaken vigorously, and absorbance was measured at 
λ = 516 nm with FilterMax F5 microplate reader (Thermo Fisher Scientific, Waltham, MA, USA). The DPPH 
neutralization analysis was carried out for a period of 30 min, measurements were performed at 5-min intervals, 
in triplicate for each sample. As a control, distilled water mixed with DPPH solution was used. Measurements 
were carried out in triplicate for each extract sample. The scavenging activity on the DPPH radical was expressed 
as inhibition percentage using the following Eq. (1):

where: Ac is the absorbance of the control sample (containing DPPH and water), As is the absorbance of the test 
sample (containing DPPH and test sample).

ABTS + svavenging assay.  Scavenging of ABTS·+ (2,20-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) 
diammonium salt) free radical was evaluated according to the procedure described by Arnao et al.64. The stock 
solution included 7 mM ABTS solution and 2.4 mM potassium persulfate solution. The working solution was 
then prepared by mixing the two stock solutions in equal quantities and allowing them to react for 14 h at room 
temperature in the dark. The solution was then diluted by mixing 1 mL ABTS solution with 40 mL methanol 
to obtain an absorbance of 0.706 ± 0.01 units at 734 nm using a spectrophotometer. Then, F7, F14, F21, F35 fer-
ments and YM extract (1 mL) were allowed to react with 1 mL of the ABTS solution and the absorbance was 
taken at 734 nm after 7 min using a spectrophotometer Aquamate Helion (Thermo Fisher Scientific, Waltham, 
MA, USA). Distilled water was used as a blank. Measurements were carried out in triplicate for each extract 
sample. The ABTS· + scavenging was calculated from the Eq. (2):

where: As—absorbance of the sample; Ac—absorbance of the control sample.

Determination of intracellular levels of reactive oxygen species (ROS).  In order to determine the ability of the 
analyzed ferments and YM extract to reduce the intracellular production of reactive oxygen species in keratino-
cyte and fibroblast cells, a fluorogenic H2DCFDA dye was used. After passive diffusion of this compound into 
the cells, it is deacetylated by intracellular esterases to a non-fluorescent compound. In the presence of reactive 
oxygen species it is oxidized and transformed into highly fluorescent DCF65. To determine the intracellular level 
of ROS in HaCaTs and fibroblasts, cells were seeded in 96 well plates at a density of 1 × 104 cells per well. Then, 
cells were cultured in an incubator for 24 h. DMEM medium was removed and replaced with 10 µM H2DCFDA 
(Sigma Aldrich, Saint Louis, MO, USA) dissolved in serum free DMEM medium. HaCaT and BJ cells were 
incubated in H2DCFDA for 45 min and then incubated with YM Kombucha ferments and extract in the con-
centration of 250 µg/mL. Cells treated with 1 mM hydrogen peroxide (H2O2) were used as positive controls. The 
control samples were cells untreated with the tested extracts. DCF fluorescence was measured every 30 min for 
90 min using a FilterMax F5 microplate reader (Thermo Fisher Scientific) at a maximum excitation of 485 nm 
and emission spectra of 530 nm.

Cytotoxicity analysis.  Cell culture.  Two skin cell lines were used in the cytotoxicity analyzes of the tested 
samples. HaCaT cells (normal human keratinocytes) were obtained from the CLS Cell Lines Service (Eppelheim, 
Germany), while BJ cells (fibroblasts, ATCC​®CRL-2522™) were purchased from the American Type Culture Col-
lection (Manassas, VA, USA). Cells were grown in an incubator at 37 °C in a humidified atmosphere of 95% air 
and 5% carbon dioxide (CO2). The research used DMEM (Dulbecco’s Modified Eagle Medium, Biological Indus-
tries, Cromwell, CO, USA), supplemented with l-glutamine, 4.5 g/l-glucose and sodium pyruvate. To achieve 
optimal cell growth, the culture medium was additionally supplemented with 10% (v/v) fetal bovine serum (FBS, 
Biological Industries, Beit-Haemek, Israel) and 1% (v/v) with antibiotics (100 U/mL penicillin and 1000 μg/mL 
streptomycin, Thermo Fisher Scientific, Waltham, Massachusetts, USA).After the cultured cells (HaCaT and 
BJ) had reached approximately 70% confluency, they were exposed to the test samples. For this, the DMEM 
culture medium was removed from the culture flask (VWR, Radnor, PE, USA) and the cells were washed three 
times with sterile PBS (phosphate buffered saline, Sigma-Aldrich, Saint Louis, Missouri, USA). The cell layer 
was trypsinized with trypsin/EDTA (Gibco) and then the cells were suspended in fresh DMEM medium. Cells 
were then plated in 96-well plates and incubated. After attaching HaCaT and fibroblasts to the bottom of the 
plates, the cells were exposed to 24-h exposure to various concentrations (10, 100, 250, 500 and 1000 µg/mL) of 
the extract and various types of Yerba Mate ferments (F7, F14, F21, F35). The control was cells grown in DMEM 
medium without the addition of extract or ferments66.

Neutral red uptake assay.  Neutral Red uptake test the first test used to evaluate the cytotoxicity of the extract 
and Yerba Mate ferments on HaCaT and BJ cells was the neutral red uptake test (Sigma Aldrich, Poznań, Poland). 
This test was performed according to the previously described procedure by Borenfreund et al.67. Briefly, after 
24 h of exposure to the YM extract and the individual ferments (F7, F14, F21 and F35), the culture medium 
containing various concentrations of the tested samples (10–1000 µg/mL) was aspirated. Then the cells were 
incubated for 2 h with a neutral red dye (at a concentration of 40 µg/mL) which was dissolved in serum-free 
DMEM medium. After incubation with the NR dye, cells were washed twice with sterile PBS. Then 150 µL of 

(1)% DPPH scavenging =
Ac − As

Ac
× 100,

(2)% of ABTS · + scavenging = 1−
As

Ac
× 100,



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18792  | https://doi.org/10.1038/s41598-021-98191-6

www.nature.com/scientificreports/

decolorizing buffer (C2H5OH/CH3COOH/H2O, 50%/1%/49%) was added to each well to release the dye from 
the cells. Cells were shaken for 15 min on a rocker shaker. After shaking, the absorbance of the dissolved dye was 
measured at λ = 540 nm using a FilterMax F5 Multi-Mode microplate reader (Thermo Fisher). The absorbance of 
the control cells (untreated with the extract and ferments) was taken as 100% cell viability. As part of the study, 
three independent experiments were carried out in which each concentration of extracts was tested in three 
replications. The % of cell viability was calculated from the Eq. (3):

where: As—absorbance of the sample; Ac—absorbance of the control sample.

Alamar Blue assay.  The cytotoxicity assessment was also performed using the Alamar Blue test. For this pur-
pose, the methodology described by Page et al.68 was used. After 24 h of exposure of HaCaT and BJ cells to the 
YM extract and individual ferments (in the concentration range from 10 to 1000 µg/mL), the DMEM culture 
medium was aspirated. Sterile resazurin (Sigma Aldrich) at a final concentration of 500 mg/mL dissolved in 
DMEM medium was added to the wells of a 96-well plate with test cells and incubated for 2 h at 37 °C in the dark. 
In the last step, the fluorescence of the samples was measured at λ = 570 nm using a microplate reader (FilterMax 
F5, Thermo Fisher). In order to evaluate the cytotoxicity of the extract and the ferments, three independent 
experiments were performed in which the fluorescence in 4 wells was measured for each concentration of the 
extract and the ferments. The results were expressed as the percentage of cell viability compared to the control 
sample (100%) which was cells maintained in DMEM medium. The % of cell viability was calculated from the 
Eq. (3).

Assessment of matrix metallopeptidades inhibition.  Determination of anti‑collagenase activity.  The 
ability of the tested samples (F7, F14, F21, F35 and YM extract) to inhibit collagenase activity was analyzed us-
ing a fluorometric Collagenase Inhibitor Screening Kit (ab211108, Abcam). The Kombucha ferments and YM 
extract at the concentration of 500 µg/mL were used for the analysis. According to the manufacturer’s instruc-
tions and with the procedure described previously by Nizioł-Łukaszewska et al.69, analyses were performed in a 
standard 96-well plate with a clear flat bottom. Initially, collagenase (COL) was dissolved in a collagenase assay 
buffer (CAB). The test samples were prepared by mixing obtained ferments and YM extract with COL and CAB. 
Inhibitor controls were prepared by mixing inhibitor (1,10-phenanthroline (80 mM) with diluted collagenase 
and CAB buffer. Enzyme controls were prepared by mixing diluted COL with CAB. The CAB buffer was used as 
background control. The samples were then incubated for 15 min at room temperature. Meanwhile, a reaction 
mixture was prepared by mixing the collagenase substrate with CAB. The reaction mixture was then added to all 
prepared samples and mixed thoroughly. Subsequently, the fluorescence was immediately measured at excitation 
wavelength λ = 490 nm and emission λ = 520 nm using a microplate reader (FilterMaxF5,ThermoFisher). The 
measurement was performed in the kinetic mode for 60 min at 37 °C. All samples were prepared in duplicate 
according to the manufacturer’s instructions. The ability to inhibit COL activity by the analyzed samples was 
calculated from Eq. (4):

Determination of anti‑elastase activity.  To determine the possibility of inhibiting another matrix metallopro-
teinase, neutrophil elastase (NE), a fluorometric kit (Abcam, ab118971) was applied. The Kombucha ferments 
and YM extract at the concentration of 500 µg/mL were used for the analysis. Analysis was performed in 96-well 
black plates (transparent bottoms). The test procedure was based on the instructions provided by the manufac-
turer and described by Nizioł-Łukaszewska et al.69. Initially, NE enzyme solutions, NE substrate and inhibitor 
control (SPCK) were prepared according to the instructions. Then, diluted NE solution was added to all wells. 
Test samples, inhibitor control and enzyme control (Assay Buffer) were added to subsequent wells. All samples 
were prepared in duplicate. After all reagents were added, the samples were mixed. The plate was then incubated 
at 37 °C for 5 min. In the meantime, a reaction mixture was prepared by mixing the Assay Buffer and NE sub-
strate. The mixture was added to each well and mixed thoroughly. Fluorescence was measured immediately at 
excitation wavelength λ = 400 nm and emission λ = 505 nm using a microplate reader (FilterMax F5, Thermo 
Fisher Scientific, Waltham, MA, USA).The kinetic mode was used (30 min at 37 °C). The ability to inhibit NE 
activity by the analyzed samples (F7, F14, F21, F35 and YM) was calculated from the Eq. (5):

Assessment of anti‑inflammatory potential.  Inhibition of lipoxygenase activity.  The ability of ob-
tained extracts to inhibit lipoxygenase activity was determined using a method described by Sarvesvaran et al.70. 
Then, 10 µL of obtained ferments and YM extract (100, 500 and 1000 µg/mL) were mixed in 96-well plate with 
160 µL of 100 mM PBS and 20 µL of soybean lipoxygenase solution (167 U/mL). Solutions were incubated at 
25 °C for 10 min and then 10 µL of sodium linoleic acid was added to initiate the reaction. The absorbance was 
measured at 234 nm over a period of 3 min in every minute using a FilterMax F5microplate reader (Thermo 

(3)% of cell viability =
As

Ac
× 100,

(4)% relative COL inhibition =
Enzyme control − Sample

Enzyme control
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�RFU test inhibitor
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Fisher Scientific, Waltham, MA, USA). Quercetin (100, 500 and 1000 µg/mL) was used as positive control. The 
final result was the arithmetic mean of three independent measurements. The percent of lipoxygenase activity 
inhibition was calculated from Eq. (6):

where: As—absorbance of the sample; Ac—absorbance of the control sample.

Transepidermal water loss (TEWL) and skin hydratation measurements.  TEWL and skin hydra-
tion measurements were conducted using TEWAmeter TM 300 probe and Corneometer CM 825 probe con-
nected to a MPA adapter (Courage + Khazaka Electronic, Köln, Germany). The study was conducted on 15 
volunteers, according to the procedure described by Nizioł-Łukaszewska et al.71. Five areas (2 × 2 cm in size) 
were marked on the forearm skin. 0.2 mL of 100 µg/mL solution of F7, F14, F21, F35 and YM (aqueous solutions 
of dry ferments and extract) was applied to 5 fields. One field (control field) was not treated with any sample. 
Sample solutions were gently spread over every skin fragment, and then rinsed with distilled water and dried 
with a paper towel. After 60, 180 and 360 min, the hydration and TEWL measurements were taken. The final 
result was the arithmetic mean (from each volunteer) of 5 independent measurements (skin hydration) and 20 
measurements (TEWL).

Statistical analysis.  Values of different parameters were expressed as the mean ± standard deviation (SD). 
The two‐way analysis of variance (ANOVA) and Bonferroni posttest between groups were performed at the level 
p value of < 0.05 to evaluate the significance of differences between values. Statistical analyses were performed 
using GraphPad Prism 8.4.3 (GraphPad Software, Inc., San Diego, CA, USA) and Statistica 9.0 (StatSoft, CA, 
USA) using one‐way ANOVA and Tukey’s test.

Ethical approval.  The study complies with local and national regulations.

Conclusions
So far, literature data indicate that fermentation by Kombucha is carried out for black and green tea. The results 
obtained in this study showed that Yerba Mate extract can also be a good substrate for Kombucha fermentation. 
The presence of active substances, mainly polyphenols, such as chlorogenic acid or caffeoyl derivatives, as well as 
xanthines and flavonoids, may indicate a high antioxidant potential in both YM extract and Kombucha ferments. 
Fermented YM extracts showed a positive effect on skin cells: keratinocytes and fibroblasts. Both YM extract 
and Kombucha ferments have anti-aging and anti-inflammatory properties, which is extremely important in the 
context of healthy skin appearance and prevention of various skin imperfections. Comparing the fermentation 
time of Kombucha with the use of Yerba Mate extract as a fermentation medium, the ferment showed the most 
favorable properties after 14 and 21 days of fermentation. The obtained results indicate that the ferments, apart 
from their probiotic activity supporting the beneficial microorganisms inhabiting the human skin, can also be 
a valuable ingredient present in pharmaceutical and cosmetic products.
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